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In this article, we model multivariate categorical (binary and ordinal) response
data using a very rich class of scale mixture of multivariate normal (SMMVN) link
functions to accommodate heavy tailed distributions. We consider both noninfor-
mative as well as informative prior distributions for SMMVN-link models. The
notation of informative prior elicitation is based on available similar historical
studies. The main objectives of this article are (i) to derive theoretical properties of
noninformative and informative priors as well as the resulting posteriors and (ii) to
develop an efficient Markov chain Monte Carlo algorithm to sample from the
resulting posterior distribution. A real data example from prostate cancer studies is
used to illustrate the proposed methodologies. � 1999 Academic Press
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1. INTRODUCTION

There is a growing interest in the statistical literature concerning the
modeling and analysis of correlated binary or ordinal response data.
Prentice (1988) provided a comprehensive review of various modeling
strategies using generalized linear regression to analyze correlated binary
response data with covariates associated at each binary response. Follow-
ing Liang and Zeger (1986) and Zeger and Liang (1986), Prentice used the
generalized estimating equation (GEE) approach to obtain consistent and
asymptotically normal estimators of regression coefficients. Tan, Qu, and
Kutner (1997) considered model diagnostics for correlated binary response
data and used the GEE approach based on latent variables to derive the
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projection (hat) matrix, Cook's distance, and various residuals. The main
disadvantages of a GEE approach are that (a) it heavily relies on
asymptotic theory and therefore a large sample size is required, (b) it is
difficult to work with the links other than few commonly used ones such
as probit and logit, and (c) it excludes available historical information.

In a Bayesian framework, Albert and Chib (1993) used latent variables
to analyze binary (and polychotomous) response data, but they did not
include correlation among binary (or multinomial) variables. To analyze
correlated or longitudinal binary response data, Chib and Greenberg
(1998) used the multivariate probit (MVP) model and Dey and Chen (in
press) used the MVP and multivariate t-link (MVT) models along with
models proposed by Prentice (1988). Other approaches to the analysis of
multivariate binary response data with logistic regressions are presented by
Carey, Zeger and Diggle (1993) and Glonek and McCullagh (1995). More
recently, Cowles, Carlin, and Connett (1996) considered multivariate tobit
(MVT) models for longitudinal ordinal response data which include
correlations among the latent variables. However, they considered only the
three-level ordinal responses. Chen and Dey (1998, 1996) considered
general scale mixture of multivariate normal (SMMVN) link functions for
analyzing longitudinal binary or correlated ordinal response data;
but the categorical responses they considered are either all binary or all ordinal.
Furthermore, they used noninformative proper priors for model parameters.

However, categorical data obtained from surveys are often mixed. For
example, some items in a questionnaire consist of two options (e.g., ``true''
or ``false'') while some other items have more than two options (e.g.,
``disagree,'' ``neutral,'' and ``agree''). Since the same individual answers all
the items in a questionnaire, these mixed categorical responses are
inherently correlated. Similarly, mixed categorical data are obtained from
some medical studies. For example, in a prostate cancer study, some clini-
cal responses such as pathological seminal vesicle invasion (PSVI) are
binary and some other clinical responses such as pathological extracapsular
extension (PECE) and pathological positive surgical margins (PPSM) are
ordinal. Therefore, it is important to simultaneously model such correlated
mixed categorical response data.

In this article, we incorporate the correlation across mixed categorical
responses through the covariance matrix of the underlying latent variables,
which follow from scale mixture of multivariate normal distributions. In
addition, we consider both noninformative and informative prior distribu-
tions. As an improper posterior makes Bayesian inference impossible, it is
important to study whether the resulting posterior distributions are proper
when an improper prior is used. Recently, Chen and Shao (1998, 1999a)
derived the precise necessary and sufficient conditions on the propriety of
the posterior distribution with an improper uniform prior for the independent
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binomial model as well as for the independent ordinal response model.
However, the correlated mixed categorical response problem is much more
complicated and challenging than the ones considered by Chen and Shao
(1998, 1999a). As one of the main objectives of this article, we investigate
the theoretical properties regarding the propriety of priors as well as the
resulting posterior distributions in details. In addition, we present efficient
computational algorithms for computing posterior properties.

The rest of the article is organized as follows. In Section 2, we propose
the SMMVN-link models for correlated mixed categorical response data.
Section 3 is devoted to the study of the theoretical properties of the
posterior distributions with an improper uniform prior as well as the infor-
mative prior. Here, the informative prior elicitation scheme is proposed
based on available similar historical studies. In Section 4, we develop an
efficient Markov chain Monte Carlo (MCMC) algorithm using the Multi-
grid Monte Carlo (MGMC) of Liu and Sabatti (1998) to sample from the
resulting posterior distributions. A real data example from the two prostate
cancer studies is presented for illustrating the proposed methods in
Section 5. Section 6 provides the proofs of the theorems presented in
Section 3. Finally, Section 7 gives brief concluding remarks.

