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a b s t r a c t

The purpose of this paper is, inmultivariate linear regressionmodel (Part I) and GMANOVA
model (Part II), to investigate the effect of nonnormality upon the nonnull distributions of
somemultivariate test statistics under normality. It is shown that whatever the underlying
distributions, the difference of local powers up to order N−1 after either Bartlett’s type
adjustment or Cornish–Fisher’s type size adjustment under nonnormality coincides with
that in Anderson [An Introduction to Multivariate Statistical Analysis, 2nd ed. and 3rd ed.,
Wiley, New York, 1984, 2003] under normality. The derivation of asymptotic expansions is
based on the differential operator associated with themultivariate linear regressionmodel
under general distributions. The performance of higher-order results in finite samples,
including monotone Bartlett’s type adjustment and monotone Cornish–Fisher’s type size
adjustment, is examined using simulation studies.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The study of Bartlett adjustability and higher-order power for several asymptoticχ2 tests based onnot only the likelihood
under model specification but also Owen’s empirical likelihood approach (we refer to his book [51]) and its generalization
to the empirical discrepancy approach has received considerable attention — see e.g. Barndorff-Nielsen and Cox [2], Bickel
and Ghosh [7], Chandra and Mukerjee [11], Cordeiro and Ferrari [16], DiCiccio et al. [18], Taniguchi [61], Mukerjee [48–50],
Rao and Mukerjee [55,56], Ghosh and Mukerjee [27], Bravo [8,9], Chen and Cui [14] and the references therein (there is a
vast literature on these topics for various statistical settings).
The present paper investigates, as a continuation of Kakizawa and Iwashita [37], the problem of testing a general

linear hypothesis in multivariate linear regression model (Part I) and GMANOVA model (Part II) with nonparametric error
distribution, where ‘‘nonparametric’’ means that the error distribution is not specified by a finite dimensional parameter.
Although our setting is different from Dufour and Khalaf [19], an important feature in the statistical inference on the mean
structure of the multivariate model is the fact that several test statistics derived under normality (including the likelihood
ratio (LR) criterion, Lawley–Hotelling’s trace and Bartlett–Nanda–Pillai’s trace) are all functions of the eigenvalues of a
characteristic determinantal equation which involves the restricted and unrestricted residual sum of squares matrices,
hence they are easily shown to have the same limiting noncentral chi-square distribution under a local alternative. It may,
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therefore, be of interest to study higher-order asymptotic comparison of the classical multivariate tests (actually, little is
known about their local power properties under nonnormality).

1.1. Multivariate linear regression model

We suppose that an N × p matrix Y consists of N independent observations y1, . . . , yN on p variables, where Y′ =
[y1, . . . , yN ]. The multivariate linear regression model is

Y = XΘ + U,

where X is an N × q non-random design matrix of rank q (< N),Θ is a q× p unknown regression matrix, and U is an N × p
unobservable randommatrixwithU′ = [u1, . . . ,uN ]. It is assumed that each p×1 vector ui is independently and identically
distributed with mean vector 0 and positive definite covariance matrix Σ. For testing a linear hypothesis H : BΘ = Or,p
(r × p zero matrix), where B is an r × q known matrix of rank r (≤ q), let HY and EY be the variation matrices due to the
hypothesis and the error

HY = Y′X(X′X)−1B′{B(X′X)−1B′}−1B(X′X)−1X′Y,
EY = Y′{IN − X(X′X)−1X′}Y,

respectively. Then, the following three criteria have been used under normality:
(i) Likelihood ratio (or Wilks’Λ) TLR = −(N − q) log(|EY |/|EY + HY |),
(ii) Lawley–Hotelling’s trace (T 20 ) TLH = (N − q)tr(HYE

−1
Y ), and

(iii) Bartlett–Nanda–Pillai’s trace TBNP = (N − q)tr[HY (EY + HY )−1].
We notice that the problem of testing the hypothesis B1ΘB2 = B0, where B1 is a r × q known matrix of rank r (≤ q), B2

is a p× s known matrix of rank s (≤ p) and B0 is an r × s known matrix, reduces to that of the null hypothesis B1Θ̃ = Or,s
in the model Ỹ = XΘ̃ + Ũ, by letting Ỹ = YB2 − XB−1 B0, Ũ = UB2 (N × s matrix) and Θ̃ = ΘB2 (q × s matrix), where
B−1 is a generalized inverse matrix of B1 (e.g. [30, Chapter 9]). Berndt and Savin [3] showed that Lawley–Hotelling’s trace
and Bartlett–Nanda–Pillai’s trace are viewed as the Wald test and the Lagrange multiplier (LM) test, respectively, under
normality. Further, the three criteria TLR, TLH and TBNP are special cases of the generalized test statistic

Tψ = (N − q)
p∑
j=1

ψ(λY ,j)

(see [23]) by letting ψ(x) = log(1+ x), x, 1− 1/(1+ x), respectively, where λY ,1, . . . , λY ,p ≥ 0 are eigenvalues of HYE−1Y .
These three functions are usually generalized as ψ(x; γ ) = {(1+ x)γ − 1}/γ for any γ ∈ R.
Asymptotic expansions under normality have been extensively studied (see e.g. [47, Chapter 10], [1, Chapter 8] and

references theirin). Under nonnormality, Wakaki et al. [62] gave an asymptotic expansion for the null distribution of
T = TLR, TLH , TBNP , following Kano [39] and Fujikoshi [24–26]. The purpose of this paper is, as an extended study of Kakizawa
and Iwashita [37], to obtain an asymptotic expansion for the nonnull distribution of Tψ up to order N−1 and then compare
their local powers after either Bartlett’s type adjustment or Cornish–Fisher’s type size adjustment under nonnormality.
Unlike Fujikoshi [26] and Wakaki et al. [62], our derivation of asymptotic expansion is based on the differential operator
method developed by Kakizawa and Iwashita [36,37] and Kakizawa [33–35].
In what follows, for any positive definite matrix T of n × n, T−1/2 denotes the symmetric square root of T−1. That is,

given a spectral decomposition OTΛTO′T of T, where OT is an orthogonal matrix of n × n and ΛT = diag(λ1, . . . , λn) with
λ1, . . . , λn > 0 being eigenvalues of T, we always set T−1/2 = OTΛ

−1/2
T O′T , which is the inverse matrix of T

1/2
= OTΛ

1/2
T O′T ,

where Λ1/2T = diag(λ
1/2
1 , . . . , λ

1/2
n ) and Λ−1/2T = diag(λ−1/21 , . . . , λ

−1/2
n ). The Kronecker delta is denoted by δa1a2 , that is,

δa1a2 = 1 iff a1 = a2, and 0 otherwise.

2. Preliminary results

Throughout this paper we set down the following assumptions:

(C1) The ui’s are independently distributed according to a common p-variate distribution of u = (u1, . . . , up)′ with mean
vector 0, positive definite covariance matrix Σ = (σjk) and vth order cumulant Cum(uj1 , . . . , ujv ) = κj1,...,jv (v ≥ 3).
Here and subsequently we use j, k, without or with suffixes, to denote indices, each such index running from 1 to p
unless explicitly stated otherwise.

(C2) (i) The bounded designmatrixX ofN×q satisfiesN−1X′X = Q+N−1Q1+o(N−1), whereQ is a positive definitematrix
of q× q and Q1 is a symmetric matrix of q× q (hence, there exists an integer N0 > q, such that the smallest eigenvalue
of N−1X′X is strictly positive for all N ≥ N0).
(ii) In addition to (i), writing

(X′X)−1/2X′ = [X(1), . . . ,X(N)
] = (X(i)

a ) (q× N matrix),
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Xa1...as = N
−1∑N

i=1X
(i)
a1 · · ·X

(i)
as (s ∈ N; a1, . . . , as ∈ {1, . . . , q}) has asymptotic representation N1/2Xa1 = wa1 +

o(N−1/2), N3/2Xa1a2a3 = wa1a2a3 + o(N
−1/2) and N2Xa1a2a3a4 = wa1a2a3a4 + o(1) (we have NXa1a2 ≡

∑N
i=1X

(i)
a1X

(i)
a2 =

δa1a2 exactly and observe that maxi=1,...,N N
1/2
|X

(i)
a | is uniformly bounded in N ≥ N0).

(C3) The class of distributions of u = (u1, . . . , up)′ is restricted to the distributions such that ũ = (u′, {vech(uu′ − Σ)}′)′
satisfies Cramér’s condition

lim sup
‖ξ‖→∞

|E[exp(iξ′ũ)]| < 1 (write i =
√
−1; ξ ∈ Rp+p(p+1)/2) (1)

with a finite 8th absolute moment E(‖u‖8) <∞.
(C4) The third order derivative ψ ′′′(x) of a nonnegative function ψ(x) is continuous in a neighborhood N of x = 0 (we

assume ψ(0) = 0 and ψ ′(0) = 1). Write ψ ′′ = ψ ′′(0).

