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Kernel density estimators for discrete multivariate data are investigated, using
the notation framework of contingency tables. We derive large sample properties of
kernel estimators and the least-squares cross-validation method for choosing the
bandwidth, including the asymptotic bias, the mean summed squared error, the
actual summed squared error, and the asymptotic distribution of the resulting non-
parametric estimator. We show that the least-squares cross-validation procedure is
superior to Kullback—Leibler cross-validation in terms of mean summed squared
error, but that the least-squares cross-validation is still sub-optimal concerning
actual summed squared error. ¢ 1993 Academic Press, Inc.

1. INTRODUCTION

The estimation of cell probabilities is one of the central issues in
the analysis of multivariate discrete (categorical) data. It is equivalent to
density estimation for continuous data.

The present paper investigates kernel estimates for “densities” of multi-
variate discrete data. Their behaviour is strongly influenced by the
bandwidth, in the same sense as we know it from their continuous data
counterpart: the bandwidth determines the degree of smoothness of the
resulting estimator. Here “smoothness” ranges from the extremely
unsmooth frequency estimator to the extremely smooth case, where any
data set produces the uniform distribution.

This paper is concerned with theoretical aspects of data-dependent
bandwidth choice, with particular emphasis on least-squares cross-valida-
tion. Meanwhile, in continuous data density estimation much research has
been done in this field; for an overview and references see Silverman [22],
Hall and Marron [14], Marron [18], and Hall er al. [15]. Kernel
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estimators for multivariate discrete data are much less investigated; there
are only a few theoretical results on data-dependent bandwidth procedures
exceeding the fundamental paper by Wang and van Ryzin [27].
Nevertheless, the discrete data case clearly deserves separate treatment.

Our considerations here are motivated by the fact that basic large
sample properties of kernel estimators are known to be quite different
for the two classes of discrete and continuous densities. Among others the
differences concern the convergence rates of the minimal possible mean
summed squared error and mean integrated squared error, respectively, as
well as the convergence rates of the optimal bandwidths. Therefore, we
have no hope to get answers for data-driven bandwidth choice in the
discrete setting by simply looking at the continuous data results.

In the following we derive large sample properties of kernel estimators
for multivanate discrete densities (cell probabilities), concentrating on the
least-squares cross-validation method (LS-method) for the bandwidth
choice. Thereby, we assume the number of cells to be fixed, so that in fact
we estimate a finite number of parameters (the cell probabilities) under
increasing sample size. Hence, it is not surprising that we obtain parametric
convergence rates for kernel density estimators, as opposed to the
continuous density estimation case. An alternative asymptotic framework
has been discussed by Sutherland et al. [25], Bishop er al. [2], Burman
[5,6], Simonoff [23], and other authors. Here, cell probabilities are
represented by areas under a master density curve, whereby the number of
cells increases with the sample size. This type of asymptotics can be used
to model sparse data in large tables, a realistic setting in categorical data
analysis. However, the method is not suited to investigating estimators that
are tailored to reflect multivariate structures, as for example the classical
kernel estimators proposed by Aitchison and Aitken [1]. For further
discussion of the high-dimensional, sparse data problem we refer to Grund
and Hall [10].

In the present paper, we consider the random cross-validation bandwith
as an intrinsic part of a kernel estimator as opposed to the often used
approach of first investigating kernel estimators under nonrandom
bandwidths and later to average over the random effect due to the
data-dependent bandwidth: an interesting, controversial discussion of both
viewpoints can be found in Jones [16] and Mammen [17]. Sections 2
and 3 briefly introduce kernel estimators for discrete data (in the
notation framework of contingency tables) and methods for choosing the
bandwidth. General assumptions of the asymptotic setting are summarized
in Section 4, while Sections 5 and 6 contain the main results. Here we give
formulae for the leading terms of bias, variance, and mean summed
squared error of kernel estimators with cross-validation bandwidth, and
show that these estimators are best asymptotic normally distributed
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(Theorem 5.1-5.3). The actual error is regarded in Theorem 5.4, whereas
Theorem 5.5 contains generalizations for higher-dimensional bandwidths.
In Section 6 the cross-validation bandwidth is compared to optimal
parameters. We show that the least-squares cross-validation in average
behaves better than the classical Kullback-Leibler method, but that least-
squares cross-validation is still suboptimal concerning the actual error. All
proofs are deferred to Section 7 and Appendixes A—C; more detailed proofs
are given in Grund [9].

2. KERNEL ESTIMATORS

Our aim is to estimate the density of an m-dimensional categorical
random variable X = (X, .., X,,)’, based on a sample of N independent
realisations of X. Thereby each component X, can take ¢, values, so that
X has r=1,-..-1,, possible outcomes.

The sample corresponds to an m-dimensional multinomial contingency
table, with cells i= (i, .., i,)eJ={i= (i, ., i,,) s i, €{l, ., t,}, v=1, .., m},
cell probabilities p; = P(X =i), and N observations. Obviously, estimating
the density of X is equivalent to estimating the cell probability vector (cpv)
P=1{(p;)ic,. The well-known frequency estimator p stands for the random
observations,

Np~M,(N,p),

where M (N, p) denotes the corresponding multinomial distribution.
Throughout the paper we shall use this notation framework of
contingency tables, and keep in mind that any estimator for the cpv p
estimates the density of the underlying multivariate categorical variable X.
In estimating cell probabilities, the frequency estimator p is known to be
the best asymptotic normally distributed estimator, yielding

LISNB—p)} —— N.(0. S(p)), (2.1)

where S(p)=Diag{p}—pp’, and Diag {p} denotes the diagonal matrix
with the diagonal given by the vector p. However, p has certain disadvan-
tages for small and moderate sample sizes (zero estimates for nonobserved
cells, large variance, etc.). Among the various approaches developed to
improve the small sample behaviour, kernel estimators belong to the
favoured nonparametric methods. Introduced by Aitchison and Aitken
[1], they are based on the hope that cells, declared to be neighbours, really
have similar probabilities, so that the observation of neighbour cells
provides additional information.

683 46 2-8
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According to Titterington [26], we define here kernel estimators as
special linear estimators depending on the bandwidth 3. We call k a kernel
estimator for the cpv p, iff

ki = 4p,

where A=A(9) is a kernel matrix (for each 8e[0,1]"), ie.,
A={((a;));.,€ R is a double-stochastic matrix (nonnegative elements,
row and column sum 1) with a;>a;; for all i, jeJ.

Examples include:

Pseudo-Bayes Estimators. The kernel estimator defined by
—1
1—317- ifoi=j
a;(3) = (2.2)
9/t else,

where 3¢e [0, 1], is equivalent to the so-called pseudo-Bayes estimator of
Fienberg and Holland [8]:

(1—8)p+9c,, (2.3)

where ¢, = (1/1)(1, ..., 1)’ denotes the cpv with equal cell probabilities.

Aitchison and Aitken’s Estimators. The classical kernel estimators
proposed by Aitchison and Aitken [1] correspond to

ay(9) oc GE=r bl (2.4)
in the case of a one-dimensional smoothing parameter 3¢ [0, 1], or to
aij(‘g) o gtllll/‘l.jll R lg:ﬁn(lrn-jm) (25)

with 3=(3,, .., 3,) €[0, 11" Thereby d,(i,,/,), v=1, .., m, measures the
distance between the items i, and j, of variable X; in the case of nominal
data e.g. by the 0-1-distance. See also Titterington [26].

Nearest Neighbour Estimators. Given a kernel estimator Ap, a
symmetric function d: J x J/ - R ™ measuring the distance between two cells,
and a number #>0, we define the corresponding nearest neighbour
estimator by

a. if di,j)<h

i
anngj X {

2.6
0 else, (2.6)
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where a;; and ayy ; are the elements of the kernel matrices of the
original estimator and the attached nearest neighbour estimator, respec-
tively. Among others, this procedure includes the well-known nearest
neighbour estimators of Aitchison and Aitken [1], given by (2.4)-(2.6)
using

di,j)=#{vii,=j,v=1,.,m}

Remark. The nearest neighbour method for cell probabilities corre-
sponds, in the context of estimating the density of a continuous random
variable, to the use of kernel functions with compact support, not to the
usual nearest neighbour estimators!

In all three examples the bandwidth 3 has a high impact on the the
performance of the entire kernel estimator. Small bandwidths correspond
to little smoothing, and under 3=0 data are not smoothed at all; in the
latter case the kernel estimators result in the frequency estimator p, as
A(0)=I. The larger the bandwith, the more smoothing is involved, up to
the extreme value 3= 1, where both the pseudo-Bayes and Aitchison and
Aitken’s estimators degenerate to the constant ¢,. The considerable
flexibility of kernel density estimators makes bandwidth choice a central
issue. Obviously, the optimal amount of smoothing, however measured,
depends on the underlying unknown density. Under realistic conditions it
has to be estimated, leading to data-driven bandwidth selectors.

3. CHOOSING THE BANDWIDTH

Much work has been done on data-dependent bandwidth choice, and a
variety of methods have been developed. For an overview see Titterington
[20], Grund [9], and Santner and Duffy [21]. Here we concentrate on
two cross-validation procedures:

The Kullback—Leibler Method. We take the bandwidth §,, minimizing

Y Biln(pifk_ii(9)),

ieJ

where IE;_A“(S) denotes the element i of the kernel estimator £ ;(3),
computed with one observation missing from cell i, i.e.,

k_i(H=ASp_;,
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where
N 1

b=y P

NPT NIy

and e; denotes the vector with “1” in the position of cell i (again in
lexicographical order), and “0” else. Observe that p , represents the
sample, with one observation deleted from cell i.

This procedure is equivalent to the pseudo-likelihood method. In
connection with cell probabilities it was first proposed by Aitchison and
Aitken [1], who took their prescription from Habbema es a/. [11] and
Duin [7].

The Least-Squares Method. The LS-bandwidth §,¢ is defined to
minimize

Y Billk (9)—el?, (3.1)
ieJ
where | -|| is the Euclidean distance.

Remark. Formula (3.1) can be interpreted as an estimate of the mean
squared error of prediction if e; is considered to represent a single observa-
tion corresponding to cell i. Therefore, ¢ is expected to provide a small
squared error for the resulting kernel estimator. Note that §, is completely
determined by the random cell frequencies p, though the cross-validation
procedure (3.1) defines the dependence of .’JLS on p differently for each
sample size N.

The LS-cross-validation method was first used by Stone [24] in the
context of the pseudo-Bayes estimator (2.3), and was considered again by
Rudemo [20] and Bowman [4]. In the last years the LS-procedure has
been discussed mainly in connection with kernel estimators for densities of
continuous variables.

On the first view, kernel estimators with random bandwidths, say
k = A(3) p, are driven by two conceptually different sources of randomness.
One is the random vector of relative cell frequencies p, which may be
considered as a pilot estimate for p still to be smoothed by the kernel; the
other random component is the amount of smoothing, determined by 4. In
practical applications, such as the cross-validation procedures described
above, the randomness of § is completely determined by p, so that the
entire kernel estimator including random bandwidth is actually a non-
linear, rather complicated function of p. Theoretical analysis is often
tedious, but an honest investigation of bandwidth selectors and kernel
estimators has to ackowledge that the same set of data (in our case p) that
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we intend to smooth by the kernel simultaneously drives the amount of
smoothing,

Optimal Bandwidth.  In order to evaluate the cross-validation method,
we compare &, ¢ with, in a certain sense, “optimal” smoothing parameters.
For this purpose, we define 3,,, the optimal bandwidth minimizing the
mean summed squared error

() =E k(3 —plI?, (3.2)

and .§0p(, the (random) actual optimal bandwidth minimizing the actual
summed squared error

Sald)= k() —p|2 (3.3)

Note that (3.2) is the equivalent of the mean integrated squared error in
continuous density estimation, whereas (3.3) is similar to both the average
squared error and the integrated squared error, as discussed by Marron
and Hirdle [ 19]. The latter could be used if we were more interested in the
sample at hand than in the average behaviour of a method. For further
motivation see Hall and Marron [14] and Hall [13].

4. ASSUMPTIONS AND NOTATIONS

In Sections 5 and 6 we discuss asymptotic properties of kernel estimators
kis=A(9.5)p, including the random effect of the cross-validation
bandwidth. Therefore, we represent the random bandwidth 3, = 9, (N, §)
and the resulting kernel estimator IELS =k(N, p) as deterministic functions
applied to the random sample (represented by j). Obviously, the functional
relation between $, ¢ and p is different for each sample size N; hence, we
include N as an argument. In detail, our considerations are based on the
following two assumptions (which will not be mentioned again}):

1. {Np} is a sequence of multinomial random variables yielding
Np~M,(N,p) and ped,

where ¥ ={peR':p;>0, Y, ,pi=1} denotes the (z— 1)-dimensional
simplex of all possible cpv’s.

2. The estimators k,g=k(N,p) are defined by the function
k:[2, w)yx &% — % with

k(N* p)=A(Js(N*, p))p  forall (N* p)e[2, 0)x. (41)
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Here A(8) is a kernel matrix with 4(0)=1 (see Section 2), continuous in
3 on [0, 1], and the function 3,5: {2, ¢} x ¥ — [0, 1] yields pointwise
the equation

c(N* 31 s(N*, p), )= min c(N* 3, p), 4.2)

36017

where the function ¢: [2, o0) x [0, 1] x.% — R is defined by

dN* 8, p)=2 BillA)p —el’ (4.3)
ieJ
with
i N* 1
Poi=mw 1P v (4.4)

Remarks. 1. For each sample size N =2 the functions k(¥, -) imply a
kernel estimator with LS-bandwidth. All these estimators have the same
kernel matrix. The definition of the estimators is influenced by the sample
size¢ N only via the cross-validation criterion; ie., only via the smoothing
parameter.

2. Throughout the paper the bold symbol p denotes the random
vector of observed cell proportions, whereas the nonbold j is used for
arbitrary vectors in .%, including realisations of p.

3. Some of the theorems below are based on Taylor expansions of
the functions k& and 9,5 in both arguments. Hence, we define & and $; ¢ by
(4.1) and (4.2), respectively, on the entire convex set [2, o0) x.%. In any
practical application, the first argument of a kernel estimator IELS =k(N, p)
is always an integer, as N stands for the sample size, and the second
argument p takes values on a grid in .

4. The existence of 9, is guaranteed (pointwise) by (4.2), as we
minimize over a compact domain. Uniqueness is not required!

Throughout the paper we use the following notation for derivatives of
functions:

(i) Let /1R"> R be a real-valued function, x, x,eR”" Then
0. f(x,) denotes the row vector of the first partial derivatives at the point
X and 02, f(x,) the Jacobian matrix of the second partial derivatives at x,.
(i) Let f:R"—R* be a vector-valued function, x=(x,, .., x,),

S(x)=(fi(x), ... fi (x))". Then
0, f(x0)= ((av,ﬁ(-’co))){zx,.mk

1., n
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denotes the matrix of first partial derivatives with row index {, column
index J.

(i) In any case, for />3, @', f(x,) denotes the matrix of corre-
sponding partial derivatives. The order of elements within the matrix is not
important.

We use the Euclidean matrix norm
|A4)=(tr 4'4)"?

and write | 4| for the determinant.

5. THEOREMS ON THE ESTIMATOR

Let us consider the sequence of kernel estimators k s=k(N,p)=
A(S¢s(N, p)) p given in Section 4; ie., we investigate kernel estimators,
including an r-dimensional random smoothing parameter that minimizes
the LS-criterion ¢(N, 3, p) on [0, 17",

The first three theorems concern one-dimensional bandwidths (r=1).
They provide the bias and mean summed squared error of ks up to terms
of order O(N ~2) as well as the asymptotic distribution. Proofs are long and
tedious and are therefore concentrated in Section 7.

We use the following assumptions:

Al. peint £\ {c,}.
A2, A(d) is irreducible for 3> 0.

A3. A is four times continuously differentiable on [0, 1] and || 6% A ||
is restricted there.

A4. |8, 4(0)p||>0.

Remark. A nonnegative square matrix A is reducible if and only if, with
a certain permutation matrix P,

B 0
PAP' = ,
(¢ »)

where B and D are square matrices. Otherwise A is irreducible. Obviously,
all kernel matrices without zeros are irreducible.

THEOREM S.1. Let r=1. Under the assumptions A1-A4 the bias of a
kernel estimator satisfies

- 1
EkLS_pz'Nb+0(N72), (5.1)
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where

{2, 4(0)-S(p)}
10, 4(0) p 12

b= .8,A4(0) p. (5.2)

THEOREM 5.2. Let r=1. Under the assumptions Al1-A4
. r - , 1 ,,,
(1) Elkys—plkis—p) =5 S(p)+ON "), (53)

A 1 ) 2
(i) Om(ds)=5 (L=l p[7)+ON 7), (5.4)

1

(iii) var/ELS=-NS(p)+0(N 2), (5.5)

THEOREM 5.3. Let r=1. Under A1-A4 kernel estimators have the same
asymptotic distribution as the frequency estimator:

LIYN ks~ p)} —== N,(0, S(p)). (5.6)

Remarks. 1. The assumption A2 is realized, eg, by the pseudo-
Bayesian estimator, the one-parametric estimator of Aitchison and Aitken,
and the corresponding nearest neighbour estimators proposed by Aitchison
and Aitken [1]; see Section 2. Obviously, all these estimators fulfill A3
and, for peint £\ {c,}, also A4.

2. The parts (ii) and (iii) of Theorem 5.2 follow immediately from
Theorem 5.2(i) and Theorem 5.1.

The above theorems state that kernel estimators with LS-bandwidth
have the same mean summed squared error and variance as the frequency
estimator (up to terms of order O(N~?)) and the same asymptotic distribu-
tion. The frequency estimator belongs to the class of best asymptotic
normally distributed estimators, so the same is true for kernel estimators
with LS-bandwidth. Consequently, whatever makes us prefer the kernel
estimator for small sample size, we know at least that it behaves well for
large samples.

The connection between /:'LS and the frequency estimator p is not
surprising, considering that p itself is a kernel estimator, obtained for the
nonrandom bandwidth 8 =0. In the case of random bandwidth procedures,
kernel estimators behave like p if the random bandwidth vanishes at the
speed of .'5,\,: 0,(N~'72), so that A(§N)—m I fast enough, as shown by
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Wang and van Ryzin [277. In fact, we show in Section 7 that 3, is of the
order O,(N™'); the assumptions A1-A4 are tailored to ensure the right
convergence speed.

Assumption Al excludes the uniform distribution, p =c,, as well as any
zero cell probabilities. Heuristically, the uniform distribution is the ideal
background for kernel smoothing; the more we smooth the data, the better
we estimate the true density. Actually, under p = ¢, it may happen that the
limiting distribution of a kernel estimator with LS-bandwidth has a smaller
variance than S(p), so that 3, does not even converge with o,(N~'2).
The presence of zero cell probabilities, in the contrary, would call for a fast
convergence rate of gLS, as the mean summed squared error of p is rather
small on the boundary of %. Nevertheless, the assumption peint & is
more a technical convenience, while p#c¢, is essential for all three
theorems.

The convergence rate of the LS-bandwidth depends also on the shape
of the kernel matrix A(3) as a function of 3. Assumption A2 implies under
any cpv p#c, that A(3)p=p yields only for 3=0; it is introduced
to ensure that the convergence of p——— p inevitably results in
19LS-——> 0. Further, violation of A4 would mean that the value A(%)p
could change only little in the neighborhood of 3=0, so that the root-N
convergence of [p—p|=0,(N"'?) might not be sufficient to force the
rate BLS—O (N~'). On the other hand, the uniform bounds on 8% A4 ||
in A3 prevent a faster convergence rate. As technical tools, assumptions
A2-A4 provide the differentiability of 3,5 via the theorem on implicit
functions.

THEOREM 5.4. Let r=1. Under A1-A4
(i) NoA(91s) % U'S(p) U, (5.7)

where U~ N,(0, I) is a t-dimensional standard normally distributed random
vector,

(i) N{0s(Jrs)—6 (5.8)

} N—»:L

Remarks. 1. According to our definition every kernel estimator
coincides with the frequency estimator for 3 =0. Theorem 5.2 provides

Sm(dLs) — 0y (0)= O(N?),

while (5.8) i1s weaker.
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2. In our considerations p = ¢, is excluded, but for p = ¢, the distribu-
tion of U'S(p) U can be approximated by a y’-distribution:

1,
U'S(e) U~=-17 1

The results of Theorem 5.1-5.3 can be generalised to higher-dimensional
smoothing parameters using stronger assumptions:

AS. There are a neighbourhood U{p) of p and an integer N, such
that

sup || 3Ls(N, p o 0

pelil(p}

and 3, s(N, p)e (0, 1) for all N= N, pe U(p).

A6. A is four times continuously differentiable on [0, 1]" and the
fourth derivative is bounded there.

AT [((t2,, A0)p) 0, AO)p))yv=1r....|>0.

H= l‘, r
THEOREM 5.5. For any r21 the assumptions AS5-A7T supply
(i) Ekis—p=ON""),
(i) (5.3)-(5.6) are valid.

The proof is similar to that in the one-dimensional case and is therefore
not given here.

Remark. Condition A5 is a strong restriction on the cpv p for r > 2. So
we find that the assumption 3, (N, p)e (0, 1) is not fulfilled in the case of
the higher-dimensional estimator of Aitchison and Aitken (see (2.5)) for an
open subset of cpv’s unless 7, = --- =¢,. Ways of avoiding AS are
proposed in Grund [9].

Finally, we comment on consistency. The results of Wang and van Ryzin
[27] ensure the consistency of a kernel estimator provided the data-
dependent bandwidth converges to zero fast enough. As part of the proofs
in Section7 we show that the convergence rate of J;5 meets the
requirements in Wang and van Ryzin [27], given that A1-A4 are valid.
Nevertheless, we can state without these somewhat restrictive assumptions:

THEOREM 5.6.

b}

a.s.
—< 5 p.
LS N - o p
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The consistency of kernel estimators with Kullback-Leibler bandwidth
was shown already by Bowman [3]. Theorem 5.6 could be proved in the
same way, using

AN B p)=1lA p—pIP+1— | pI*+ R, (N, 4, p) (5.9)
with

sup | R((N, 3, p)| =O(N~"). (5.10)

(3. p1e[0.17 x %

6. THEOREMS ON THE BANDWIDTH

First we compare the LS-bandwidth with the optimal one using simple
kernels, namely the pseudo-Bayes and the one-dimensional Aitchison and
Aitken estimators:

AB.  A(3) is defined by (2.2) or (2.4) with ¢, = ... =¢

THEOREM 6.1.  Under the assumptions Al and AR

E_LE LA |
‘gop( N =
Remark. Regarding Aitchison and Aitken’s estimator Hall [12]

pointed out that the Kullback-Leibler bandwidth §KL had the same
convergence rate O(N~') as 3¢, but 3¢, /9,,, did not converge to 1. The
better behaviour of the LS-method w.r.t. quadratic risk is no surprise, as
BLS minimizes an estimation of the quadratic risk of A(3)p, while Sur
corresponds to Kullback-Leibler loss.

THEOREM 6.2. Under A1-A4

: _6A(‘§opt)_ﬂ. —-1/2

() 1=l g1 0,(v 1) (61)

(i) 1—%—(—”(),—"&)=-;+0,,(N*”2), (6.2)
6A LS
where

. [B—p) o, A0)p]
V= - ~1,,; N 6.3
P, AV P [ —p 2 im0 (63)
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and

i4Z2 0, (6.4)
vielding

0<i<l. (6.5)

Remark. Observe that gop, depends on the unknown cpv p, and if the
sample p lies within a certain neighbourhood of p, the maximum likelihood
estimator of 3,, is 0. Theorem 6.2(ii) confirms that the LS-method is
suboptimal if we are interested in the actual summed squared error (in
distinction to referring to the mean summed squared error). However, it is
comforting to know that J, is not worse than the maximum likelihood
estimator of (;lopl {(asymptotically).

7. PROOFS

Sketch of the Proof of Theorem 5.1. We use the decomposition

k(N,p)—p=4,+4,,

where
A =k(N, p)—k(N, p), (7.1)
4,=k(N, p)—p, (7.2)

check EA; = O(N~?) with the aid of Taylor series in p, and compute 4, up to
terms of order O(N ~?) regarding something like Taylor expansions in N .

The main problem is handling 3,5. Differentiability conditions and
derivatives of 3, are summarized in Appendix B. Lemmas 7.1-7.3 ensure
that the assumptions of Appendix B are valid, while Lemma 7.4 helps to
restrict E4,. Proofs of the lemmas are sketched in Appendix A.

Note that in some cases we omit arguments of functions. Then A4 and its
derivatives are to be computed at the point 3. 5(N, p), as well as $, 5 and
its derivatives at (N, p).

LEmMMA 7.1. Under Al and A2

(i) sup | A(ILs(N, ) p—plIP=0(N""), (7.3)
pe S
(ii) there is a neighbourhood U(p) such that
sup Jus(N, ) —= 0. (74)

pelilp)
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LEMMA 7.2. Under Al1-A4 there are a neighbourhood U(p) and an
integer N, such that

Ss(N,p)e(0,1)  forall N=N, and peU(p).

LEMMA 7.3. Under Al1-Ad there are a neighbourhood U(p) and an
integer Ny such that

inf inf &2, ¢(N, 915(N, p), 5)>0.

Nz Ng pe U(p)
LEMMA 7.4, Under A1-A4
A(915(N, p)) —I=O(N "),

Proof of Theorem 5.1. Let U(p) and N, be chosen according to
Lemmas 7.1-7.3, w.l.o.g. we assume N = N,.

First, we consider 4,, given by (7.1). Applying Appendix C to (N, -) we
obtain

1
EA]=5K,((tr{S(P)-agzki(N,P)}))#O(N’z)- (7.5)

Thereby the assumptions of Appendix C are guaranteed by Appendix B:

----- The function J,¢ (defined by (A.3)) is three times continuously
differentiable on (0, Ny '1x U(p) and @}, 9, is uniformly bounded there.
Consequently, the same holds for $ 5 and k on [Ny, oo)x U(p).

—  The properties of J,¢ follow from Appendix B (cf. proof of
Lemma 7.4).

The derivatives in (7.5) are

Ok (N, p)=wy- (044, ) p+widsd  + (04, w,

+ (65 A, ) p-wiwy, (7.6)
where A ; , denotes the ith row of 4, and
1
“‘1=@,33Ls=; {p’A’agApl}+O(N"), (7.7)
1
wy=0%8s = {(Fr+p-wiw,+dw, +wid}+O(N "), (7.8)

a=|[d,dp|*+O(N"),

B=3p"(é,4) &5 Ap+ O(N ™),

d=2p'(0,4) 84A+ {p'A' 8sAp+|0,4p|*} I+ O(N "),
F=1p'{4(2,A)+(8,4) A} + {A' 6,4+ (8,4) A} pl' + O(N ™)
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with 1=(1, .., 1)e R’ The shape of the derivatives of 3,5 also results from
Appendix B, setting (9, p)=A(Rp, e=N "', p ;=p+O(N~ ') and
applying Lemma 7.4.

Recall that S(p) 1 =0. Inserting (7.6)-(7.8) into (7.5) we obtain

EA, =O(N ?). (7.9)

Second, we investigate 4, given by (7.2). Let us consider the
function k: [0, 3] — % defined by k(e) = A(3s(e, p)) p. Obviously, k(0) =
A(0) p=p. A Taylor expansion of k about ¢ =0 provides

k(e)—p=¢-0,k(0)+ 1.7 0%k (e¥) (7.10)

for a certain £* € (0, ¢). Thereby,

8,k(0)=2,4(0)p-2,8,5(0, p), (7.11)
~ tr{d,4(0)-S(p)}
0,3,5(0, p)= ——2 ! 7.12
Is(0, p) |15,,A(0)p|l“ ( )
and
sup [l 9%K(e)l| < o0, (7.13)

se {0, N, 1

The differentiability of & and J.¢ as well as (7.12)~(7.13) results from
Appendix B; cf. the proof of Lemma 7.4.

Note that k and 3, ¢ satisfy k(N, p)=k(N '). We put (7.11) and (7.12)
into (7.10), set e=N ', and obtain with (7.13) and (5.2)

1
4,=—b+O(N?) 7.14
2= b OVT) (7.14)

Result (5.1) follows directly from (7.14) and (7.9).

Proof of Theorem 5.2. Let us consider again U(p) and N, chosen
according to Lemma 7.1-74, and 4, and 4, defined by (7.1) and (7.2),
respectively. Taking into account EA,=O(N ?) and 4,=0(N"') we
obtain

E(k(N, p) ~p)(k(N, p) —p)' = E4, 41+ O(N ?). (7.15)

Appendix C(ii) applied to k(N, -} provides

1
Ed, 47 == 0;k(N, p) S(p)(@5k(N. p))' + O(N ) (7.16)
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Combining
Cok(N,p)=(8,A)Yp-0;9 5+ A,
Lemma 7.4 and (7.7) we obtain

_ _P’Al(a‘sA)P.

"'k Ns 2
RN Y= =

(6,4)pl'+ 1+ O(N ). (7.17)

The assertion follows with S(p)1=0 from (7.15)-(7.17).

Proof of Theorem 5.3. Let us consider again U(p), N, 4,, and 4, from
the previous proof. We now apply Appendix C(iii) to k(J, -) and obtain

PL{JNA,} —— N,(0, BS(p) B), (7.18)

where B=lim, , , ¢;k(N, p). Checking the assumptions of Appendix C,
note that

— the differentiability conditions on & are validated in the proof of
Theorem 5.1,

the convergence of the sequence {¢;k(N,p)} results from (7.17)
considering A3, A4, and Lemma7.1. So we find limy_ . ||8,4p| =
1¢5A4(0)pll >0.

Formulae (7.17), A3, A4, and Lemma 7.1 imply

p'AC,A4(0)p
= ————Z0,4A0)p1' + 1 7.19
[2,40)p1* 4P 719)
and, consequently,
B S(p) B =S(p). (7.20)

The assertion follows with 4, = O(N ') from (7.18).

Proof of Theorem 54. We consider the same U(p), N,, 4, and 4,.

(1) From our definition 5A(|§LS)=L|k(N,ﬁ)—p||2= |4, +4,]% we
obtain with (7.14)

NoA(Ss)=N|[4,)>+2b'4, + O(N "), (7.21)

The assertion follows from (7.21) considering (7.18) and (7.20).
(ii) Combining (7.21) and (7.18) we get both

N{8A(I1s)— 8,0V} =N{II4, 1> = lp—pI?} + O, (N"'?) (122)
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and
4, +P-p)=0,(N 1y, (7.23)

Let us now consider N {4, — (p — p)}. Since U(p) and N, were chosen such
that k(N,-) is differentiable on U(p) for N> N, and 6§zk(N, p) 1s uniformly
bounded on [N,, ®)xU(p) (cf. proof of Theorem 5.1), a Taylor
expansion of k(X, -) provides

A= P—p)={(G;k(N,p)—=DBE—p)+ O, (N IV} v,
+ R, (N, p), (7.24)

where R,(N,p)={4,—(p—p)}(1 =1, ., It is well known that the
convergence rate 1—1,, ., =0,(N"?) yields. Hence, we obtain with
(7.24), (7.17), and 1'{(p — p)=0 the convergence speed N{d,— (p—p)} =
0,(1). The assertion follows with (7.23) and (7.22).

Proof of Theorem 6.1. It is sufficient to show that

s (N, p)—Is(N,p) &

. 0 (7.25)
and

9, (N,

—————LSQ( p)*—m 1. (7.26)

opt

Assumptions Al and A8 ensure that the assumptions of Theorem 5.1 are
fulfilled, and we choose again U(p) and N, according to Lemmas 7.1-7.4.
Similar to the considerations concerning (7.24) we get

s (N, p)—I1s(N, p)= 5‘,59Ls p—-p+ % p-p) 5,2339Ls(ﬁ—p)
+o0,(N7"), (7.27)
and from (7.27) we obtain with (7.7), (7.8), 1'(p —p)=0, and Lemma 7.4
915N, p)— Bis(N, p)=0,(N ). (7.28)

For both, the one-parameter Aitchison and Aitken estimator and the
pseudo-Bayes estimator &, yield

o __Lu{2,40)-S(p)}
T TN 2,400

+o(NY) (7.29)

(according to Hall [12] and Sutherland ez al. [25]). Since the dominant
term is positive under Al, (7.25) follows from (7.28) and (7.29).
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To prove (7.26) we develop a Taylor expansion of 3.0, p), defined by
(A.3), about zero. Using (7.12) we obtain

 1tr{9,4(0)- S(p)}

Is(Nop)=—% Il 654(0) p)*

+O(N72), (7.30)
Result (7.26) follows immediately.
Proof of Theorem 6.2. (i) Since .§om minimizes d, (), we obtain
8a(0) =84 (Jop) = {92,828 (9p) + 0(S2,)} 15,50y T 0,(N 1), (7.31)
taking into consideration, for p#¢,,
Pop=1)<P(Ip—pll=llc,~pl)=o(N"). (7.32)

Taylor expansions of 8,6, and 828, imply

Jopi + 0(Jp) = — 8584 (0)/0%:,(0) (7.33)
and
0528 (Jopt) = 03:84(0) + 0(Jpe), (7.34)
where
8364(0)=2(p—p) 354(0) p, (7.35)
05:04(0)=2{11054(0) |I*+ (p —p) 05 4(0) p} (7.36)

and, consequently,
Gope=0,(N"2). (7.37)
Combining (7.31)-(7.37) we obtain (6.1). Result (6.5) follows immediately

from the Cauchy-Schwarz inequality.
It remains to show that

[G—p) 0,401  »
18,4051 15-p12 " " (7.38)

and

L5050+ 0. (7.39)

Assume (7.38) is not true. Then the angle between (§ — p) and J34(0) p has
to converge to m/2, which contradicts (2.1).

683:/46:2-9
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To prove (7.39) consider the eigenvectors A, .., 4, and the eigenvalues
Ay= - =4, of A(9). Properties of irreducible double-stochastic matrices

provide

ho=t""21,  i,=1, |Al<l for k=2, .1

and, consequently, there is a representation

Note that A, A, Be, B, all depend on 3, whereby

d-0=4,—1 forall k=2, .. ¢

We obtain

P(3op>0)=P(39>0: p—p 2> 1A p—pl?)
=P(U {Z (Bk—ﬁk)2> Z (ikﬁk—ﬁk)2}>

>supP( S (Be—B)?> 3 (zkﬁk—ﬂm)
k= 2

2 k=

> inf P((— i) Be>0  forall k=2,.,1). (740)

Formula (7.40) describes the probability of a certain quadrant of the “least
favourable” coordinate system, choosing among all those with origin p and
axes according to any eigenvector system {/,},_, _,. The right-hand side
of (7.40) is bounded away from zero with increasing N because of (2.1).
The assertion follows at once.

Result (i1} follows from (6.1) considering (5.8).
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A. APPENDIX

Proof of Lemma7.1. (i)Recall (5.9). Since &, 5(N,p) is defined to
minimize ¢(N, §, p), we obtain

1AL (N, PN p—PIP<IAS) f—pI*+2 sup |[R(N, 8, p)l (A1)

Se[0,1]

for any 3€ [0, 1 ]. The assertion follows from (A.1) for $=0, as 4(0)=1.

(i) Let U(p) be any neighbourhood of p with the closure
U(p)< £\ {c,}. We prove (7.4) indirectly.
Assume there are a number £¢>0 and a sequence {(N,,p,)} with
N,+ 1< N, such that

p.eU(p) and 31 s(N,, Pa)=e forall n=1,2, ...
W.lo.g. let lim, _, . p,=p* Using (7.3) we get

hm Sup llA(‘gLS(an ﬁn))P*_P*” =0

n— xc

and therefore
| A(8*) p* —p*||=0 (A.2)

for every accumulation point §* of the sequence {3;5(N,, p,)}.
It remains to show that (A.2) implies $* =0:

Since A(3) is irreducible for >0, ¢, is the only eigenvector of
A(8) in &, and the choice of U(p) guarantees p* # c,. Therefore,
(A.2) ensures A(3*)=1and 3*=0.

Proof of Lemma 72. According to Lemma 7.1 there are U(p) and N,
such that

9is(N, py<1 forall N=N,_, pe U(p).

In the following we consider
4(8)=c(N, 3, p)—c(N, 0, p)

for any N=2, peint ¥, and show: There exists a 9* > 0 with 4(3*) <O0.
Inserting the Taylor series

A(3) = A(0) + $H + 92 02, 4(J)
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with H=2,A4(0) and a certain Je [0, 1] into (4.3) we obtain

2N
A = Sy — ! Hp Hp— H-He
('9) ST(S) 8(N—1)2 {p p ieszlhn}’
t being a continuous function with 7(3) ——-> 0.

The properties of A(3) as a kernel matrix together with A(3) ——+1
imply that 1’"H =0 and that the diagonal elements A; of H are nonpositive
and that other elements are nonnegative. For each peint.% it follows with
A4 that

pHp> ). Bihy,
ieJ
which had to be shown.
Proof of Lemma 7.3. Computing derivatives in a straightforward way

and keeping in mind A3 and Lemma 7.1(i) we obtain, at the point
I=3.5(N, p),

03 ¢(N, 315N, p), p)= 11054315 (N, p)) p 11> + Ry (N, B),

where sup,_.. |R,(N, p)l = O(N~"?). The assertion follows immediately
using A4, Lemma 7.1(ii), and A3.

Proof of Lemma74. Let N, and U(p) be chosen according to
Lemmas 7.1-7.3. Let us consider the function 9.g: [0, 1]x % — [0, 1],
defined by

§LS(8,ﬁ)={gLs(8",ﬁ), it:flsefs,ﬁ)E(O, xS (A3)
From Appendix B we conclude that (setting (3, p)= A(3) p)
J.s(-, p) is differentiable on [0, N; '] for all je U(p) and
sup  18,9.5(e p)| < o0, (A.4)

ce [0, N;l]

where the assumptions of Appendix B are ensured by Lemmas 7.1-7.3, Al,
and A3. According to our definition we have A(3.5(0,p))=A(0)=1
A Taylor expansion of A(3;¢(-, p)) about ¢ =0 provides

AGis(e, p))—T=¢-854(31s(e*, p))-3,315(e%, p), (A.5)

where ¢* € (0, ¢). With respect to A3 and (A.4) we obtain from (A.5)

-~

A(3is (e, p))—1=0(e).

The assertion follows with (A.3), taking e=N""
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B. APPENDIX

Let peint &%, and let U(p) be a neighbourhood of p such that the
function ¥:[0,1]x ¥ — % is four times continuously differentiable on
[0, 1]1x U(p). N

Let the neighbourhood U(p)c U(p) and ¢,>0 be chosen such that
p ,€ U(p) is ensured for all (¢, )€ (0, &,] x U(p) and ieJ, where

Let the function 9,5: [0, ] x & — [0, 1] fulfill the following conditions:

al. C(S’ SLS(S’ ﬁ)a ﬁ): min C(B’ 193 ﬁ)
Jel0, 1]

for all (g, p)e (0, 5] x U(p), where

e, 8, )= i lw(8. 5 ) —el?

ieJs
and

3150, p)=0 forall peU(p).

a2 S1s(e, pre(0, 1) forall (e pYe(0,e,]x U(p).

a3. inf  inf &2:c(e, i s(e, p), p)>0.

ce (0. 8] pe Uip)

a4. From al it follows that

sup [3.s(e Al — 0
pelip)

Then

(i) 9. is three times continuously differentiable on [0, g,] x U(p).
On (0, &y] x U(p), the derivatives are

és9s=—a b, (B.1)
a,2',2‘91_52 —a! {r+ ﬁ(aﬁ@,_s)' é3‘,3‘9Ls+ (apSLs), d+ d’(aﬁ‘gLS)}a (B.2)
8.9 s=—a"ly, (B.3)

683 46 2-10
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where
a=2.2 ﬁi{(¢~-i_ei)’6§2¢‘i+ “5‘3'11/4“2},
B=2 Z ﬁ,{3(5;l//.)' a?ﬂ ¥ a4t (lp,,i—t?i)/ 5§3¢,;}’
ieJ
V=2 Y A0y )W+ —e) O Y
b=2(((¥07i_ei)’ay¢7i))251
+2'Z ﬁs{(ll’ j_ei),aéslf/ j+(alilllf_j)'6[3¢/— j},
d=2-z ﬁi{(af}ﬂ//fi)l 6;3'1’44'(1//4_&)' a;:}zl,b,i (B4)
+200,9 ) Q¥ )
+2(((¢ ,,i‘_ei)’ 5i:¢,i+|15.9'//4||2))26ﬂ
r=12 Z il —er) 6,3;i,3i.9'/’-k
+(0,¢ ) a,zai,siwuk))i.jej'*'H WHH G
+2(G+G'),
with
H—kz(aﬁw—k), 6,2‘;3'117k
and

G=(((Y i—e) gt i+ (¥ ) 0¥ _Dijer

Thereby all functions and derivatives are regarded in the point (e, p) or
(e, 1s(e, p), p), denoting

¥ oi(e, 3 p)=y(3, p_,)
For all pe U(p) we obtain

¢,%5(0,p)= liln(} ¢, 91s(e, P).

(ii) If the 4th partial derivatives of ¥ are bounded on [0, 1] x U(p),
then the 3rd partial derivatives of 9, ¢ are bounded on [0, 5] x U(p).

The proof is based on the theorem on implicit functions; see Grund [9].
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C. APPENDIX

For all integers N = N, let the functions y(N, ) : ¥ — % be three times
continuously differentiable on U(p) with

sup sup [ uY(N, Pl <c< oo

Nz N, pellp)

and 4 =y(N, p)— (N, p).
Then

(i) EA == ((tr {85 ¥i(N, p) S(p)}))ic s+ O(NT?),

1
(i1) EAA'=N6,;IIJ(N’P)S(P)(apw(N’P)),+0(N72)-

(ni} If, furthermore, there is a unique limiting point B=
limy ., é,¥(N, p), then

Z1{JNA} == N,(0, BS(p) B').
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