2. THE MODELS

We first introduce some notations which will be used throughout the
remainder of this article. Suppose that on the ith observation (or subject or
individual), we observe a J-dimensional mixed categorical response
Yi=(Yi1 , Yi2 , ..., Y iJ), where the first Jb components denote binary respon-
ses, and the last J&Jb components correspond to ordinal responses.
Assume that Yij takes a value between 1 and Lj , where L j�2. Also let
xij=(xij1 , xij2 , ..., xijkj

) be the corresponding kj -dimensional row regression
vector for i=1, 2, ..., n and j=1, 2, ..., J. (Notice that xij1 may be 1, which
corresponds to an intercept.) Denote Y=(Y1 , Y2 , ..., Yn) and assume that
Yi1 , Yi2 , ..., YiJ , are dependent and Y1 , Y2 , ..., Yn are independent. Let
yi=( yi1 , y i2 , ..., yiJ) and y=( y1 , y2 , ..., yn) be the observed data. We let
D=(n, y, x) denote the data from the current study. Also let ; j=(;j1 ,
;j2 , ..., ; jkj

)$ be a k j -dimensional column vector of regression coefficients
and ;=(;$1 , ;$2 , ..., ;$J)$.

In order to set up our general scale mixture of multivariate normal
(SMMVN) link models for correlated mixed categorical response data, we
first introduce a J-dimensional (latent) random vector wi=(wi1 , wi2 ,
..., wiJ)$ such that

Yij=l, if #j, l&1�wij<#jl , (2.1)
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for l=1, 2, ..., Lj , where

&�=#j0<#j1=0� } } } �#j, Lj&1<#j Lj
=�, (2.2)

are the cutpoints, which divide the real line into Lj intervals. We take
#j1=0 to ensure identifiability. Notice that in (2.1), for j=1, 2, ..., Jb , Lj=2
and therefore, there are no unknown cutpoints for the binary responses,
while for j=Jb+1, ..., J, we allow ordinal components to have different
levels Lj . Finally, we assume

wi | *itN(xi ;, }(*i) 7), (2.3)

and

*it?(*i), (2.4)

where }(*i) is a positive function of a one-dimensional positive-valued scale
mixing variable *i , ?(*i) is a mixing distribution which is either discrete or
continuous, 7=(_jj $)J_J is a positive definite covariance matrix, and

xi=diag(xi1 , ..., x iJ)=\
xi1

0
b
0

0
xi2

b
0

} } }
} } }
. . .
} } }

0
0
b

x iJ
+

for i=1, 2, ..., n. To ensure identifiability of the model parameters, we
assume that the covariance matrix 7 is a correlation matrix. We notice that
Albert and Chib (1993) first introduced the strategy involving latent
Gaussian random variables that essentially makes the analysis of mixed
categorical response data possible.

It is easy to observe that the distribution of wi determines the joint
distribution of Yi through (2.1) and the covariance matrix 7 captures the
correlations among Yi1 , Y i2 , ..., YiJ . More specifically, the joint distribution
of the mixed categorical response vector Yi can be written as

P(Yi1= y i1 , Yi2= yi2 , ..., YiJ= yiJ | ;, 7, #, *i , xi)

=|
Ai 1

|
Ai 2

} } } |
Ai J

1
(2?}(*i))J�2 |7|1�2

} exp {&
}&1(*i)

2
(wi&xi ;)$ 7&1(wi&x i ;)= dwi , (2.5)

where #=(#$Jb+1 , #$Jb+2 , ..., #$J)$, # j=(#j1 , # j2 , ..., #j, Lj&1)$, and

Aij=[#j, l&1 , #jl) if yij=l (1�l�Lj) (2.6)
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for j=1, 2, ..., J. Thus, the likelihood function is given by

L(;, 7, # | D)= `
n

i=1
|

�

0 _|Ai 1
|

Ai 2

} } } |
AiJ

1
(2?}(*i))J�2 |7|1�2

} exp {&
}&1(*i)

2
(wi&x i ;)$ 7&1(wi&xi ;)= dwi& ?(*i) d* i .

(2.7)

The class of SMMVN links is quite rich, which includes multivariate
probit (MVP), t-link (MVT), logit (MVL), symmetric stable distribution
family links (MVS), symmetric exponential and power distribution family
links (MVEP) models. In the interest of space, we will give a brief explana-
tion for MVP, MVT, and MVL as follows. Detailed discussions for the
other links can be found in Chen and Dey (1998).