Given an r × qmatrix B of rank r , the solution space VB of a homogeneous linear system BΘ = Or,p is a subspace of the
linear spaceRq×p of all q× pmatrices. We know dim(VB) = p(q− r) (see [30, p143]). In what follows, fixΘ0 ∈ VB. We are
now interested in deriving an asymptotic expansion of the nonnull distribution of Tψ when the regressionmatrix is given by

Θ = Θ0 + (X′X)−1/2Θε with (X′X)−1/2Θε 6∈ VB (2)

(we always assume thatΘε is a q× pmatrix, independent of N). In that case, we have

HY = {U′X(X′X)−1/2 +Θ′ε}Ṁ{U
′X(X′X)−1/2 +Θ′ε}

′
= H̃U (say),

where

Ṁ = (X′X)−1/2B′{B(X′X)−1B′}−1B(X′X)−1/2 (3)

(q × q idempotent matrix of rank r). Note that EY/(N − q) = Σ̂Y (say) is the unbiased estimator of the covariance matrix
Σ, where

Σ̂Y =
EY
N − q

=
1

N − q
{U′U− U′X(X′X)−1X′U} = Σ̂U

may be positive definite with probability one if N − q ≥ p (see [20]), provided that under the distribution of u1 ∈ Rp, every
flat of dimension p−1 has probability zero (such a non-asymptotic result can be replaced by a higher-order one [6, Theorem
17.11]). Using these expressions, Lawley–Hotelling’s trace TLH = tr(HY Σ̂

−1
Y ) is written as

TLH = [vec{U′X(X′X)−1/2 +Θ′ε}]
′(Ṁ⊗ Σ̂−1U )vec{U

′X(X′X)−1/2 +Θ′ε},

since tr(A′BCD′) = {vec(A)}′(D⊗ B)vec(C) (e.g. [30, p342]).

2.1. Asymptotic distribution

With

M = (Ma1a2) = lim
N→∞

Ṁ = Q−1/2B′(BQ−1B′)−1BQ−1/2

(q× q idempotent matrix of rank r), it is easy to see that the limiting nonnull distribution of Tψ is the same as that of

[vec{U′X(X′X)−1/2 +Θ′ε}]
′(M⊗ Σ−1)vec{U′X(X′X)−1/2 +Θ′ε},

which is asymptotically distributed as the noncentral chi-square distribution with f = pr degrees of freedom and
noncentrality parameter ω2 = {vec(Θ′ε)}

′(M ⊗ Σ−1)vec(Θ′ε). This is the large sample argument via Slutsky’s theorem

and the central limit theorem vec{U′X(X′X)−1/2} d
−→ Npq(0, Iq ⊗ Σ).

Remark 1. Define the p × q matrix ∆ = (∆ab) = Σ−1Θ′εM. Using the fact that M is idempotent, we have ω
2
=

tr(Σ−1Θ′εMΘε) = tr(Ω), whereΩ = ∆∆′Σ (p× pmatrix).

2.2. Asymptotic expansion

Our result in this paper is an asymptotic expansion for the nonnull distribution of Tψ . We require additional notation.
Writing

[X(1), . . . ,X(N)
]
′Ṁ[X(1), . . . ,X(N)

]

= X(X′X)−1B′{B(X′X)−1B′}−1B(X′X)−1X′ = Ψ̇ = (Ψ̇ii′)i,i′=1,...,N (say),
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we first define

Ȧ0 = N
N∑
i=1

Ψ̇ 2ii − r(r + 2)→
q∑

a1a2a3a4=1

wa1a2a3a4Ma1a2Ma3a4 − r(r + 2) = A0,

Ȧ1 = N
N∑

i1 i2=1

Ψ̇ 3i1 i2 →

q∑
a1a2a3a4a5a6=1

wa1a2a3wa4a5a6Ma1a4Ma2a5Ma3a5 = A1,

Ȧ2 = N
N∑

i1 i2=1

Ψ̇i1 i1 Ψ̇i1i2 Ψ̇i2 i2 →

q∑
a1a2a3a4a5a6=1

wa1a2a3wa4a5a6Ma1a2Ma3a4Ma5a6 = A2,

ȦĎ3 =
1
N

N∑
i1 i2=1

Ψ̇i1 i2 →

q∑
a1a2=1

wa1wa2Ma1a2 = A
Ď
3,

ȦĎ4 =
N∑

i1i2=1

Ψ̇i1 i2 Ψ̇i2 i2 →

q∑
aa1a2a3=1

wawa1a2a3Maa3Ma1a2 = A
Ď
4

as N →∞.
It was shown in Wakaki et al. [62] that the two-term asymptotic expansion for the null distribution of T = TLR, TLH , TBNP

depends on three summarized cumulants

K4 =

p∑
j1j2j3j4=1

κj1,j2,j3,j4σ
j1j2σ j3j4 , (4)

K33,1 =
p∑

j1j2j3j4j5j6=1

κj1,j2,j3κj4,j5,j6σ
j1j4σ j2j5σ j3j6 , (5)

K33,2 =
p∑

j1j2j3j4j5j6=1

κj1,j2,j3κj4,j5,j6σ
j1j2σ j3j4σ j5j6 (6)

(σ jk is the (j, k)th element of Σ−1), together with five quantities Ȧ0, Ȧ1, Ȧ2, Ȧ
Ď
3 and Ȧ

Ď
4. Unfortunately, we find that the

coefficients of a5 (= Ȧ
Ď
3/8) in [62, (2.1)] are incorrect. Anyway, under our conditions (C1)–(C4), the null distribution in

[62, (2.1)] should read as

Pr[{1− 2c1/(N − q)}Tψ ≤ x|H] = Gf (x)+
1
N

3∑
`=0

π
[0]
2,` Gf+2`(x)+

c1
N
f {Gf (x)− Gf+2(x)}

−
ψ ′′

4N
f (p+ r + 1){Gf+2(x)− Gf+4(x)} + o(N−1)

(we set c1 = (p− r + 1)/4, (p+ 1)/2,−r/2 according to Tψ = TLR, TLH , TBNP ), where

π
[0]
2,0 = −

f
4
(p− r + 1)+

A0
8
K4 +

(
−
A1
12
+
AĎ3
4
r

)
K33,1 +

(
−
A2
8
−
AĎ3
8
r2 +

AĎ4
4
r

)
K33,2,

π
[0]
2,1 = −

f
2
r −

A0
4
K4 +

(
A1
4
−
AĎ3
4
r −

AĎ4
2

)
K33,1 +

{
3A2
8
+
AĎ3
8
r(3r + 4)−

AĎ4
4
(3r + 2)

}
K33,2,

π
[0]
2,2 =

f
4
(p+ r + 1)+

A0
8
K4 +

{
−
A1
4
−
AĎ3
4
(r + 2)+ AĎ4

}
K33,1

+

{
−
3A2
8
−
AĎ3
8
(r + 2)(3r + 2)+

AĎ4
4
(3r + 4)

}
K33,2,

π
[0]
2,3 =

{
A1
12
+
AĎ3
4
(r + 2)−

AĎ4
2

}
K33,1 +

{
A2
8
+
AĎ3
8
(r + 2)2 −

AĎ4
4
(r + 2)

}
K33,2

and we denote by Gν(x) the distribution function of the central chi-square distribution with ν degrees of freedom.
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We next prepare the following seven homogeneous polynomials of degrees 1, 2, 3 and 4 inΘε ∈ Rq×p through ∆ (see
Remark 1):

K [a3]3 =

p∑
j1j2j3=1

κj1,j2,j3σ
j1j2∆j3a3 ,

K [a1a2a3]3 =

p∑
j1j2j3=1

κj1,j2,j3∆j1a1∆j2a2∆j3a3 ,

K [a3a4]4 =

p∑
j1j2j3j4=1

κj1,j2,j3,j4σ
j1j2∆j3a3∆j4a4 ,

K [a1a2a3a4]4 =

p∑
j1j2j3j4=1

κj1,j2,j3,j4∆j1a1∆j2a2∆j3a3∆j4a4 ,

K [a3a6]33,1 =

p∑
j1j2j3j4j5j6=1

κj1,j2,j3κj4,j5,j6σ
j1j4σ j2j5∆j3a3∆j6a6 ,

K [a5a6]33,2 =

p∑
j1j2j3j4j5j6=1

κj1,j2,j3κj4,j5,j6σ
j1j2σ j3j4∆j5a5∆j6a6 ,

K [a2a3a5a6]33 =

p∑
j1j2j3j4j5j6=1

κj1,j2,j3κj4,j5,j6σ
j1j4∆j2a2∆j3a3∆j5a5∆j6a6

for a1, . . . , a6 ∈ {1, . . . , q} (we can see that these quantities are obtained from (4)–(6) when at least one σ jj
′

is replaced by
∆ja∆j′a′ ).
Finally, the formula of limN→∞ N(Ṁ−M) is given as follows. Since (C2)(i) implies (N−1X′X)−1 = Q−1−N−1Q−1Q1Q−1+

o(N−1), there exists a symmetric q× qmatrix Q̃1, such that

(N−1X′X)−1/2 = Q−1/2 + N−1Q̃1 + o(N
−1).

Actually, Q̃1 must satisfy Q−1/2Q̃1 + Q̃1Q−1/2 = −Q−1Q1Q−1 (this matrix equation has a unique solution, which can be
written in terms of the spectral decomposition of Q). It then follows that

Ṁ = M+
1
N
(MQ−1/2Q1Q

−1/2M+ Q̃1Q
1/2M+MQ1/2Q̃1)+ o(N

−1)

= M+
1
N

M1 + o(N−1) (say). (7)

The following asymptotic expansion provides the foundation for comparing the local powers of tests for the linear
hypothesis H : BΘ = Or,p under general distributions.

Theorem 1. For any c1, c2, c3 ∈ R, let Bc(x) = x{1 − (2/N)
∑3
j=1 cjx

j−1
}. Suppose that ( C1)–( C4) hold. Under the local

alternative (2), Bc(Tψ ) admits an asymptotic expansion

Pr[Bc(Tψ ) ≤ x] = Gf (x;ω2)+
tr(Ω1)
2N
{Gf+2(x;ω2)− Gf (x;ω2)}

+

2∑
k=1

1
Nk/2

3k∑
`=0

πk,` Gf+2`(x;ω2)+
ψ ′′

4N

4∑
`=1

π` Gf+2`(x;ω2)

+
1
N

6∑
`=0

π c` Gf+2`(x;ω
2)+ o(N−1),

where Gν(x;ω2) denotes the distribution function of the noncentral chi-square distribution with ν degrees of freedom and
noncentrality parameter ω2 = tr(Ω),

π1 = −f (p+ r + 1), π2 = f (p+ r + 1)− 2(p+ r + 1)tr(Ω),
π3 = 2(p+ r + 1)tr(Ω)− tr(Ω2), π4 = tr(Ω2),
π c0 = fc1, π c1 = −fc1 + f (f + 2)c2 + c1ω

2,

π c2 = −f (f + 2)c2 + f (f + 2)(f + 4)c3 + {−c1 + 2(f + 2)c2}ω
2,
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π c3 = −f (f + 2)(f + 4)c3 + {−2(f + 2)c2 + 3(f + 2)(f + 4)c3}ω
2
+ c2ω4,

π c4 = −3(f + 2)(f + 4)c3ω
2
+ {−c2 + 3(f + 4)c3}ω4,

π c5 = −3(f + 4)c3ω
4
+ c3ω6, π c6 = −c3ω

6,

Ω1 = Σ
−1Θ′εM1Θε (p× p matrix)

(the pattern of π c` (` = 0, . . . , 6) is identical to the coefficients which appeared in [36,37,34]). Here, the coefficients πk,`’s,
independent of ψ , are the sums of homogeneous polynomials of degrees 0, 1, 2, 3, 4 and 6 inΘε; that is, π1,` = π

[1]
1,`+π

[3]
1,` (` =

0, 1, 2), π1,3 = π
[3]
1,3, π2,` = π

[0]
2,` + π

[2]
2,` + π

[4]
2,` + π

[6]
2,` (` = 0, 1, 2, 3), π2,4 = π

[2]
2,4 + π

[4]
2,4 + π

[6]
2,4, π2,5 = π

[4]
2,5 + π

[6]
2,5,

π2,6 = π
[6]
2,6 (the explicit expressions, except for π

[0]
2,`, where the details can be obtained from author on request, are not reported

here, to preserve space, since they are complicated and long formulae depending on K [a3]3 , . . . , K [a2a3a5a6]33 ; but it is remarkable
that they are sometimes simplified drastically as in Section 3.2).

Letting ϑ(ψ ′′) = (ϑ1, ϑ2(ψ ′′), ϑ3), where ϑ1 = −π
[0]
2,0/f ,

ϑ2(ψ
′′) = −

π
[0]
2,0 + π

[0]
2,1

f (f + 2)
+
(p+ r + 1)ψ ′′

4(f + 2)
, ϑ3 = −

π
[0]
2,0 + π

[0]
2,1 + π

[0]
2,2

f (f + 2)(f + 4)

(see [16]), we have Pr[Bϑ(ψ ′′)(Tψ ) ≤ x|H] = Gf (x) + o(N−1), which improves the large sample approximation Pr[Tψ ≤
x|H] = Gf (x)+ o(1).

Corollary 2 (Bartlett’s Type Adjustment). Under the local alternative (2),

Pr[Bϑ(ψ ′′)(Tψ ) ≤ x] =
2∑
k=0

1
Nk/2

3k∑
`=0

Pk,` Gf+2`(x;ω2)+ o(N−1),

where P0,0 = 1, P1,` = π
[1]
1,` + π

[3]
1,` (` = 0, 1, 2), P1,3 = π

[3]
1,3,

P2,0 =

[
π
[2]
2,0 −

tr(Ω1)
2

]
+ π

[4]
2,0 + π

[6]
2,0,

P2,1 =

[
π
[2]
2,1 + ϑ1tr(Ω)+

tr(Ω1)
2

]
+ π

[4]
2,1 + π

[6]
2,1,

P2,2 =
[
π
[2]
2,2 + {−ϑ1 + 2(f + 2)ϑ2(0)}tr(Ω)

]
+ π

[4]
2,2 + π

[6]
2,2,

P2,3 =
[
π
[2]
2,3 + {−2(f + 2)ϑ2(0)+ 3(f + 2)(f + 4)ϑ3}tr(Ω)

]
+

[
π
[4]
2,3 −

ψ ′′

4
tr(Ω2)+ ϑ2(ψ ′′){tr(Ω)}2

]
+ π

[6]
2,3,

P2,4 =
[
π
[2]
2,4 − 3(f + 2)(f + 4)ϑ3tr(Ω)

]
+

[
π
[4]
2,4 +

ψ ′′

4
tr(Ω2)+ {−ϑ2(ψ ′′)+ 3(f + 4)ϑ3}{tr(Ω)}2

]
+ π

[6]
2,4,

P2,5 =
[
π
[4]
2,5 − 3(f + 4)ϑ3{tr(Ω)}

2
]
+

[
π
[6]
2,5 + ϑ3{tr(Ω)}

3
]
,

P2,6 =
[
π
[6]
2,6 − ϑ3{tr(Ω)}

3
]
.

It is well known that for the chi-square type asymptotic expansion, making use of the Cornish–Fisher type expansion
CFϑ(ψ ′′)(χ2f ,α), where CFc(x) = x{1+(2/N)

∑3
j=1 cjx

j−1
}, yields the improvement Pr[Tψ ≤ CFϑ(ψ ′′)(χ2f ,α)|H] = 1−α+o(N

−1)

over the large sample approximation Pr[Tψ ≤ χ2f ,α|H] = 1 − α + o(1), where χ2f ,α is the upper α percentile of the
central chi-square distributionwith f degrees of freedom. Using the relations xgf (x;ω2) = fgf+2(x;ω2)+ω2gf+4(x;ω2) and
Gf (x;ω2) − Gf+2(x;ω2) = 2gf+2(x;ω2), where gν(x;ω2) is the probability density function of the noncentral chi-square
distribution with ν degrees of freedom and noncentrality parameter ω2, we have

Corollary 3 (Cornish–Fisher’s Type Adjustment). Under the local alternative (2),

Pr[Tψ ≤ CFϑ(ψ ′′)(χ2f ,α)] =
2∑
k=0

1
Nk/2

3k∑
`=0

Pk,` Gf+2`(χ2f ,α;ω
2)+ o(N−1).
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3. Implication of asymptotic expansion

3.1. Third-order local power comparison

Recall that ϑ(ψ ′′) linearly depends on summarized cumulants K4, K33,1, K33,2, given by (4)–(6). We take appropriate
location invariant estimators K̂4, K̂33,1, K̂33,2 and replaceϑ(ψ ′′) by ϑ̂(ψ ′′) = (ϑ̂1, ϑ̂2(ψ ′′), ϑ̂3). For example,we can construct
an estimator

K̂4 =
1
N

N∑
i=1

(̂u′iΣ̂
−1
Y ûi)2 − p(p+ 2),

K̂33,1 =
1
N2

N∑
ii′=1

(̂u′iΣ̂
−1
Y ûi′)3,

K̂33,2 =
1
N2

N∑
ii′=1

(̂u′iΣ̂
−1
Y ûi)(̂u′iΣ̂

−1
Y ûi′)(̂u′i′Σ̂

−1
Y ûi′)

based on the residual matrix [̂u1, . . . , ûN ] = Y′{IN − X(X′X)−1X′}. Some asymptotic properties of estimators for
K4, K33,1, K33,2 are found in Mardia [45] and McCullagh [46, p107–109]. Yanagihara [65] proposed a family of estimators
for Mardia’s multivariate kurtosis K4.

Corollary 4. Suppose that ( C1)–( C4) hold.
(i) If location invariant estimators K̂4, K̂33,1, K̂33,2 satisfy

(K̂4, K̂33,1, K̂33,2) = (K4, K33,1, K33,2)+ Op(N−τ ) (8)

for some τ ∈ (0, 1/2], we then have under the local alternative (2)

Pr[Bϑ̂(ψ ′′)(Tψ ) ≤ x] = Pr[Bϑ(ψ ′′)(Tψ ) ≤ x] + o(N
−1). (9)

(ii) If location invariant estimators K̂4, K̂33,1, K̂33,2 satisfy

Pr[|̂K4 − K4| + |̂K33,1 − K33,1| + |̂K33,2 − K33,2| ≥ ρN ] = o(N−1) (10)

for some sequence ρN → 0, we then have under the local alternative (2)

Pr[Tψ ≤ CFϑ̂(ψ ′′)(χ
2
f ,α)] = Pr[Tψ ≤ CFϑ(ψ ′′)(χ

2
f ,α)] + o(N

−1). (11)

Proof. As in Kakizawa and Iwashita [37], (8) or (10) supports Chibisov’s lemma [15] (see also [44]) to conclude (9) or (11).
�

Our higher-order result shows that the local power function of tests for the linear hypothesis H : BΘ = Or,p depends on
the factor

Dp,r(Ω) = tr(Ω2)−
p+ r + 1
pr + 2

{tr(Ω)}2 = p
{
σ 2λ −

(p− 1)(p+ 2)
pr + 2

λ
2
}
,

where λ =
∑p
i=1 λi/p and σλ = {

∑p
i=1(λi − λ)

2/p}1/2, with λ1 ≥ · · · ≥ λp ≥ 0 being eigenvalues of Ω (for p > r ,
λr+1 = · · · = λp = 0). Following Kakizawa and Iwashita [37] with r = q − 1, who considered the equality of q mean
vectors in the one-way MANOVA model, we have two equivalent procedures: One is the test procedure that if Bartlett’s
type adjusted criterion Bϑ̂(ψ ′′)(Tψ ) exceeds χ

2
f ,α , then we reject the null hypothesis H (we call Bψ test). The other is the test

based on Cornish–Fisher’s type expansion that if Tψ exceeds the size corrected critical value CFϑ̂(ψ ′′)(χ
2
f ,α), then we reject

the null hypothesis H (we call CFψ test). In this way, given two ψ-functions ψ1 and ψ2, the difference of the powers for ψ1
and ψ2 tests (more precisely, Bψj or CFψj tests (j = 1, 2)) under the local alternative (2) is given by

lim
N→∞

{
N
(
Pr[Bϑ̂(ψ ′′2 )(Tψ2) > χ2f ,α] − Pr[Bϑ̂(ψ ′′1 )(Tψ1) > χ2f ,α]

)}
= lim
N→∞

{
N
(
Pr[Tψ2 > CFϑ̂(ψ ′′2 )(χ

2
f ,α)] − Pr[Tψ1 > CFϑ̂(ψ ′′1 )(χ

2
f ,α)]

)}
=
ψ ′′2 − ψ

′′

1

2
Dp,r(Ω)gf+8(χ2f ,α;ω

2).

The conclusion stated in Anderson ([1], p336; he cited an unpublished working paper [57] and then made a power
comparison among TLR, TLH and TBNP ) for the normal case (see also [21,23]) can be extended even for the general distributions
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as follows: For the case min(p, r) > 1 (otherwise, Dp,r(Ω) ≡ 0), as long asψ ′′2 −ψ
′′

1 is positive,ψ2 test is superior (inferior)
to ψ1 test if σλ/λ is greater (less) than or equal to [(p − 1)(p + 2)/(pr + 2)]1/2 (when ψ ′′2 − ψ

′′

1 is negative, the ordering
of power is reversed). We emphasize that our analysis, including the one-way MANOVA model (see [37]), is done without
assumption of normality in themultivariate linear regressionmodel and even in the GMANOVAmodel (see Section 5 below).

3.2. Special case

In some cases, the design matrix X and the constraint r × q matrix B (of rank r ≤ q) in a given linear hypothesis
H : BΘ = Or,p may satisfy B(X′X)−1X′1N = 0, equivalently

(X′X)−1/2X′1N =
N∑
i=1

X(i)
∈ {h ∈ Rq : Ṁh = 0}, (12)

where 1N = (1, . . . , 1)′ ∈ RN . It is worthwhile to conclude that using (C2)(ii) and Ṁ → M, (12) implies Maa′wa′ = 0
for a = 1, . . . , q, hence, AĎ3 = A

Ď
4 = 0 (at the same time, Lemma 5 indicates that there are many other quantities in the

coefficients πk,`’s of Theorem 1, which also have the same property as (A
Ď
3, A

Ď
4)). Then,

π1,0 =
1
2
K ∗[1]3 −

1
6
K ∗[3]3 ≡ π

[1]
1,0 + π

[3]
1,0, π1,1 = −K

∗[1]
3 +

1
2
K ∗[3]3 ≡ π

[1]
1,1 + π

[3]
1,1,

π1,2 =
1
2
K ∗[1]3 −

1
2
K ∗[3]3 ≡ π

[1]
1,2 + π

[3]
1,2, π1,3 =

1
6
K ∗[3]3 ≡ π

[3]
1,3

and the resulting coefficients π [n]2,`’s are drastically simplified as follows:

π
[0]
2,0 = −

f
4
(p− r + 1)+

A0
8
K4 −

A1
12
K33,1 −

A2
8
K33,2,

π
[2]
2,0 =

r
4
K [2]4 −

1
4
K ∗[2]4 +

1
4
K ∗∗[2]33 +

1
8
(K ∗[1]3 )2,

π
[4]
2,0 =

1
24
K ∗[4]4 −

1
8
K ∗∗[4]33 −

1
12
K ∗[1]3 K ∗[3]3 , π

[6]
2,0 =

1
72
(K ∗[3]3 )2,

π
[0]
2,1 = −

f
2
r −

A0
4
K4 +

A1
4
K33,1 +

3A2
8
K33,2,

π
[2]
2,1 =

r
2
tr(Ω)−

1
4
(3r + 4)K [2]4 +

3
4
K ∗[2]4 − K ∗∗[2]33 −

1
2
(K ∗[1]3 )2,

π
[4]
2,1 =

1
4
K [4]4 −

1
6
K ∗[4]4 +

5
8
K ∗∗[4]33 +

5
12
K ∗[1]3 K ∗[3]3 , π

[6]
2,1 = −

1
12
(K ∗[3]3 )2,

π
[0]
2,2 =

f
4
(p+ r + 1)+

A0
8
K4 −

A1
4
K33,1 −

3A2
8
K33,2,

π
[2]
2,2 = −

1
2
(p+ 2r + 1)tr(Ω)+

3
4
(r + 2)K [2]4 −

3
4
K ∗[2]4 +

3
2
K ∗∗[2]33 +

3
4
(K ∗[1]3 )2,

π
[4]
2,2 =

1
4
tr(Ω2)−

5
8
K [4]4 +

1
4
K ∗[4]4 −

5
4
K ∗∗[4]33 −

5
6
K ∗[1]3 K ∗[3]3 , π

[6]
2,2 =

5
24
(K ∗[3]3 )2,

π
[0]
2,3 =

A1
12
K33,1 +

A2
8
K33,2,

π
[2]
2,3 =

1
2
(p+ r + 1)tr(Ω)−

1
4
(r + 2)K [2]4 +

1
4
K ∗[2]4 − K ∗∗[2]33 −

1
2
(K ∗[1]3 )2,

π
[4]
2,3 = −

1
2
tr(Ω2)+

1
2
K [4]4 −

1
6
K ∗[4]4 +

5
4
K ∗∗[4]33 +

5
6
K ∗[1]3 K ∗[3]3 , π

[6]
2,3 = −

5
18
(K ∗[3]3 )2,

π
[2]
2,4 =

1
4
K ∗∗[2]33 +

1
8
(K ∗[1]3 )2,

π
[4]
2,4 =

1
4
tr(Ω2)−

1
8
K [4]4 +

1
24
K ∗[4]4 −

5
8
K ∗∗[4]33 −

5
12
K ∗[1]3 K ∗[3]3 , π

[6]
2,4 =

5
24
(K ∗[3]3 )2,

π
[4]
2,5 =

1
8
K ∗∗[4]33 +

1
12
K ∗[1]3 K ∗[3]3 , π

[6]
2,5 = −

1
12
(K ∗[3]3 )2, π

[6]
2,6 =

1
72
(K ∗[3]3 )2,

where

K ∗[1]3 =

q∑
a1a2a3=1

wa1a2a3Ma1a2K
[a3]
3 , K ∗[3]3 =

q∑
a1a2a3=1

wa1a2a3K
[a1a2a3]
3 ,
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K [2]4 =
q∑
a=1

K [aa]4 , K [4]4 =
q∑

aa′=1

K [aaa
′a′]

4 ,

K ∗[2]4 =

q∑
a1a2a3a4=1

wa1a2a3a4Ma1a2K
[a3a4]
4 , K ∗[4]4 =

q∑
a1a2a3a4=1

wa1a2a3a4K
[a1a2a3a4]
4 ,

K ∗∗[2]33 =

q∑
a1a2a3a4a5a6=1

wa1a2a3wa4a5a6(Ma1a4Ma2a5K
[a3a6]
33,1 +Ma1a2Ma3a4K

[a5a6]
33,2 ),

K ∗∗[4]33 =

q∑
a1a2a3a4a5a6=1

wa1a2a3wa4a5a6Ma1a4K
[a2a3a5a6]
33

(we remark that the notation with the superscript ‘*’ or ‘**’ is a sum of a single or doublew-function;wa1a2a3 orwa1a2a3a4 or
wa1a2a3wa4a5a6 ).

Example 1. Given an integer q ≥ 2, consider a multivariate one-way classification model y(a)i = µ
(a)
+ u(a)i (a = 1, . . . , q;

i = 1, . . . ,Na). This model can be written as the form Y = XΘ+ UwithΘ′ = [µ(1), . . . ,µ(q)] (p× qmatrix), in which the
design matrix is given by

X =


1N1

1N2
. . .

1Nq


(
write N =

q∑
a=1

Na

)
.

As in Kakizawa and Iwashita [37], we assume that (Na/N)1/2 = ρ̇a (a = 1, . . . , q) have the form ρ̇2a = ρ
2
a + N

−1τa, with
(ρ1, . . . , ρq)

′ and (τ1, . . . , τq)′ being, respectively, a vector of positive real numbers and a vector of integers, independent
of N , satisfying ρ21 + · · · + ρ

2
q = 1 and τ1 + · · · + τq = 0 (of course, Na = Nρ

2
a + τa ∈ N). It is easy to see that (C2) holds,

since we have N−1X′X = diag(ρ̇21 , . . . , ρ̇
2
q ) and for any s ∈ N, N s/2Xa1...as = ρ̇

−(s−2)
a if a1 = · · · = as = a ∈ {1, . . . , q} and

0 otherwise. Then, (12) holds whenever the r × qmatrix B of rank r ≤ q satisfies B1q = 0 (use (X′X)−1X′1N = 1q for the
one-way classificationmodel). Such a typical example is given by B = [Iq−1,−1q−1] ((q−1)×qmatrix), which corresponds
to the problem of testing µ(1) = · · · = µ(q).

Example 2. In the usual multiple regression model, the first column of the design N × q matrix X of rank q is assumed to
be 1N , that is, X = [1N ,X(−1)]. In this case, since (X′X)−1X′1N = (1, 0, . . . , 0)′ ∈ Rq, (12) holds whenever the r × qmatrix
B of rank r has the form B = [0r , B(−1)] for some r ∈ {1, . . . , q− 1}.

4. Derivation of asymptotic expansion of Theorem 1

4.1. Differential operator approach for characteristic function

The differential operator approach under normality was first used byWelch [63] and James [31], whomade an important
contribution to the derivation of asymptotic expansions in multivariate statistical analysis under normality, in such a
way that the independence of the standardized sample mean vectors (independent normal distributions) and the sample
covariance matrices (independent Wishart distributions) enables us to use the conditional approach and then evaluate the
expectation of a function of the Wishart distribution via Welch-James’s technique (see e.g. [58]). In the normal GMANOVA
model descrived later, Fujikoshi [22] used the canonical reduction method due to Gleser and Olkin [28] and then apply
Welch-James’s technique on the basis of the conditional set-up, which is slightly different from Gleser and Olkin [28].
As pointed out in Fujikoshi [26] for multivariate test statistics, it is crucial to find a convenient device (especially under

nonnormality) for giving an asymptotic expansion of the characteristic function according to situations under consideration.
Unlike Kano [39], Fujikoshi [24–26], Wakaki et al. [62] and Yanagihara [64], this subsection is devoted to extension of the
differential operator approach developed by Kakizawa and Iwashita [36,37] to the multivariate linear regression model.
Now, recall that (3) is idempotent of rank r , having spectral decomposition

Ṁ = V̇diag(1, . . . , 1︸ ︷︷ ︸
r times

, 0, . . . , 0)V̇′ = V̇(1:r)(V̇(1:r))′, (13)

where V̇(1:r) = [v̇(1), . . . , v̇(r)], with V̇ = [v̇(1), . . . , v̇(q)] being orthogonal matrix of q× q (for any matrix A, A(1:r) is a matrix
which consists of the first r columns of A; we shall sometimes use the notation a(1:r) = [a(1), . . . , a(r)] for simplicity).
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A technical observation perhaps worth emphasizing here is that the following lemma is concerned with the expectation
of a certain analytic function of

z(1:r)U = [z(1)U , . . . , z
(r)
U ] = U′X(X′X)−1/2V̇(1:r) and Σ̂U ,

which is applicable even in the GMANOVA model (Part II) of this paper.

Lemma 5. Let γ (b) = (γ (b)j ) (b = 1, . . . , r) be p×1 vectors of variables and Γ = (γjk) be a p×p symmetric matrix of variables.
Let h(γ (1:r),Γ ) be an arbitrary multivariate polynomial of finite degree with coefficients in R, which may depend on N but are of
order O(1). Define vectors of differential operators by

∂(b) = (∂
(b)
j ) =

(
∂

∂γ
(b)
j

)
(b = 1, . . . , r)

and a matrix of differential operators by

∂ = (∂jk) =

(
1
2
(1+ δjk)

∂

∂γjk

)
applied to the function exp{ih(γ (1:r),Γ )}, where i =

√
−1. In addition to ( C1) and ( C2), if E(‖u‖4) <∞, then

E exp{ih(z(1:r)U , Σ̂U)} = Ξ exp{ih(γ (1:r),Γ )}|γ (1:r)=Op,r ,Γ=Σ + o(N
−1),

where

Ξ = Ξ0

[
1+

Ξ1

N1/2
+
1
N

{
tr(Σ∂Σ∂)+ Ξ2 +

Ξ 21

2

}]
is the differential operator with

Ξ0 = exp

(
1
2

r∑
b=1

∂(b)
′
Σ∂(b)

)
,

Ξ1 =

p∑
j1j2j3=1

κj1,j2,j3

(
r∑

b1=1

w(b1)∂
(b1)
j1
∂j2j3 +

1
6

r∑
b1b2b3=1

w(b1b2b3)∂
(b1)
j1
∂
(b2)
j2
∂
(b3)
j3

)
,

Ξ2 =

p∑
j1j2j3j4=1

κj1,j2,j3,j4
1
2

(
∂j1j2∂j3j4 +

r∑
b=1

∂
(b)
j1
∂
(b)
j2
∂j3j4 +

1
12

r∑
b1b2b3b4=1

w(b1b2b3b4)∂
(b1)
j1
∂
(b2)
j2
∂
(b3)
j3
∂
(b4)
j4

)
and

w(b1...bs) =

q∑
a1...as=1

wa1...asv
(b1)
a1 · · · v

(bs)
as

for s = 1, 3, 4 (we denote by v(b)a the ath element of v(b), given in Lemma A.1).
Especially, if the design matrix X satisfies (12), thenw(b) = 0 for b = 1, . . . , r, henceΞ1 simplifies

Ξ1 =
1
6

p∑
j1j2j3=1

κj1,j2,j3

r∑
b1b2b3=1

w(b1b2b3)∂
(b1)
j1
∂
(b2)
j2
∂
(b3)
j3
,

as illustrated in the top of Section 3.2 (see also [37, Remark 4]).

Proof. Let v̇(b)a be the (a, b)th element of V̇ (q× q orthogonal matrix), which satisfies
q∑
a=1

v̇(b1)a v̇(b2)a = δb1b2 . (14)

We know from Lemma A.1

v̇(b)a = v
(b)
a + O(N

−1). (15)

With u(1:q)x = [u(1)x , . . . ,u
(q)
x ] = U′X(X′X)−1/2 (p× qmatrix), we have

u(a)x =
1
N1/2

N∑
i=1

ui(N1/2X(i)
a )
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and

Σ̂U − Σ =
N
N − q

{
1
N

N∑
i=1

(uiu′i − Σ)

}
−

1
N − q

q∑
a=1

(u(a)x u(a)x
′
− Σ).

Also, z(b)U =
∑q
a=1 v̇

(b)
a u(a)x (b = 1, . . . , r). In line with Kakizawa and Iwashita [36], we obtain

E exp{ih(z(1:r)U , Σ̂U)} = E exp{ih(z
(1:r)
UĎ , Σ̂UĎ)} + o(N

−1),

where

uĎ
i =

{
ui, ‖ui‖ ≤ N1/2

0, ‖ui‖ > N1/2
(i = 1, . . . ,N)

are truncated random vectors. Since

exp{ih(z(1:r)UĎ , Σ̂UĎ)} = exp

[
r∑
b=1

z(b)UĎ
′

∂(b) + tr{(Σ̂UĎ − Σ)∂}

]
exp{ih(γ (1:r),Γ )}|γ (1:r)=Op,r ,Γ=Σ ,

we obtain

E exp{ih(z(1:r)UĎ , Σ̂UĎ)} = Ξ(∂
(1:r), ∂) exp{ih(γ (1:r),Γ )}|γ (1:r)=Op,r ,Γ=Σ

(due to the truncation, the removal of the evaluation at γ (1:r) = Op,r and Γ = Σ to the outside of the expectation regarding
the vectors ∂(b)’s and the matrix ∂ as constants is guaranteed), where

Ξ(∂(1:r), ∂) = E exp

[
r∑
b=1

z(b)UĎ
′

∂(b) + tr{(Σ̂UĎ − Σ)∂}

]

= E exp

[
q∑
a=1

uĎ(a)
x
′
∂[a] +

1
N

N∑
i=1

tr
{
(uĎ
i u

Ď
i
′

− Σ)
∂

1− q/N

}
−

q∑
a=1

tr
{
(uĎ(a)
x uĎ(a)

x
′
− Σ)

∂

N − q

}]

with ∂[a] = (∂ [a]j ) =
∑r
b=1 v̇

(b)
a ∂

(b) (a = 1, . . . , q). Now, let us consider

M(t[1:q], T) = E exp

[
q∑
a=1

uĎ(a)
x
′t[a] +

1
N

N∑
i=1

tr
{
(uĎ
i u

Ď
i
′

− Σ)
T

1− q/N

}]

=

N∏
i=1

E exp

[
uĎ
i
′

N1/2

q∑
a=1

(N1/2X(i)
a )t
[a]
+
1
N
tr
{
(uĎ
i u

Ď
i
′

− Σ)
T

1− q/N

}]
,

where t[1:q] = [t[1], . . . , t[q]]. Then, we have

Ξ(∂(1:r), ∂) = exp

[
−

q∑
a=1

tr
{(

∂2

∂t[a]∂t[a]′
− Σ

)
T

N − q

}]
M(t[1:q], T)|t[1:q]=∂[1:q],T=∂ , (16)

where we take the expectation regarding the vectors ∂[a]’s and the matrix ∂ as constants t[a] = (t [a]j )’s and T = (Tjk) =
((1/2)(1 + δjk)tjk), with tjk = tkj, and interchange the order of differentiation and integration (this is also allowable due to
the truncation).
In order to obtain the expansion of (16), we define

G(t, T) = log E exp
[
uĎ′ t
N1/2
+ tr

{
(uĎuĎ′

− Σ)
T
N

}]
.

Now, for each t and T, NG(t, T) can be arranged according to powers of N−1/2 by using the joint cumulants of uĎ′t and
tr{(uĎuĎ′

− Σ)T} (see [36]). Letting

t(i) = (t(i)j ) =
q∑
a=1

(N1/2X(i)
a )t
[a],

we have N−1
∑N
i=1 t

(i)
j1
· · · t(i)js =

∑q
a1...as=1

N s/2Xa1...as t
[a1]
j1
· · · t [as]js (s ∈ N). Recalling (C2)(ii) and using Lemmas 4 and 5 of

Kakizawa and Iwashita [36], it is straightforward to see that
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logM(t[1:q], T) =
N∑
i=1

G
(
t(i),

T
1− q/N

)

=
1
2

q∑
a=1

t[a]′Σt[a] +
1
N1/2

p∑
j1j2j3=1

κj1,j2,j3

(
q∑

a1=1

wa1 t
[a1]
j1
Tj2j3 +

1
6

q∑
a1a2a3=1

wa1a2a3 t
[a1]
j1
t [a2]j2
t [a3]j3

)

+
1
N

[
p∑

j1j2j3j4=1

κj1,j2,j3,j4
1
2

(
Tj1j2Tj3j4 +

q∑
a=1

t [a]j1 t
[a]
j2
Tj3j4 +

1
12

q∑
a1a2a3a4=1

wa1a2a3a4 t
[a1]
j1
t [a2]j2
t [a3]j3
t [a4]j4

)

+ tr(ΣTΣT)+
q∑
a=1

t[a]′ΣTΣt[a]
]
+ o(N−1).

The differential operatorΞ follows from (16), together with (14) and (15). �

4.2. Outline of proof of Theorem 1

We notice that with z(1:q)U = [z(1)U , . . . , z
(q)
U ] = U′X(X′X)−1/2V̇,

N1/2vec(Σ−1/2z(1:q)U ) =

N∑
i=1

vec{Σ−1/2ui(N1/2X(i)′V̇)}

=

N∑
i=1

{V̇(N1/2X(i))⊗ Σ−1/2}ui

and

Σ̂U − Σ =
N
N − q

{
1
N

N∑
i=1

(uiu′i − Σ)

}
−

1
N − q

q∑
a=1

(z(a)U z(a)U
′

− Σ).

If the smallest eigenvalue of the averaged covariance matrix CovxN ≡ N
−1∑N

i=1 Cov(̃u
x
i ) of the sum of the independent

random vectors

ũxi =
(
{V̇(N1/2X(i))⊗ Σ−1/2}ui

vech(uiu′i − Σ)

)
(i = 1, . . . ,N)

is bounded away from zero, we can apply Bhattacharya and Rao’s [6, Theorem 20.6] theory (their conditions can be verified
in line with [54,62]), provided that (C1)–(C3) hold. Then, by following the usual BG transformation argument (e.g. [5,10,
4]), several smooth functions of N−1

∑N
i=1 ũ

x
i admit valid Edgeworth expansions up to order N

−1 by means of appropriate
transformations of a valid Edgeworth expansion of the distribution of N−1/2

∑N
i=1 ũ

x
i . To complete the proof of Theorem 1,

we need to (i) derive the stochastic expansion of Bc(Tψ ) ≈ tr(s
(1:r)
ψ,c,E s

(1:r)
ψ,c,E

′

), where

s(1:r)ψ,c,E = s(1:r)E +
ψ ′′

4N
(s(1:r)E s(1:r)E

′

)s(1:r)E −
1
N

[
3∑
j=1

cj{tr(s
(1:r)
E s(1:r)E

′

)}j−1

]
s(1:r)E

with

s(1:r)E = [s(1)E , . . . , s
(r)
E ] =

(
Ip −

1
2
∆̃U +

3
8
∆̃
2
U

)
Σ−1/2(z(1:r)U + δ̇

(1:r)
E ),

∆̃U = Σ
−1/2(Σ̂U − Σ)Σ

−1/2 and δ̇
(1:q)
E = [δ̇

(1)
E , . . . , δ̇

(q)
E ] = Θ

′

εV̇,

(ii) check Chibisov’s lemma (see [15]) and (iii) evaluate the asymptotic expansion for the characteristic function of
tr(s(1:r)ψ,c,E s

(1:r)
ψ,c,E

′

) via the differential operator given in Lemma 5 (the details are omitted, since these steps can be carried
out similarly as in [37] for the one-way MANOVA model with r = q− 1).
Now, it is easy to see that Cramér’s condition (1) in (C3) implies the covariance matrix of ũ = (u′, {vech(uu′ − Σ)}′)′;

Cov(̃u) =
(
Σ Σ12
Σ21 Σ22

)
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is positive definite. So, with L11,i = V̇(N1/2X(i))⊗ Σ−1/2, we have

CovxN =
1
N

N∑
i=1

(
L11,iΣL′11,i L11,iΣ12
Σ21L′11,i Σ22

)

=

N∑
i=1

(
V̇X(i)X(i)′V̇′ ⊗ Ip N−1/2V̇X(i)

⊗ Σ−1/2Σ12

N−1/2X(i)′V̇′ ⊗ Σ21Σ−1/2 N−1Σ22

)
=

(
Iq ⊗ Ip symmetric

N−1/21′NX(X
′X)−1/2V̇′ ⊗ Σ21Σ−1/2 Σ22

)
,

whose Schur complement ofΣ22 (see [30, p100]) is equal to

Σ22 − N−11′NX(X
′X)−1X′1NΣ21Σ−1Σ12

= Σ22 − Σ21Σ
−1Σ12 + N−11′N{IN − X(X′X)−1X′}1NΣ21Σ−1Σ12.

Hence, the smallest eigenvalue of CovxN is bounded away from zero.

5. Extension to GMANOVA model

5.1. Introduction

We suppose that an N × p matrix Y consists of N independent observations y1, . . . , yN on p variables, where Y′ =
[y1, . . . , yN ]. The GMANOVA model (there are other names such as Generalized Multivariate Analysis of Variance model,
Generalized MANOVA model, generalized linear model, Growth Curve Model (GCM) and Potthoff and Roy model [53]) is
defined by

Y = XΞA+ U,

where X is an N × q non-random between-individuals design matrix of rank q (< N), A is an m × p non-random within-
individuals designmatrix of rankm (≤ p),Ξ is a q×m unknown parameter matrix, and U is an N×p unobservable random
matrix with U′ = [u1, . . . ,uN ]. It is assumed that each p × 1 vector ui is independently and identically distributed with
mean vector 0 and unknown positive definite covariance matrixΣ.
Gleser and Olkin [28] used the canonical reduction method (there are many other derivations; we also refer to [60], [43,

subsection 4.1.2]) to obtain the maximum likelihood (ML) estimator of Ξ and Σ in the normal GMANOVA model (that is,
u1, . . . ,uN are independent p-variate normals), given by

Ξ̂Y ,ML = (X′X)−1X′YE−1Y A′(AE−1Y A′)−1,

Σ̂Y ,ML =
1
N
(Y− XΞ̂Y ,MLA)′(Y− XΞ̂Y ,MLA) =

1
N
(EY + E1Y )

with

E1Y = {Ip − E−1Y A′(AE−1Y A′)−1A}′Y′X(X′X)−1X′Y{Ip − E−1Y A′(AE−1Y A′)−1A}.

For testing a general linear hypothesis H : BΞC = D, where B is an r × q knownmatrix of rank r (≤ q), C is anm× s known
matrix of rank s (≤ m) and D is an r × s known matrix, let H◦Y , E

◦

Y and H
•

Y be s× smatrices defined by

H◦Y = (BΞ̂Y ,MLC− D)′(BRYB′)−1(BΞ̂Y ,MLC− D),

E◦Y = C′(AE−1Y A′)−1C,

H•Y = (BΞ̂Y ,MLC− D)′{B(X′X)−1B′}−1(BΞ̂Y ,MLC− D),

respectively, where

RY = (X′X)−1 + (X′X)−1X′Y{E−1Y − E−1Y A′(AE−1Y A′)−1AE−1Y }Y
′X(X′X)−1.

Then, the following four criteria have been used under normality (e.g. [41,28,42]):
(i) Likelihood ratio (LR) T ◦LR = −(N − q) log |E

◦

Y |/|E
◦

Y + H◦Y |,
(ii) Lawley–Hotelling’s trace (T 20 ) T

◦

LH = (N − q)tr[H
◦

Y (E
◦

Y )
−1
],

(iii) Bartlett–Nanda–Pillai’s trace T ◦BNP = (N − q)tr[H
◦

Y (E
◦

Y + H◦Y )
−1
], and

(iv) Kleinbaum’s Wald statistic T •W = (N − q)tr[H•Y (E
◦

Y )
−1
] (it is worth noting that using the identity

C′{A(NΣ̂Y ,ML)−1A′}−1C = E◦Y , his statistic T
•

W is proportional to the (original)Wald statisticW = tr[H
•

Y {C
′(AΣ̂−1Y ,MLA

′)−1C}−1]
in the normal GMANOVA model, based on the unrestricted maximum likelihood estimator Ξ̂Y ,ML and Σ̂Y ,ML, that is,
T •W = (1− q/N)W ).
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Given an r × qmatrix B of rank r and anm× smatrix C of rank s, the solution space VB,C of a linear system BΞC = Or,s
is a subspace of the linear space Rq×m of all q × m matrices. In what follows, let Ξ0 = B−DC− be any particular solution
to a system BΞC = D in Ξ (e.g. [30, p157]). We are now interested in studying the nonnull distribution of the above test
statistics when the parameter matrix is given by

Ξ = Ξ0 + (X′X)−1/2Ξε with (X′X)−1/2Ξε 6∈ VB,C (17)

(we always assume that Ξε is a q × m matrix, independent of N). In that case, it is easy to see that E◦Y/(N − q) =
C′(AΣ̂−1U A′)−1C,

R(d)Y ≡ (X
′X)−1 + d(X′X)−1X′Y{E−1Y − E−1Y A′(AE−1Y A′)−1AE−1Y }Y

′X(X′X)−1

= (X′X)−1 +
d

N − q
(X′X)−1X′U{Σ̂−1U − Σ̂

−1
U A′(AΣ̂−1U A′)−1AΣ̂−1U }U

′X(X′X)−1

= R̃(d)U (say)

for a nonnegative constant d, and

BΞ̂Y ,MLC− D = B(X′X)−1/2{(X′X)−1/2X′U+ ΞεA}Σ̂
−1
U A′(AΣ̂−1U A′)−1C.

Then, Lawley–Hotelling’s trace and Kleinbaum’s Wald statistic are written as

T ◦LH = tr

[
HY
(

E◦Y
N − q

)−1]
= [vec{U′X(X′X)−1/2 + (Θ◦ε)

′
}]
′(M̈U ⊗ QΣ̂U )vec{U′X(X′X)−1/2 + (Θ◦ε)

′
},

T •W = tr

[
H•Y

(
E◦Y
N − q

)−1]
= [vec{U′X(X′X)−1/2 + (Θ◦ε)

′
}]
′(Ṁ⊗ QΣ̂U )vec{U′X(X′X)−1/2 + (Θ◦ε)

′
},

where we define

Θ◦ε = ΞεA (q× pmatrix), M̈U = (X′X)−1/2B′(B̃R
(1)
U B′)−1B(X′X)−1/2,

QΣ = Σ−1A′(AΣ−1A′)−1C{C′(AΣ−1A′)−1C}−1C′(AΣ−1A′)−1AΣ−1.
It is easy to see that the limiting nonnull distribution of generalized test statistic

T ◦ψ = (N − q)
s∑
j=1

ψ(λ◦Y ,j) or T
•

ψ = (N − q)
s∑
j=1

ψ(λ•Y ,j)

(λ◦Y ,1, . . . , λ
◦

Y ,s ≥ 0 are eigenvalues of H
◦

Y (E
◦

Y )
−1 and λ•Y ,1, . . . , λ

•

Y ,s ≥ 0 are eigenvalues of H
•

Y (E
◦

Y )
−1) is the same as that of

[vec{U′X(X′X)−1/2 + (Θ◦ε)
′
}]
′(M⊗ QΣ )vec{U′X(X′X)−1/2 + (Θ◦ε)

′
},

which is asymptotically distributed as the noncentral chi-square distribution with f◦ = rs degrees of freedom and noncen-
trality parameter ω2

◦
= [vec{(Θ◦ε)

′
}]
′(M⊗ QΣ )vec{(Θ◦ε)

′
}, by noting that QΣ satisfies QΣΣQΣ = QΣ and tr(QΣΣ) = s.

Remark 2. Define the p × q matrix ∆◦ = (∆◦ab) = QΣ (Θ◦ε)
′M. Then, using the fact that M is idempotent and noting

QΣΣQΣ = QΣ , we have ω2
◦
= tr{QΣ (Θ◦ε)

′MΘ◦ε} = tr(Ω◦), whereΩ◦ = ∆
◦(∆◦)′Σ (p× pmatrix).

It is of interest to compare these tests by means of higher-order expansion. To avoid two separate analyses according to
T = T ◦ψ or T = T

•

ψ , we will introduce a class of tests

T(ψ,d) = (N − q)
s∑
j=1

ψ(λ
(d)
Y ,j),

where λ(d)Y ,1, . . . , λ
(d)
Y ,s ≥ 0 are eigenvalues of H

(d)
Y (E

◦

Y )
−1, with

H(d)Y = (BΞ̂Y ,MLC− D)′(BR(d)Y B′)−1(BΞ̂Y ,MLC− D)
for a nonnegative constant d (obviously, we have T(ψ,1) = T ◦ψ and T(ψ,0) = T

•

ψ ).

5.2. Asymptotic expansion in a nonnormal GMANOVA model

An asymptotic expansion for the nonnull distribution of T ◦ = T ◦LR, T
◦

LH , T
◦

BNP was first studied by Fujikoshi [22] under
normality (we refer to [38] for the null distribution of T •W ). Under nonnormality, Yanagihara [64,66] gave an asymptotic



Y. Kakizawa / Journal of Multivariate Analysis 100 (2009) 473–496 487

expansion for the null distribution of T ◦ = T ◦LR, T
◦

LH , T
◦

BNP , by following Wakaki et al. [62]. Writing

PΣ = Σ−1 − Σ−1A′(AΣ−1A′)−1AΣ−1

(we note PΣ = Op,p whenever A is nonsingular), his null result was described in terms of

KQQ4 =
p∑

j1j2j3j4=1

κj1,j2,j3,j4Q
Σ
j1j2Q

Σ
j3j4 ,

KQQQ33,J = K33,J(Q
Σ ,QΣ ,QΣ ) (J = 1, 2),

KQQP33,J = K33,J(Q
Σ ,QΣ , PΣ ) (J = 1, 2), KQPQ33,2 = K33,2(Q

Σ , PΣ ,QΣ ), (18)

K PQP33,2 = K33,2(P
Σ ,QΣ , PΣ ), KQPP33,J = K33,J(Q

Σ , PΣ , PΣ ) (J = 1, 2),

where we introduce the notation

K33,1(P(1), P(2), P(3)) =
p∑

j1j2j3j4j5j6=1

κj1,j2,j3κj4,j5,j6P
(1)
j1j4
P (2)j2j5P

(3)
j3j6
,

K33,2(P(1), P(2), P(3)) =
p∑

j1j2j3j4j5j6=1

κj1,j2,j3κj4,j5,j6P
(1)
j1j2
P (2)j3j4P

(3)
j5j6

for any p × p symmetric matrix P(i) = (P (i)j1j2) (i = 1, 2, 3). Our contribution is to obtain an asymptotic expansion for
the nonnull distribution of T(ψ,d) up to order N−1 and then study the local power properties of tests after Bartlett’s type
adjustment or Cornish–Fisher’s type size adjustment.
Recall that s× smatrices H(d)Y and E

◦

Y are functions of U
′X(X′X)−1/2 and Σ̂U . As in Section 4.2, our routine is to (i) derive

the stochastic expansion Bc(T(ψ,d)) ≈ tr{(s
(1:r)
(ψ,d),c,E◦)

′Q̃Σs(1:r)(ψ,d),c,E◦} as a functional of z
(1:r)
U and Σ̂U , (ii) check Chibisov’s

lemma and (iii) evaluate the asymptotic expansion for the characteristic function of (i) as an application of the differential
operator of Lemma 5 (for the GMANOVA case, Lemmas A.2 and A.3 in Appendix A.2 provide basic tools for several patterned
derivatives), where

s(1:r)(ψ,d),c,E◦ =

[
Ip − ∆̃U

(
P̃Σ +

1
2
Q̃Σ
)
+

{
∆̃U

(
P̃Σ +

1
2
Q̃Σ
)}2
+
1
8
(∆̃U Q̃

Σ
)2

−
d
2N

(Σ−1/2z(1:r)U,Ė◦)(Σ
−1/2z(1:r)U,Ė◦)

′̃PΣ +
ψ ′′

4N
(Σ−1/2z(1:r)U,Ė◦)(Σ

−1/2z(1:r)U,Ė◦)
′Q̃Σ

−
1
N

3∑
j=1

cj[tr{(Σ−1/2z
(1:r)
U,Ė◦)

′Q̃Σ (Σ−1/2z(1:r)U,Ė◦)}]
j−1Ip

]
(Σ−1/2z(1:r)U,Ė◦),

with P̃Σ = Σ1/2PΣΣ1/2, Q̃Σ = Σ1/2QΣΣ1/2 and z(1:r)U,Ė◦ = z(1:r)U + δ̇
◦(1:r)
E (we now set δ̇

◦(1:q)
E = [δ̇

◦(1)
E , . . . , δ̇

◦(q)
E ] = (Θ

◦

ε)
′V̇ as

compared with the notation in Section 4.2).
We are now in a position to state one of the main results of Part II: Suppose that (C1)–(C4) hold. Then, the distribution

function of Bc(T(ψ,d)) under the local alternative (17) admits an asymptotic expansion

Pr[Bc(T(ψ,d)) ≤ x] = Gf◦(x;ω
2
◦
)+
tr(Ω◦1)
2N

{Gf◦+2(x;ω
2
◦
)− Gf◦(x;ω

2
◦
)}

+

2∑
k=1

1
Nk/2

3k∑
`=0

π◦k,` Gf◦+2`(x;ω
2
◦
)+

ψ ′′

4N

4∑
`=1

π◦` Gf◦+2`(x;ω
2
◦
)

+
d
2N

2∑
`=0

π̃◦` Gf◦+2`(x;ω
2
◦
)+

1
N

6∑
`=0

π◦c` Gf◦+2`(x;ω
2
◦
)+ o(N−1), (19)

where

π◦1 = −f◦(s+ r + 1), π◦2 = f◦(s+ r + 1)− 2(s+ r + 1)tr(Ω◦),

π◦3 = 2(s+ r + 1)tr(Ω◦)− tr(Ω
2
◦
), π◦4 = tr(Ω

2
◦
),

π̃◦0 = f◦(p−m), π̃◦1 = −f◦(p−m)+ (p−m)tr(Ω◦), π̃◦2 = −(p−m)tr(Ω◦),

π◦c0 = f◦c1, π◦c1 = −f◦c1 + f◦(f◦ + 2)c2 + c1ω
2
◦
,

π◦c2 = −f◦(f◦ + 2)c2 + f◦(f◦ + 2)(f◦ + 4)c3 + {−c1 + 2(f◦ + 2)c2}ω
2
◦
,
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π◦c3 = −f◦(f◦ + 2)(f◦ + 4)c3 + {−2(f◦ + 2)c2 + 3(f◦ + 2)(f◦ + 4)c3}ω
2
◦
+ c2ω4◦,

π◦c4 = −3(f◦ + 2)(f◦ + 4)c3ω
2
◦
+ {−c2 + 3(f◦ + 4)c3}ω4◦,

π◦c5 = −3(f◦ + 4)c3ω
4
◦
+ c3ω6◦, π◦c6 = −c3ω

6
◦
,

Ω◦1 = QΣ (Θ◦ε)
′M1Θ◦ε (p× pmatrix).

Here, as in the case of Theorem 1, the coefficients π◦k,`’s, independent of ψ, d, are the sums of homogeneous polynomials
of degrees 0, 1, 2, 3, 4 and 6 in Ξε (the explicit expressions are omitted to preserve space, but the details can be obtained
from the author on request), depending on (18) and

KQ[a3]
◦3 = K [a3]

◦3 (Q
Σ ), K P[a3]

◦3 = K [a3]
◦3 (P

Σ ),

K [a1a2a3]
◦3 =

p∑
j1j2j3=1

κj1,j2,j3∆
◦

j1a1∆
◦

j2a2∆
◦

j3a3 ,

KQ[a3a4]
◦4 = K [a3a4]

◦4 (QΣ ), K P[a3a4]
◦4 = K [a3a4]

◦4 (PΣ ),

K [a1a2a3a4]
◦4 =

p∑
j1j2j3j4=1

κj1,j2,j3,j4∆
◦

j1a1∆
◦

j2a2∆
◦

j3a3∆
◦

j4a4 ,

KQQ[a3a6]
◦33,1 = K [a3a6]

◦33,1 (Q
Σ ,QΣ ), K PP[a3a6]

◦33,1 = K [a3a6]
◦33,1 (P

Σ , PΣ ),

KQQ[a5a6]
◦33,2 = K [a5a6]

◦33,2 (Q
Σ ,QΣ ), K PP[a5a6]

◦33,2 = K [a5a6]
◦33,2 (P

Σ , PΣ ),

KQ[a2a3a5a6]
◦33 = K [a2a3a5a6]

◦33 (QΣ ), K P[a2a3a5a6]
◦33 = K [a2a3a5a6]

◦33 (PΣ ),

KQP[a3a6]
◦33,1 = K [a3a6]

◦33,1 (Q
Σ , PΣ ),

KQP[a5a6]
◦33,2 = K [a5a6]

◦33,2 (Q
Σ , PΣ ), K PQ[a5a6]

◦33,2 = K [a5a6]
◦33,2 (P

Σ ,QΣ )

for a1, . . . , a6 ∈ {1, . . . , q} (these quantities except K
P[a3a4]
◦4 are obtained from (18) when at least one PΣjj′ or Q

Σ
jj′ is replaced

by∆◦ja∆
◦

j′a′ ), where we introduce the notation

K [a3]
◦3 (P

(1)) =

p∑
j1j2j3=1

κj1,j2,j3P
(1)
j1j2
∆◦j3a3 ,

K [a3a4]
◦4 (P(1)) =

p∑
j1j2j3j4=1

κj1,j2,j3,j4P
(1)
j1j2
∆◦j3a3∆

◦

j4a4 ,

K [a3a6]
◦33,1 (P

(1), P(2)) =
p∑

j1j2j3j4j5j6=1

κj1,j2,j3κj4,j5,j6P
(1)
j1j4
P (2)j2j5∆

◦

j3a3∆
◦

j6a6 ,

K [a5a6]
◦33,2 (P

(1), P(2)) =
p∑

j1j2j3j4j5j6=1

κj1,j2,j3κj4,j5,j6P
(1)
j1j2
P (2)j3j4∆

◦

j5a5∆
◦

j6a6 ,

K [a2a3a5a6]
◦33 (P(1)) =

p∑
j1j2j3j4j5j6=1

κj1,j2,j3κj4,j5,j6P
(1)
j1j4
∆◦j2a2∆

◦

j3a3∆
◦

j5a5∆
◦

j6a6

for any p × p symmetric matrix P(i) = (P (i)j1j2) (i = 1, 2). Interestingly, we find that the local power of Bartlett’s type or
Cornish–Fisher’s type adjusted T(ψ,d1) test (shortly B(ψ,d1) or CF(ψ,d1) test) up to order N

−1 is the same as that of B(ψ,d2) or
CF(ψ,d2) test; that is, letting

D◦s,r(Ω◦) = tr(Ω
2
◦
)−
s+ r + 1
sr + 2

{tr(Ω◦)}2,

we have

lim
N→∞

{
N
(
Pr[Bϑ̂◦(ψ ′′2 ,d2)(T(ψ2,d2)) > χ2f◦,α] − Pr[Bϑ̂◦(ψ ′′1 ,d1)(T(ψ1,d1)) > χ2f◦,α]

)}
= lim
N→∞

{
N
(
Pr[T(ψ2,d2) > CFϑ̂◦(ψ ′′2 ,d2)(χ

2
f◦,α)] − Pr[T(ψ1,d1) > CFϑ̂◦(ψ ′′1 ,d1)(χ

2
f◦,α)]

)}
=
ψ ′′2 − ψ

′′

1

2
D◦s,r(Ω◦)gf◦+8(χ

2
f◦,α;ω

2
◦
)
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(these results essentially follow along the line of Corollaries 2–4, on the basis of the asymptotic expansion (19)), where
ϑ̂
◦
(ψ ′′, d) = (ϑ̂◦1 (d), ϑ̂

◦

2 (ψ
′′), ϑ̂◦3 ) is a location invariant estimator of ϑ

◦(ψ ′′, d) = (ϑ◦1 (d), ϑ
◦

2 (ψ
′′), ϑ◦3 ), with ϑ

◦

1 (d) =
−π
◦[0]
2,0 /f◦ − d(p−m)/2,

ϑ◦2 (ψ
′′) = −

π
◦[0]
2,0 + π

◦[0]
2,1

f◦(f◦ + 2)
+
(s+ r + 1)ψ ′′

4(f◦ + 2)
, ϑ◦3 = −

π
◦[0]
2,0 + π

◦[0]
2,1 + π

◦[0]
2,2

f◦(f◦ + 2)(f◦ + 4)

(as pointed out in Section 2.2, the coefficients of a5 (= Ȧ
Ď
3/8) in [62, (2.1)], hence [66, (2.5)] for the null distribution of

{1−(p−m)/(N−q)}T ◦ψ with T
◦

ψ = T
◦

LR, T
◦

LH , T
◦

BNP , are incorrect).We observe thatπ
◦[0]
2,0 ,π

◦[0]
2,0 +π

◦[0]
2,1 and

∑2
`=0 π

◦[0]
2,` = −π

◦[0]
2,3

are given by

π
◦[0]
2,0 = −

f◦
4
{s− r + 1+ 4(p−m)} +

A0
8
KQQ4

+

(
−
A1
12
+
AĎ3
4
r

)
KQQQ33,1 +

(
−
A2
8
−
AĎ3
8
r2 +

AĎ4
4
r

)
KQQQ33,2

+

{
AĎ3
2
(2r + 1)− AĎ4

}
KQQP33,1 +

{
AĎ3
2
(r + 1)−

AĎ4
2

}
KQPQ33,2

+

(
AĎ3
2
r −

AĎ4
2

)
KQQP33,2 −

AĎ3
2
(3KQPP33,1 + 2K

QPP
33,2 + K

PQP
33,2),

π
◦[0]
2,0 + π

◦[0]
2,1 = −

f◦
4
(s+ r + 1)−

A0
8
KQQ4 +

(
A1
6
−
AĎ4
2

)
KQQQ33,1 +

{
A2
4
+
AĎ3
4
r(r + 2)−

AĎ4
2
(r + 1)

}
KQQQ33,2

+{−AĎ3(r + 2)+ A
Ď
4}

(
KQQP33,1 +

1
2
KQPQ33,2 +

1
2
KQQP33,2

)
,

2∑
`=0

π
◦[0]
2,` = −π

◦[0]
2,3

=

{
−
A1
12
−
AĎ3
4
(r + 2)+

AĎ4
2

}
KQQQ33,1 +

{
−
A2
8
−
AĎ3
8
(r + 2)2 +

AĎ4
4
(r + 2)

}
KQQQ33,2 .

6. Simulation study

In this section,wepresent some results of simulation studies examining finite sample performance of original or Bartlett’s
type adjusted or Cornish–Fisher’s type adjusted LR, LH, BNP tests for H : BΘ = Or,p with B = [Or,q−r , Ir ] for some
r ∈ {1, . . . , q− 1}, assuming the multivariate linear regression model Y = XΘ + Uwith X = [1N ,X(−1)].
For the case of (p, q, r) = (4, 3, 2), the polynomial regressor xi = w(i/N) (i = 1, . . . ,N) with w(t) = (1, t, . . . , tq−1)′

(we now set X′ = [x1, . . . , xN ]) and N = 30, 60, 90, 120, we generated Y = XΘ + U with U′ = [u1, . . . ,uN ], where
u1, . . . ,uN were assumed to be independent and identically distributed according to
(CN) the contaminated normal 0.8Np(0, Ip)+ 0.2Np(0, 4Ip),
(LN) the log-normal uLN = (uLN,1, . . . , uLN,p)′ with uLN,i = (ezi − e1/2)/{e1/2(e − 1)}1/2, where z = (z1, . . . , zp)′ ∼

Np(0, Ip).
The parameterΘwere chosen as follows: Under the null hypothesisH : BΘ = Or,p, we tookΘ = Oq,p due to the location

invariance of the proposed tests. Under the alternative hypothesis, we considered the following two different types of the
parameter cΘ, such that the p× pmatrixΩ = Σ−1(cΘ)′B′{B(X′X)−1B′}−1B(cΘ), withΣ being the population covariance
matrix for (CN) or (LN), has eigenvalues c2λ1, . . . , c2λp:

(A) λ1 = 1, λ2 = · · · = λp = 0 (Dp,r(Ω) > 0 if min(p, r) > 1)
(B) λ1 = · · · = λmin(p,r) = 1, λmin(p,r)+1 = · · · = λp = 0 (Dp,r(Ω) < 0 if min(p, r) > 1),

where c > 0 was determined so that the noncentrality parameter tr(Ω) = c2
∑p
i=1 λi is equal to 5, 10, 15, 20, respectively.

The number of repetitions was set to be 1000,000.
With f = pr , the original large sample LR, LH, BNP tests have the rejection region TLR > χ2f ,α , TLH > χ2f ,α and TBNP > χ2f ,α ,

respectively. