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Principal Component Analysis for a Stationary Random
Function Defined on a Locally Compact Abelian Group

A. Boubpou AND J. Dauxois

Université Paul Sabatier, 31062 Toulouse Cedex, France

When Z is a random L3-valued measure, where H is a Hilbert space, we prove
that there exists an LZ.-valued measure, which may depend on constraints and
which best sums up the random measure Z according to a stationary criterion.
Then a technique to reduce a random function is deduced from the above result.
The random function is defined on a locally compact abelian group and is
stationary and continuous. This work generalizes Brillinger’s results on stationary
time series. € 1994 Academic Press. Inc.

I. PRELIMINARIES

1. Introduction

Let H be a separable C-Hilbert space and Z =(X,),., be a process,
where each X, is H-valued. To clarify the situation, it is very often of great
interest to extract out from % a ¢g-dimensional process that best
summarizes 2 in a mathematical procedure to be specified later. For an
hilbertian random function (r.f.), it is known that principal component
analysis (PCA) techniques (see, for instance, [ 5a,b]) or those of harmonic
analysis (cf. [6]) permit, under certain conditions, an answer to the above
question {the conditions take into account a measure y, defined on a
measurable space (7, &), that needs to use a o-field of subsets of 7). Never-
theless, these methods require assumptions concerning the second-order
moments of X,; such conditions are generally not satisfied for stationary
processes (in this paper we only use weak stationarity). For instance, a
basic hypothesis for PCA of an hilbertian rf. % is that the mapping
t+ || X,||? is u-integrable; in the case of a stationary &, this is possible only
when u(T) is finite.

In this paper we propose a method that allows a Hilbert space-valued
continuous stationary r.f. 2 defined on a locally compact abelian group G
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to be summarized by means of a stationary g-dimensional r.f. %. For this
purpose we will use a criterion closely related to stationarity. The intrinsic
notion to be defined in such a method seems to be the PCA of a random
measure associated with 2" (see [3]). Noting that, when G=2Z or G =R",
the method includes Brillinger’'s work {see [4(a)-(b)]), we also use the
term PCA, but it is not necessarily the best one, even if, in practice, the
results derive from a family of classical PCA.

We also study PCA under constraints which enable us, for example, to
eliminate certain frequencies; it is also possible to generalize what
D. Brillinger calls canonical analysis for stationary time series.

Of course, one can apply these techniques when G is R”, Z”, or a finite
group (thus it is possible to consider periodic stationary time series). When
G =R", discretization and convergency problems arise; we will not
investigate them in this present work.

2. Notation. The Space (H, H') — L}(M)

This section is particularly devoted to a version derived from [1] of
notions developed in [10]. Given two separable C-Hilbert spaces H and
H', we denote by a,(H, H') (resp. o,(H)) the C-Hilbert space of Hilbert—
Schmidt operators mapping H into H' (resp. H) with inner product defined
by

<'a '>2: (L’ K)E(UZ(Ha H’))zH <L, K>2=tr LK*,

where K* is the adjoint operator of K. We denote by hom(H, H') (resp.
L(H, H')) the vector space of the linear transformations (resp. continuous
linear transformations) from H into H'.

Let us recall that, given ue H and ve H', u® v is the operator from H
into H' defined by u® v(h) =<h, udv.

“I” will denote the identity map of H (or of another Hilbert space
according to the context).

Two functions s+ L, and s+— K mapping an (additive) abelian group
G into £(H,H') are said to be stationarily correlated if for every
(s,1)eG?* one has L K*=L, ,Kf. A function that is stationarily
correlated with itself is called a stationary function.

Given a probability space (£, <7, P), we denote by Lﬁ,(P) (or, for the
sake of brevity, L%) the space of the measurable functions defined on
(R, o/, P) and with values in H, such as | £ being a P-integrable func-
tion. When H=C?, we will simply write L2 instead of L,. Throughout
this paper, we assume that L? (and thus L%) is a separable space. For any
Xe L3 and any fe L%, we put

X f)=E(fX);
then X is in o,(L% H).



PCA FOR RANDOM FUNCTION 3

Let M be a positive measure defined on the measurable space (E, &} and
taking values in o,( H); M| denotes the (Radon-Nikodym) derivative of M
with respect to t=tr M. Let % denote the closed subspace

4= {(PEerniH.n'i(E’ &, 1);Vee E, 3f(e)chom(H, H')
with p(e) = y(e)(M](e))"?}.

We denote by .# the linear space of y € [hom(H, H')]* such that there
exisls ¢ € % with p(e)=y(e) (M|(e))'*eo(H, H'), for any ec E, and we
consider the quotient space of .# by the kernel of the linear functional
Wwe. M —y(M))'?e%. This quotient space will be denoted by (H, H') —
L3(M).

When H is a finite-dimensional space, each element £ (a coset) in
(H, H')— L*{M) contains an &-measurable function in .# which is also
written 6.

With the inner product,

Co Daaarr-von: (9,9 [ oMy di,

(H, H')— L*(M) is an Hilbert space.

An orthogonal random measure Z, defined on (£, &) and taking values
in L3,, is a mapping from & into L2,(P) which is g-additive and satisfies for
any (A, B)e&* that AnB=(J:

Z(A)NZ(B))* =0.

We will simply say that Z is a random measure. Given Z, M, denotes the
{induced) positive measure 4 € & +— /ZH)(E(\/]))* €a,(H). We will write ¢,
instead of tr M, and we will denote by M, the derivative of M, with
respect to ¢,. The closure in the Hilbert space L2, of the subspace spanned
{LZ(A), Aeé&, Lea,(H, H')} is denoted by HY'; it can be seen that this
last space is also the closure of span{LZ(A); A€&, Le £(H, H')}. Then,
there exists a unique isometry ¢ | ¢ dZ from (H, H')Y— L} M) onto
HY' such that one has

VAed,VLe Y(H, H'), fﬂALdZ=LZ(A).

The random measures Z and % defined on (F, &) and with values
respectively in L3, and L}, are said to be stationarily correlated if the
condition Z{(A)(Z(B))* =0 is satisfied for each A and B that are disjoint
elements of &.
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Given gpe(H, H)—L¥M,), Z,Acé&—{1,,0dZeL}, is a random
measure which is stationarily correlated with Z.

When ¢, is dominated by a o-finite measure v (i.e., there exists for 1, a
derivative with respect to v), then ty,=1r M z, is also domuinated by v;
furthermore, one has dM; /dv= oM ¢*.

If ye(H,H")—L*M,) is a measurable function from £ into
o (H', H"), Y(-) @(-) is an element of (H, H")— L* M) that satisfies

jwdzwzjwdz.

Let Ae& and ¢ =1 ; then this last equality is true for any y e (H', H") —
LM, )

1I. PRiNcIiPAL COMPONENT ANALYSIS OF A RANDOM MEASURE

1. Some Basic Results
Let K and .#* denote the maps defined by
KxeH—(x,0e Hx H', H:yeH — (0, y)eHxH'

Given random measures Z and %, defined on (F, &) with respective
values in L% and L3,., which are stationarily correlated, then the mapping
{ from & into L3, defined by ((4)=KZ(A)+ 4 #(A) is a random
measure with values in L3, ,,. and one has

Z:Cﬂgk‘" “JZV:é’ﬂE.)f"
Denoting by Q and R the respective orthogonal projections from L3,

onto H¥' and from L3, onto HY’, there exists a unique @€ (H, H')—
L*(M ) such that

Q(jlcz:f):fgodz.

We can now prove the following result:

LEMMA 1. Suppose Z and ¥ are stationarily correlated. Then, for any
Ae& and any Leo,(H', H"), we have

R(j‘ﬂALd,“Z’)zfﬂALqu,.
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Proof. Let (B, TYe& xa,{H, H"), we have
<j1],,Ldsz, TZ(B)>=<J1]ALX*dC,“BTK* dc>

=/(tr(ﬂ‘mBL.){/*MgKT*} dr.

= * * * .
=X ’nAmBL TK >leH‘,II’)— LM

since we have

5

Ly

A s L TK® S i 1200 = <J1d:f,jﬂmL*TdZ>

=<_[<de,J.1]AhBL*TdZ>

=<J"11ALdZW. TZ(B)>,

we deduce that

<j 1,Ld?, TZ(B)> - <j 1,LdzZ,, TZ(B)>

and the result follows. |

Using the same notation, from this lemma we derive

COROLLARY 1. Z and # are stationarily correlated if and only if

VAed, QUZ(AY)=Z (A).

@

Proof. The necessary condition is an obvious application of the lemma
with H” = H' and L =1 Conversely, if 4 and B are disjoint subsets in &
and if Leo,(H', H), we have

CZ(ANZ(B)*, LY =(L*Z(A), #(B)) = {L*Z(A), Z,, B>

- J tr(1 . s L*M%0*) dt, =0. 1

COROLLARY 2. Suppose Z and ¥ are stationarily correlated. Then, for
each ye (H', H")—~ L*(M ,), R([ y dZ) belongs 1o H’,’w

Proof. Clearly, the result is true for y=1,L; so, by standard continuity
arguments, it is also true for any ye (H', H") — LM ,). |
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We can also note:

LEMMA 2. Suppose that Z and & are stationarily correlated and that
XE(H H") = LA (My); then Z, and % are stationarily correlated.

Proof. Let (A, B)e &* with AnB=(J and Leo,(H', H"). We have

CZIANZ(B)*, LY =tr(Z (AN Z(B)* L*) = (L*Z (A), Z(B))
= (L*Z(A), Q(Z(B))> =<{L*Z(A), Z,(B)>
dM
=J 1 nptr (L*)(-——dt (p*> dt,=0

Z
and, thus, the required result. |

This lemma is easily generalized by

LEMMA 2. Given ye(H', H")— L3 (M) and ye(H', H") — L*(M ,). If
Z and Z are stationarily correlated, so are Z, and %,,.

Proof. Since Z, and Z are stationarily correlated, it follows, again
using Lemma 2, that so are Z, and Z,,. |

2. Definition and Existence of Principal Component Analysis

Given a random measure Z with values in L3, and g € N*, we term every
pair (&, f), where Z is a L%,valued random measure such that Z
and Z are stationarily correlated and fe(CY% H)— L(M ,) such that
If 7dZ —{ pdz|| is minimal, principal component analysis (PCA) for Z of
order q.

For any random measure & with values in L7, which is stationarily
correlated with Z and for any fe(C¥% H)— L*( M), we have

(1)

“jldz—fﬁd:z ;Hjldz—n(jﬁdf) ,

where /I denotes the projection operator from L7, onto H%.

Let ¢ be the unique element of (H,CY) — L*M,) which satisfies
{ ¢ dZ=Q(f IdZ). By using Corollary 2, I1(| f d%) belongs to HY . Thus,
there exists y , ,€(C?, H)— LX(M,) such that

H(J.,b’d,@’)=fyjl,d2q,.
Equation (1) can now be rewritten:

ZHIIdZ-JU.ﬁdsz'

Hfldz—jﬁd:r

i
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Since Z, and Z are stationarily correlated, finding a PCA of order ¢ for
Z is reduced to the search for ¢ e(H, C?) —L*M,) and ye(CY% H)—
L*(M ) which minimize |{ 7dZ — [y dZ,|.

Since €9 is a finite dimensional space, we can choose for y a measurable
function from £ into o,(C? H) and the term which is to be minimized is
If 1dZ —§ y dZ|.

Given a o-finite measure v which dominates 7, the derivative dM . /dv of
M, with respect to v admits a measurable Schmidt decomposition:

mwz

)"‘Zﬂf Da()@a ).

jeJ

Let us recall that “Schmidt decomposition” means that, for any e € E,
a;(e) € H is an eigenvector associated with the eigenvalue u j(e) (1,;(e)=0)
of (dM z/dv)(e), (,uj)JE, is a decreasing sequence, and {a;(e); je J} is an
orthonormal system in H; the word “measurable” here refers to the fact
that a; and y; can be chosen as &-measurable functions (see [7], for
instance). Denoting by {f,, .., f}, ... f,} the standard basis of C’,

=3 a®f, f=3 f®q

j=1

respectively belong to (H, C9) — L*(M ) and (C% H)— L*(M ).

From classical properties in operator approximation (see [8], for
instance), it follows that for any e E, any ¢ € (H, C?) — L} (M), and any
ye(C9 H)— L*( M ), we have

1/2
J

(Bhz0)) " - pter ater (22

sz a
“( e)) - Z /‘j(e) aj(e)®aj(e)
j=1

M Z 1/2
“(d z( e)) —y(e)cp(e)( M (e))

and, thus, by integration with respect to v, we obtain

2

2

2

”j1¢2~jﬂadz”<“jldz—jy¢dz”

(let us recall that one has ||y dZ|*={[y((M,),)'?||*dv). Thus, we
have
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PROPOSITION 1. Let Z be a random measure with values in L, and v a
a-finite measure dominating t.,. Given a measurable Schmidt decomposition
S estia;®a; of dM ,/dv, we put

x = i a;® [ B= Zq: /i®a;.

Jj=1 J=1

Then, (Z,, ) is a PCA of order g for Z.

III. PCA UNDER CONSTRAINTS

Let Z be a random measure with values in L3,. We consider here a given
element e H— LA (M) (we will write H— LY M) instead of (H, H)—
L*(M 3)). Given Ye L2, we are now looking for (¢, ¢), with g e (H, C") —
L*(M,,) and Y e(C’, H')— L} (M, ) which minimize |Y—{yd(Z;),|.
Such a (¢, y) will be termed a PCA of order r for Z with respect to Y under
the constraint HY .

Let /7 denote the projection from L3, onto HY . For every p € (H,C")—
LAM ) and Y e(C", H')— L*(M ,, ), § ¥(Z,), belongs by hypothesis to
HY'; thus we have

i 2
Y=[wdzy,| =1y-mmes a0 - [ yaiz,)

Denoting by y the unique element in (H, H') — L*(M ;) which satisfies
y)= j vdZ ;= j 1d(Z,)
then the problem under study is reduced to the minimization of

H [1z,),~[waz,,

Let (((Z;),),. f8) be a PCA of order r for the random measure (Z,),. We
have

Hjmz(, J[J’d “[mzﬂ fwd \

or

“j (Z,), —jﬂd(zg)a,. < Hfld(za),,~f vd(Z,),
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Thus, we obtain

PROPOSITION 2. Let Z be a random measure with values in L3,, 6 H —
L* (M) and YelL?.. Denoting by y the unique element in (H, H')—
L*(M ,,) such that { y dZ; is the orthogonal projection of Y onto HY and let

Z5),)x, B) be a PCA of order r for (Z;),, then (ay, B) is a PCA of order
r for Z with respect to Y under the constraint HS Z

IV. PCA ofF A STATIONARY RANDOM FUNCTION

1. Second-Order Stationary Random Function

Let G denote a locally compact abelian group and G its dual group;
these groups are provided with their respective Borel fields. For any
character ye G and any g € G, as usual we write (y, g) instead of y(g).

We are here concerned with an Z3,-valued random measure Z defined on
(G, Be) such that 1, is a regular measure; let us recall that ¢, is regular
(see, for example, [11]) if, denoting by |¢,| the total variation of ¢, we
have

[tz|(E) =sup |t|(K) =inf |t |(V),

for every Borel set E, where K ranges over all compact subsets of £ and V
ranges over all open supersets of E. The random function ¥ =(X,),.¢
defined by

X,=[ (. g)1dz, (2)

is stationary (that is to say, so is the mapping geGr—»X €a,(L? H)).
Moreover, g— X, is a continuous mapping from G into L}, we will
simply say that Z is continuous. Since span{(-, g); g€ G} is dense in
LXG, Be, t;), we may note that HY is the closure of the spanned
subspaces: span{KX,; geG, Keo,(H,H')} and span{KX,; geG,
Ke Z(H, H')}.

Conversely, given a continuous stationary LZ-valued random function
X =(X;)gcq, there exists a unique random measure Z(2') (we will say the
random measure associated with '), defined on (G, %), and taking values
into L%, such that 7, is regular and (2) is true for every ge G.

Let #=(Y,),.q, the random function associated with a random
measure # defined on (G, #;) and with values in L3, such that f, is
regular. In order that ¥ and % are stationarily correlated (ie., the
mappings gr—»f’g and g+ f’g are stationarily correlated), it is necessary
and sufficient that we have the same property for Z and #.
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For any ¢ e (H, H') — L*(M ,), the family

@=(j<-,g><od2)

is the image of the stationary random function & by the filter (whose
transfer function is) ¢. The L3,-valued random function % is again
stationary and continuous; its associated random measure Z(%) is Z,.

2eCG

2. PCA

Given a random function % =(X,),.; which is a family of elements
belonging to L3, defined on a locally compact abelian group G, it can be
of interest to find how to best summarize 2 by an approximating random
function % =(Y,),.s: g€ G Y, e L, The choice for % and its deter-
mination first need the introduction of a criterion that allows the quality of
the summarizing function to be estimated.

When & is a continuous stationary random function, it is of interest to
seek a random function % in order that the random function ¥ =
(W)ee: g€ G W, e L2, obtained by filtering % be “as close as possible
to Z.” Then it seems “natural” to require that % have the same properties
of stationarity and continuity as Z has. If % is filtered by y €(C? H) —
LX(M zy)» W is a stationary random function. If we choose & and % to
be stationarily correlated, it follows that #° and 2 are also stationarily
correlated. Thus, we have, for each ge G,

(X, W =tr X (W)* = tr Xo(Wo)* =Xy, Wo)
and, hence, we have
Xy — Wl = [ Xo — Woll.

We can now evaluate the quality of the summarizing random function %
by
inf {J

and we are led to the definition

X, [waz@)

s Y e(CL H)— Lz(Mz(@))}

A PCA of order ¢ for the continuous stationary L2-valued random
function & is a pair (%, ), where % is a continuous stationary
LZ,valued random function such that & and % are stationarily
correlated and Y e(CY H)— L3 (M z@))» Which minimize || X,—
[ ¥ dZ@)].
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When ((Z(Z)),,B) is a PCA of order g for Z(Z) (of course,
ae(H,C?— LY M,y,) and fe(C% H)— L*(M 44, )), for any continuous
stationary LZ,-valued random function % which is stationarily correlated
with Z and for any y e (C?, H) —Lz(MZH,,)), we have that

|

ProprosITION 3. Let ((Z(X)),, f) be a PCA of order q for the random
measure Z(X) associated with a continuous stationary random function & .

Then
((J(-, g)adzm) G,/i)

is a PCA of order g for ¥.

X, - | pacz(x)),

<!
"

Xo—j.pdzw)”

and so we have

We may note with the previous notation that we have for each g € G that
q
Yo=[(,oedz@)= Y. [, 8)a,®/dZ(Z)
j=1

[ o0@nee dz)

I
W [ug

J

I
I P

18/) (J (8)a,®] dZ(%)

Jj=1

=3 (j(-,g)a,-caldzm)f;,
j=1

which shows that the first g components at step g + 1 are those of step g.

3. The Case of Stationary Time Series

Let us now proceed to the investigation of a particular case. If we
choose G=7 (G is the one-dimensional torus which may be identified
to [ —n,n[) and H=C”, we can of course use the previous definition and
thus a notion of PCA for time series arises. An analogous notion is
introduced in [4(b)] for a time series 2 =(X,),.,, requiring that
the summarizing function % is, a priori, obtained by filtering and
with the additional restrictive hypothesis of summability for the family
(1 X,(Xo)*1),.,- The PCA we expose here does not need the first part of
this last assumption, but in fact leads, a posteriori, to a filtered summary;
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under Brillinger assumptions it can be seen that both forms of PCA
coincide and are obtained by means of spectral analysis of the spectral
density of 7/,

1 e
sel—n x| HE Y e X (X)) * e0,(C),

ned

and that % is an infinite moving average (cf. [2]).

Y. PCA uNDER CONSTRAINTS FOR A STATIONARY RANDOM FUNCTION

The two following examples are of some interest in this framework.

L. Canonical Analysis of Two Stationary Random Functions

Let # =(X,),eq and ¥ =(Y,), . be two continuous stationary random
functions. We assume that the L3-valued random function 2 and the
L%.-valued random function % are stationarily correlated. Let us consider
a PCA (a, B) of order r for Z(Z) with respect to Y, under the constraint
H% ,,. Such a PCA allows the minimization (Y,— {yd(Z(2)),| (or
1Y, —§ (-, &) yd(Z(Z)),]]), the infimum being taken over all p € (H, C") —
LAM ) and Y e (C', H') = LX(M . ).

Such a PCA may be called a canonical analysis (CA) of order r for the
random function X with respect to %. We must point out that # and # play
asymmetrical roles.

In this CA, the image of ¥ by the filter « is stationary, continuous, and
stationarily correlated with 2" and with %. It is a best summarizing func-
tion for # by means of an LZ-valued random function which takes into
account the random function Z, since, if #" = (W,),. denotes the image
of ({(-, g)1dZ(Z),), by the filter B, then [[Y,— Wl (=Y, — W) is
minimal.

A Particular Case. Let F=(X,),.; and # =(Y,),., be time series
respectively with values in L2, and L2,. Using the same notations as in
Section IT (but we have here H=C” and H' =C¥9), we assume that (T, =
KX,+X'Y,), is a stationary time series and that the family (7 (T,)*),
is absolutely summable in ¢,(C?*9). The first condition can be seen as
being equivalent to stationarity and cross-stationarity for 2 and %. Thus,
it is able to handle the CA of order r (with r<min(p, ¢)) for 2 with
respect to % . Under the additional (but theorically very restrictive)
Brillinger hypothesis that the spectral density of 2 has an inverse
for each Ae[ —n, n[, we find again the results for the CA proposed in

[4(b)].
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2. Pass-Band PCA and Periodical PCA

Let us illustrate the PCA under constraints by another example. Given
a continuous stationary L‘},—valued random measure 2 = (X,), ., for each

S which 1s a bounded measurable function from G into C, we set
A=LO0N, b= {cpe(H, H) = LM% | fo dZ(/?')=0}-

It is easy to see that pe(H, H')— 1(MZU,)) belongs to &.(f) if and
only if {¢@dZ(Z) belongs to H(’Z‘,,,,u . So, seeking @eé, and
Y e(CY, H)—Lz(M,Z(_”,t .) such that

I
| razery - yaczir),)|
(rJ -] i
is as small as possible is the same as looking for the PCA of order ¢ of
Z(¥) with respect to X, under the constraint H?;(/"”w‘ So, we are led to
the PCA of the random measure (Z(4')), ;. '

Two choices for f offer, a priori, an interesting development:

a. f=1,, which furnishes a PCA with the constraint on the filter to
be a pass-band one, and thus eliminating “frequencies” corresponding to B.
In particular, for G=2Z7% a g-dimensional summary in the form
(Y)+Y2),, can be obtained from the two-parameter stationary time
series (X, ) mez2- It suffices to choose for B the complement of ({0} x
[, a)u([ == n[ x{0}).

b. f=1—(-, go), which leads to a periodical summarizing function
with period g,.

VI. STATIONARY RANDOM FUNCTION WITH REAL-VALUED COMPONENTS

1. Image of a Random Measure and Conjugate Random Measure

Let ¥ be a measurable transformation from (E, &) onto itself and let Z
be an L3-valued random function; the mapping L(Z) Aeé—Z
(£ (A))e L% is again a random measure which is said to be the image
of the random measure Z by . It can be shown easily that the image
given by ¥ of the real measure ¢, is the real measure ¢, ,: A€&
tr M, ,(A4)eR,. We make here the additional assumption that .# is an
involution (that is to say, ¥>=1). Then, if pe(H, H')— L*((M ), it
can be seen that o(#(-))e(H, H'})— L*(M) and that one has

rpdf f(p

683/51/1-2
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Denoting an orthonormal basis of H by {h;; je J}, clearly

FHZXGHH< Y <hyxd hj>eH,
jeJ

is an antilinear involution which keeps each basis vector invariant and
preserves the norm. We can also observe that for every (x, y)e H?, we
have

(g{x), yy ={Tgxl{y), x)
and, of course,

(X)), Ty(y)) =<y, x).

The mapping Z: Ae &+ 'y Z(A)e L, is also a random measure called
the conjugate random measure associated with Z. 1t satisfies for each A e &:

Mz(A)=TyMz(A) 'y, [x(A)=1z(A).

Furthermore, given @e(H,H')—L* (M), ¢, ecE—Tple)Tye
hom(H, H') is in (H, H') — L}(M ) and one has

f(de_:F,,« (f(p(. dZ).

2. PCA for a “Real” Random Function

Let us now consider a continuous stationary random function Z =
(X,)ccq, defined on a locally compact abelian group and with values in
L3,. With an obvious misuse, we say that 2 is a real random function if
for each ge G, one has I'y X, = X,. When H =C” with its standard basis,
it can be seen that 2 is real if and only if the components of X, are real
random variables. Since f,,,, is a regular measure, it is so for the measure
image !, 4y, Of 1 4, by the continuous map & from G into itself defined
by L(y)=y~

From the results of VI.1, we obtain for each g

(o ) T =TyX_,, [, )dL@ZT)=X_,.
It follows that # is real if and only if Z(Z) and £(Z{%)) coincide on &,.
Then, if ge(H, H')~LXM,,,) is such that, for any yeG, one has
Iyo(L(yY) T'y=(y), the filtered # of & given by ¢ is a real random
function. Setting t =1, (=fz=1,4), we can deduce that

M., M,
o =g

(V‘I) Iy
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Finally, we obtain the existence of a measurable Schmidt decomposition
which, under the notations of 112, satisfies I'ya,# =a,. Therefore, the
filter « obtained by the PCA of order ¢ of Z is such that for any yeG:
Iyl L(y)) I'y=o(y) and we may claim that a filtered random function by
a of 2 1s again a real random function. Thus we have

PrOPOSITION 4. Let & =(X,), . be a random function with associated
random measure Z. We put L(yy=y ", for any ye G. The random function
2 is “real” if and only if Z(Z)=L(Z(X)). Under this condition, it is
possible to find a “real” filtered random function % in the PCA of order g
of ¥.

3. CA of Two Real Random Functions

We have seen that the CA of order r for two continuous stationary
random functions 2 and % which are stationarily correlated is none other
than a particular PCA. Thus, from VL1 it follows that there exists a “real”
CA of order r for the random function 2" with respect to % when both the
random functions are real.
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