Taking }(*i)=1 and the mixing distribution ?([1])=1, the SMMVN-
link reduces to the multivariate probit, i.e., MVP. Similar to the MVP,
when we take }(*i)=1�*i and * i tG(&�2, &�2), i.e., ?(* i)B*&�2&1

i exp
[(&&�2) *i], the SMMVN-link gives a multivariate t-link (MVT) with &
degrees of freedom. Note that the special case of MVT-link with &=1 is
termed as a multivariate Cauchy (MVC) link, and another special case
of MVT-link with & � � is the MVP. Logistic regression is widely used to
fit binary response data (e.g., see Prentice, 1988). The multivariate logit is
a special case of the SMMVN-link by taking }(*i)=4*2

i where *i follows
an asymptotic Kolmogorov distribution with density ?(*i)=?K (*i)=
8 ��

k=1 (&1)k+1 k2*i exp[&2k2*2
i ]. The MVL models are attractive since

the exchangeability on the correlation structure is not required, which is
advantageous compared to the random effects type of logistic regression
models, for example, stratified and mixture models as given in Prentice
(1988).

It should be noticed that in the class of SMMVN links, the MVP and
MVC links serve as the two extremes in light of the tail behavior, that is,
the MVP has the lightest tail and the MVC link has the heaviest tail, while
the others such as MVEP-link, MVL, and MVS-link have heavier tails
than the MVP and lighter tails than the MVC.

3. THE PRIOR DISTRIBUTIONS

In this section, we propose novel classes of non-informative and infor-
mative priors for (;, 7, #), and discuss some theoretical properties of the
proposed priors and resulting posteriors.
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3.1. Noninformative Priors

We first consider an improper uniform prior for (;, 7, #) of the form

?(;, 7, #)B1, (3.1)

where # is subject to the constraints given in (2.2), and vec*(7)=
(_12 , _13 , ..., _J&1, J)$ # V, and the region V is a subset of the region
[&1, 1]J(J&1)�2 that leads to a proper correlation matrix. As mentioned
by Chib and Greenberg (1998) and also shown by Rousseeuw and
Molenberghs (1994), the region V forms a convex solid body in the hyper-
cube [&1, 1]J(J&1)�2 that leads to a proper correlation matrix. Since the
resulting posterior inference is driven by the likelihood, we call the
improper uniform prior given by (3.1) as a noninformative prior. In certain
sense, the improper uniform prior plays a similar role as a locally uniform
prior introduced by Box and Tiao (1992, p. 23).

Using (3.1), the posterior distribution of (;, 7, #) based on the observed
data D=(n, y, x) is given by

p(;, 7, # | D)BL(;, 7, # | D), (3.2)

where L(;, 7, # | D) is given by (2.7). We are led to the following theorem
concerning the propriety of the posterior distribution in (3.2) using the
improper uniform prior (3.1).

Before presenting Theorem 3.1, we introduce the following notations.
For 1� j�Jb , let zij=1 if yij=1 and zij=&1 if yij=2. Write

x*ij=zij xij , and x i*=diag(x*i1 , ..., x*iJb
).

Let 1[A] denote the indicator function such that 1[A]=1 if A is true, and
1[A]=0 if A is not true. For j=Jb+1, ..., J, let

x~ ij=&xij 1[2� yij�L j], x̂ij=xij 1[1� y ij�Lj&1],

c~ ij=(1[3� yij], ..., 1[Lj� y ij]),

ĉij=&(1[2� yij], ..., 1[Lj&1� yij]) 1[1� yij�Lj&1],

gij=\x~ ij

x̂ij+ , hij=\c~ ij
ĉij+ ,

gi=diag(gi, Jb+1 , ..., gi, J), hi=diag(hi, Jb+1 , ..., h i, J),

x1* g1 h1

X*=\ b + , G=\ b + , and H=\ b + .

xn* gn hn
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Theorem 3.1. Assume that the following conditions are satisfied:

(C1) X* and (G, H ) are of full rank,

(C2) There exist positive vectors a and b such that

a$X*=0, b$G=0, and b$H�0,

(C3) ��
0 }q�2(*) ?(*) d*<�, where q=�J

j=1 kj+�J
j=Jb+1 (Lj&2).

Then, the posterior p(;, 7, # | D) given in (3.2) is proper, that is,

| L(;, 7, # | D) d; d7 d#<�. (3.3)

Conditions (C1) and (C2) are closely related to some geometric property
of the design matrix X, G and H, so called not full-dimensional in Natarajan
and McCulloch (1995). See also Chen and Shao (1998) for further discus-
sion. As shown in Chen and Shao (1998), conditions (C1) and (C2) are
necessary for (3.3) for independent binary regression models.

It is easy to see that the moment condition (C3) holds for the MVP and
MVL models; but it may not be satisfied for other models such as the
MVT models with degrees of freedom less than or equal to q�2. Next
theorem shows that the moment condition can be weaken when the design
matrix X* has some nice structures.

Theorem 3.2. Define

xl+1 gl+1 h l+1

X*l, m=\ b + , Gl, m=\ b + , Hl, m=\ b + .

xm gm hm

Assume that there exist p�1, 0=m0<m1<m2< } } } <mp�n and positive
vectors a1 , a2 , ..., ap and b1 , b2 , ..., bp such that X*ml&1 , ml

, (Gml&1 , ml
, Hml&1 , ml

)
are of full rank and

a$l X*ml&1 , ml
=0, b$l Gml&1 , ml

=0 and b$l Hml&1 , ml
�0 for l=1, ..., p.

(3.4)

If

(C4) ��
0 }q�(2p)(*) ?(*) d*<�

is satisfied, then (3.3) holds.

Clearly, condition (C4) can be satisfied even for the MVC model as long
as 2p>q. Therefore, the results presented in Theorem 3.2 are less restrictive
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on the moment conditions, which is useful when one wishes to use a heavy-
tailed link function.

The proofs of Theorems 3.1 and 3.2 are technical and thus left to
Section 6.

3.2. Informative Priors

Now, we consider an informative prior. Our prior construction is based
on the notion of the existence of a previous study that measures the same
response variable and covariates as the current study. For ease of exposi-
tion, we assume only one previous study, as the extension to multiple
previous studies is straightforward. To this end, let D0=(n0 , y0 , x0) be
the data from the historical study, where y0=( y01 , y02 , ..., y0n0

), y0i=
( y0i1 , y0i2 , ..., y0iJ), the first Jb components of y0i denote binary responses,
and the last J&Jb components of y0i correspond to ordinal responses.
Denote w0i=(w0i1 , ..., w0iJ)$ to be the latent variable vector associated with
the historical study.

Let ?0(;, 7, #) be an initial prior distribution for (;, 7, #). Notice that
?0(;, 7, #) may be an improper uniform prior. We wish to construct a
prior distribution for (;, 7, #) based on the historical study. To this end,
we propose an informative prior of the form

?(; | 7, #, a0 , D0)B?*(; | 7, #, a0 , D0) ?0(;, 7, #), (3.5)

where

?*(; | 7, #, a0 , D0)= `
n0

i=1
|

�

0
|

A0i 1

} } } |
A0iJ

aJ�2
0 |7| &1�2

(2?}(*0i))
J�2

} exp {&
a0}&1(*0i)

2
(w0i&x0i ;)$ 7&1(w0i&x0i;)=

_?(*0i) dw0i d*0i , (3.6)

A0ij=[# j, l&1 , #jl) if y0ij=l for j=1, ..., J, and the scale mixing distribution
?(*0i) is given in (2.4).

In (3.5), a0 can be interpreted as a scalar prior parameter that weights
the prior data relative to the likelihood of the current study. It is
reasonable to restrict the range of a0 to be between 0 and 1, and thus we
take 0�a0�1. Notice that (3.6) has several appealing interpretations.
Small values of a0 give little prior weight to the historical control data
relative to the likelihood of the current study whereas values of a0 close to 1,
for example, give roughly equal weight to the prior and the likelihood of
the current study. Setting a0=1, (3.5) corresponds to the usual Bayesian
update of ?0(;, 7, #) via Bayes theorem. That is, with a0=1, (3.6)
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corresponds to the posterior distribution of (;, 7, #) from the previous
study. When a0 � 0, then the prior does not depend on the historical data,
and in this case, ?(;, 7, # | a0 , D0) reduces to ?0(;, 7, #). Therefore, the
prior (3.5) can be viewed as a generalization of the usual Bayesian update
of ?0(;, 7, #). The parameter a0 allows the investigator to control the
influence of the historical data on the current study. Such control is impor-
tant in cases where there is heterogeneity between the previous and current
study, or when the sample sizes of the two studies are quite different. In
practice, it is reasonable to take a noninformative prior for ?0(;, 7, #),
such as the one described in (3.1).

The prior specification is completed by specifying a prior distribution
for a0 . We take a beta prior for a0 , and thus we propose a joint prior
distribution for (;, 7, #, a0) of the form

?(;, 7, #, a0 | D0)B?*(; | 7, #, a0 , D0) ?0(;, 7, #) a$0&1
0 (1&a0)`0&1,

(3.7)

where ($0 , `0) are specified prior parameters. The prior in (3.7) does not
have a closed form but it has several attractive theoretical properties. First,
we note that if ?0(;, 7, #) is proper, then (3.7) is guaranteed to be proper.
Further, (3.7) can be proper even if ?0(;, 7, #) is improper. The following
theorem characterizes the propriety of (3.7) when ?0(;, 7, #) is an
improper uniform prior.

Theorem 3.3. In additional to conditions (C1), (C2), and (C4), assume
that $0>q�(2p). Then the joint prior given in (3.7) is proper, that is,

| ?*(; | 7, #, a0 , D0) a$0&1
0 (1&a0)`0&1 d; d7 d# da0<�. (3.8)

Note that the prior specification (3.7) for (;, 7, #) is indeed the
generalization of prior specification schemes proposed by Ibrahim, Ryan,
and Chen (1998) and Chen, Ibrahim, and Yiannoutsos (1999) for analyz-
ing univariate binary response data by using logistic regression, and Chen,
Manatunga, and Williams (1998) for human twin data models.

4. COMPUTATIONAL DEVELOPMENT

In this section, we only present a Markov chain Monte Carlo (MCMC)
algorithm to sample from the posterior distribution with the informative
prior given by (3.7) as sampling from the posterior distribution with an
improper uniform prior is much simpler.
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The posterior distribution for our correlated mixed categorical data
model is of the form,

p(;, 7, #, a0 | D)BL(;, 7, # | D) ?(;, 7, #, a0 | D0), (4.1)

where the prior distribution ?(;, 7, #, a0 | D0) and the likelihood
L(;, 7, # | D) are given by (3.7) and (2.7) respectively. In (4.1), we assume
that ?0(;, 7, #)B1.

To sample ;, 7, #, a0 from (4.1), we introduce several auxiliary variables.
These include the latent variables w=(w$1 , w$2 , ..., w$n)$ and the mixing
variables *=(*1 , *2 , ..., *n)$ for the current study and w0=(w $

01 , ..., w$0n0
)$

and *0=(*01 , ..., *0n0
)$ for the historical study. In addition, we let w( j )=

(w1j , w2j , ..., wnj)$ and denote w(& j ) to be w with w( j ) deleted for j=
1, 2, ..., J. Also let w0( j )=(w01j , w02j , ..., w0n0 j)$ and denote w0(& j ) to be w0

with w0( j ) deleted for j=1, 2, ..., J. To sample from the posterior distribu-
tion given in (4.1), we propose a two-step MCMC sampling algorithm,
which consists of Step 1, Regular MCMC Sampling, and Step 2, the
MGMC Adjustment.

In Step 1, we require sampling from the conditional distributions:
(i) [; | 7, w, *, w0 , *0 , a0 , D, D0]; (ii) [7 | ;, w, *, w0 , *0 , a0 , D, D0];
(iii) [w( j ) , w0( j ) , #j | w(& j ) , w0(& j ) , ;, 7, *, *0 , a0 , D, D0] for j=1, 2, ..., J;
(iv) [a0 | ;, 7, w0 , *0 , D, D0]; and (v) [*, *0 | ;, 7, w, w0 , a0 , D, D0].
Now, we briefly discuss how to sample from each of the above conditional
distributions. Let

B=a0 :
n0

i=1

}&1(*0i) x$0i 7&1x0i+ :
n

i=1

}&1(*i) xi$ 7&1x i

and

;� =B&1 \a0 :
n0

i=1

}&1(*0i) x$0i 7&1w0i+ :
n

i=1

}&1(*i) xi$ 7&1wi+ .

Then, [; | 7, w, *, w0 *0 , a0 , D, D0] is N(;� , B&1). Therefore, sampling ;
from its conditional distribution is straightforward. To sample the correla-
tion matrix 7 from [7 | ;, w, *, w0 , *0 , a0 , D, D0], we use a Metropolized
Hit-and-Run algorithm of Chen and Dey (1998), which is a generalization
of the Metropolis algorithm of Chib and Greenberg (1998). The detail for
generating 7 can be found in Chen and Dey (1998).

For (iii), we use a cycle of J Gibbs steps to generate #j , w( j ) , and w0( j )

jointly from their conditional distributions for j=1, 2, ..., J in turn. For
j=1, 2, ..., Jb , we simply draw w( j) and w0( j ) from their respective condi-
tional posterior distributions since there are no unknown cutpoints #j for
the binary responses. For j=Jb+1, Jb+2, ..., J, we first draw #j from
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[#j | ;, 7, w(& j ) , w0(& j ) , *, *0 , a0 , D], then draw w( j ) from [w( j ) | # j , ;, 7,
w(& j ) , *, D] and draw w0( j ) from [w0( j ) | #j , ;, 7, w0(& j ) , *0 , a0 , D]. We
use the algorithm of Geweke (1991) to generate w( j ) and w0( j ) since their
respective conditional posterior distributions are truncated multivariate
normals over intervals defined by (2.6). Generating #j from its conditional
posterior distribution is a challenging problem. Cowles (1996) proposed a
Hastings scheme using a truncated normal proposal distribution and
Nandram and Chen (1996) developed an improved algorithm based on a
Dirichlet proposal distribution. Here, we adopt the rejection algorithm of
Chen and Dey (1996) to generate #j using a transformation technique.

The conditional posterior density of [a0 | ;, 7, w0 , *0 , D, D0] is
not log-concave in general. However, an efficient Metropolis algorithm
developed by Chen et al. (1999) can be directly applied. The detailed
description of this Metropolis algorithm can be found in Chen et al. (1999)
and is omitted here for brevity. Finally, we briefly discuss how to generate
mixing variables *i and *0i . The random generation for *i or *0i requires
the known form of the mixing distribution ?(*). For a MVP model, it does
not require to generate *i or *0i since ?([* i=1])=1 and ?([*0i=1])=1.
For a MVT model, [*i | ;, 7, wi , D] and [*0i | ;, 7, w0i , D0] are gamma
distributions, which are easy to sample from. For the MVL, MVS, and
MVEP link models, Chen and Dey (1998) developed various efficient
Metropolis algorithms. These algorithms can be directly applied to our
mixed categorical data models, and thus we omit the details.

In the MGMC adjustment step, we propose to use the MGMC scheme
of Liu and Sabatti (1998) J times. More specifically, for j=1, 2, ..., Jb we
consider the transformation gj (;j , w( j ) , w0( j ))=(gj ; j , g j w( j ) , gjw0( j )).
Following from Liu and Sabatti (1998), it is easy to show that the Jacobian
of this group transformation Jgj

= gn+n0+kj
j , the Haar measure H(dgj)=

dgj �gj , and the distribution of g j is

p(gj)Bgn+n0+kj&1
j exp {&

g2
j

2 _ :
n

i=1

}&1(*i)(wij&x ij ; j)
2

+a0 :
n0

i=1

}&1(*0i)(w0ij&x0ij; j)
2&

&
gj

2 _2 :
j ${ j

_jj $ \ :
n

i=1

}&1(*i)(wij&xij;j)(wij $&x ij $ ;j $)

+a0 :
n0

i=1

}&1(*0i)(w0ij&x0ij ;j)(w0ij $&x0ij $ ;j $)+&= . (4.2)
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For j=Jb+1, Jb+2, ..., J, since #j contains Lj&2 parameters, the group
transformation is taken to be gj (; j , #j , w( j) , w0( j ))=(gj;j , gj #j , gjw( j ) ,
gj w0( j )) and its corresponding Jacobian is Jgj

= gn+n0+kj+Lj&2
j . The dis-

tribution of gj is similar to (4.2) with gn+n0+kj&1
j being replaced by

gn+n0+kj+Lj&3
j . It can be shown that p(gj) is log-concave. Thus, we can use

the adaptive rejection algorithm of Gilks and Wild (1992) to sample gj

from p(gj). After we obtain a draw gj , we then adjust (;j , #j , w( j ) , w0( j )) by

;j � gj ;j , #j � g j #j , w( j ) � g j w( j ) , and w0( j) � gj w0( j ) .

As shown in Chen and Liu (1999), the MGMC adjustment step can
dramatically improve convergence of MCMC sampling. We shall employ
this adjustment in our real prostate cancer data example.

5. PROSTATE CANCER STUDY DATA EXAMPLE

To illustrate the proposed methodologies, we use two data sets, called
the PENN data and the MASS data, from two prostate cancer studies con-
ducted at the Hospital of the University of Pennsylvania in Philadelphia
and Brigham and Women's Hospital in Boston, respectively. The PENN
data contain 713 patients and the same pathologist was involved for all
patients from 1989 to 1995. The MASS data contain the information for a
prospective study of 104 patients with prostate cancer and the treatment
took place between August of 1995 and April of 1996. In these two studies,
three clinical categorical response variables, Pathological Seminal Vesicle
Invasion (PSVI), pathological extracapsular extension (PECE), and
pathological positive surgical margins (PPSM), were observed and many
preoperative staging system predictors were measured. For illustrative pur-
poses, in this example we consider only three most important predictors,
which are prostate specific antigen (PSA), clinical gleason score (GLEAS),
and clinical stage (CLINS). PSVI is a binary (1-2) response, and PECE
and PPSM are two ordinary (1-3) responses. In the prostate cancer study,
it is important to predict the outcomes of PECE, PPSM, and PSVI in
order to determine whether a prostate cancer patient needs to undergo the
surgery. See Desjardin (1997) for a detailed discussion.

For patient i, we let Y1i , Y2i , and Y3i denote PSVI, PECE, and PPSM
and let x1i , x2i , and x3i be PSA, GLEAS, and CLINS. Then, Y1i is binary
while both Y2i and Y3i are ordinal and each of them has three levels. There-
fore, J=3, Jb=1, L1=2, and L2=L3=3. Since Y1i , Y2i , and Y3i are
observed from the same patient, they are naturally correlated. Further-
more, the MASS study was conducted recently while the PENN study was
done earlier. Therefore, the MASS study naturally serves as a current study
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while the PENN study is a historical study. The sample size of the MASS
data is 103, i.e., n=103, which is relatively small. In order to perform a
more accurate statistical analysis, it is important to include the available
historical information, i.e., the PENN data, into the analysis.

Since the logit is the most dominated link used in medical research, we
present the results of our analysis for the prostate cancer studies mainly
based on the multivariate logit. However, the other links in the family of
SMMVN-link functions are also considered. We implement the MCMC
algorithms proposed in Section 4. To ease computational burden, we
standardize all three covariates. We check the convergence of the MCMC
algorithm using several diagnostic procedures recommended by Cowles
and Carlin (1996) and after convergence, we find that the autocorrelations
among the MCMC iterations are negligible with respect to their standard
deviations at lag 10. The Metropolis algorithm for generating a0 and the
Metropolized Hit-and-Run algorithm for generating 7 work well, which
result in the acceptance probabilities of 0.80 and 0.22 respectively for the
MVL model.

Using 50,000 MCMC iterates, we compute all the posterior quantities of
interest and the results are given in Tables I and II. In Tables I and II, the
highest posterior density (HPD) intervals were computed using a Monte
Carlo method of Chen and Shao (1999b). By comparing Table II to
Table I, we can observe that (i) all posterior standard deviations in
Table II are much greater than those in Table I; (ii) in Table II, PSA is the
only significant predictor for all three categorical responses. These results
indicate that (i) the inference based only on the MASS data may not be
accurate and (ii) when the sample size of the current study is small, it is
important to incorporate the available historical information into analysis.

TABLE I

Bayesian Estimates of the Regression Coefficients with a Uniform Prior on a0

Posterior 950 HPD
Response variable Covariates Mean Std. dev. Intervals

PSA 0.194 0.055 (0.090, 0.303)
PSVI GLEAS 0.595 0.112 (0.378, 0.814)

CLINS 0.438 0.171 (0.102, 0.773)

PSA 0.218 0.036 (0.149, 0.292)
PECE GLEAS 0.147 0.039 (0.072, 0.224)

CLINS 0.246 0.058 (0.136, 0.361)

PSA 0.895 0.214 (0.501, 1.323)
PPSM GLEAS 0.458 0.230 (0.009, 0.910)

CLINS 0.385 0.329 (&0.245, 1.048)
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TABLE II

Bayesian Estimates of the Regression Coefficients without Incorporating
Historical Information (a0=0)

Posterior 950 HPD
Response variable Covariates Mean Std. dev. Intervals

PSA 1.729 0.724 (0.407, 3.170)
PSVI GLEAS 3.026 1.171 (0.778, 5.389)

CLINS &0.883 1.022 (&3.014, 1.021)

PSA 0.519 0.208 (0.129, 0.930)
PECE GLEAS 0.220 0.211 (&0.176, 0.653)

CLINS 0.344 0.206 (&0.047, 0.772)

PSA 0.426 0.189 (0.074, 0.805)
PPSM GLEAS 0.371 0.210 (&0.021, 0.793)

CLINS &0.033 0.176 (&0.397, 0.301)

6. PROOFS OF THEOREMS

The following lemma plays a key role in the proofs of our theorems.

Lemma 6.1. Let %=(%1 , ..., %k)$ and {=({1 , ..., {l)$, M be an n_k matrix
and N be an n_l matrix, where n>k+l. Assume that (M, N ) is of full rank
and that there exists a positive vector a such that

a$M=0 and a$N�0. (6.1)

Then there exists a constant K depending only on (M, N ) such that

&'&�K &u& (6.2)

whenever

(M, N ) '�u and {�0, (6.3)

where '=(%$, {$)$ and & }& denotes the Euclidean norm.

Proof. Let E=[==(=1 , ..., =k+l)$ # Rk+l : =i=\1]. Since (M, N ) is of
full rank, for every = # E, there is a b= # Rn such that

b$=(M, N )==$. (6.4)

Let a=(a1 , ..., an)$ # Rn be the positive vector satisfying (0.0). Put

$=
min1�i�n (a i)
2 max= # E &b=&

.
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For ==='=sign('$)=(sign('1), ..., sign('k+l))$, we have $>0 and
a+$b=>0. Hence, it follows from (6.1) and (6.3) that

(a+$b=)$u�(a+$b=)$ (M, N ) '

=a$M%+a$N{+$b$=(M, N ) '

�$b$=(M, N ) '=$ sign('$) '

�($�(k+l )) &'&,

as desired. K

Proof of Theorem 3.1. Let *1 , ..., *n be independent random variables
with the common probability density function ?. Let w~ i=(w~ i1 , ..., w~ iJ)$ be
independent random variables such that

w~ i | *i tN(0, }(*i) 7),

that is, given *i , w~ i is normally distributed with mean zero and covariance
matrix }(*i) 7. Put

Ai=Ai, 1 _Ai, 2 _ } } } _Ai, J .

Thus, we can rewrite the likelihood function as

L(;, 7, # | D)=E1[(w~ i+xi ;) # Ai , 1�i�n]

=E(1[w~ ij+x ij ; j # Aij , 1� j�Jb , 1�i�n]

_1[w~ ij+x ij ;j # Aij , Jb+1� j�J, 1�i�n]). (6.5)

It is easy to see that

[w~ ij+xij ;j # Aij , 1� j�Jb , 1�i�n]

= ,
1� j�Jb

([w~ ij+x ij ; j<0, y ij=1, 1�i�n]

_ [w~ ij+xij ; j�0, y ij=2, 1�i�n])

/[zij xij ; j�&zij w~ ij , 1� j�Jb , 1�i�n]

=[X*;�w*], (6.6)

where

w1* w*i1

w*=\ b + , and wi*=\ b + .

wn* wiJb
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To deal with [w~ ij+x ij ;j # A ij , Jb+1� j�J, 1�i�n], let

;Jb+1

w (o)
1

#j=\
#j2

#j3&#j2

b
#j, LJ&1&#j, LJ&2

+ , '(o)=\
b

;J

#Jb+1

b + , w(o)=\ b + ,

#J

w (o)
n

w (o)
i =(&w~ ij 1[1� yij�L j&1], w~ ij 1[2� y ij�Lj], Jb+1� j�J )$.

Noting that #j0=&�, #j1=0 and # jLj
=�, we have

[w~ ij+xij ;j # Aij , Jb+1� j�J, 1�i�n]

=[w~ ij+xij ;j<#j, yij
, 1� yij�Lj&1, 1�i�n]

& [w~ ij+xij ;j�# j, yij&1 , 2� y ij�Lj , 1�i�n]

/{& :
Lj&1

l=2

(#jl&# j, l&1) 1[l� yij]

+xij ;j�&w~ ij , 1� y ij�Lj&1, 1�i�n=
& { :

Lj&1

l=2

(#jl&#j, l&1) 1[l+1� yij]

&xij ;j<w~ ij , 2� yij�Lj , 1�i�n=
=[ĉij #j+x̂ ij ; j�&w~ ij 1[1� yij�Lj&1], 1�i�n]

& [c~ ij#j+x~ ij ; j�w~ ij 1[2� yij�Lj], 1�i�n]

=[(G, H ) '(o)�w(o)].

Let

U=diag(X*, (G, H )), '=\;*
'o+ , w� =\w*

wo+ .

Putting (6.5)�(6.7) together yields

L(;, 7, # | D)=E(1[U'�w� ]). (6.8)
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Therefore, by (C1), (C2), and Lemma 6.1

| L(;, 7, # | D) d; d7 d#=| E(1[U'�w� ]) d' d7

�| E(1[&;&�K &w� &]) d' d7

�K | E( max
1�i�n

&w~ i&)q d7

�K | :
n

i=1

:
J

j=1

E |w~ ij |
q d7

�K | :
J

j=1

E |}(*)|q�2 d7

<� (6.9)

by (C3). K

Proof of Theorem 3.2. Following the proof of Theorem 3.1, we have

| L(;, 7, # | D) d; d7 d#

�| E(1[&;&�K min
1�l�p

max
ml&1<i�ml

&w~ i&]) d' d7

�k | E( min
1�l�p

max
ml&1<i�ml

&w~ i&)q d7

�K | E \ `
1�l�p

max
ml&1<i�ml

&w~ i&q�p+ d7

�K | `
1�l�p

E( max
ml&1<i�ml

&w~ i&q�p) d7

<� (6.10)

by (C4). K

Proof of Theorem 3.3. Let *1 , ..., *n be independent random variables
with the common probability density function ?. Let w~ i=(w~ i1 , ..., w~ iJ)$ be
independent random variables such that

w~ i | *i tN(0, (1�a0) }(*i) 7).
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Similar to (6.8),

?*(; | 7, #, a0 , D0)=E(1[U'�w� ]).

Therefore, following the proof of (6.10)

| ?*(; | 7, #, a0 , D0) a$0&1
0 (1&a0)`0&1 d; d7 d# da0

�K | `
1�l�p

E( max
ml&1<i�ml

&w~ i&q�p) a$0&1
0 (1&a0)`0&1 d7 da0

�K |
1

0
a&q�p

0 a$0&1
0 (1&a0)`0&1 da0 (6.11)

<�. K (6.12)

7. CONCLUDING REMARKS

In this article, we provide sufficient conditions for the propriety of the
informative prior as well as the resulting posterior distributions. In addi-
tion, we develop an efficient MCMC sampling algorithm for the correlated
mixed categorical response models. Our results are useful for the propriety
study can avoid a poor experimental design, which may result in the
parameters of interest not identifiable without using a strong informative
prior.

In this article, we used a real data example from prostate cancer studies
to illustrate proposed methodologies. From this example, we demonstrated
that (i) the proposed MCMC sampling algorithm for simulating the
posterior distribution works well; and (ii) incorporating prior information
leads to improved interpretation of the results of a current study.
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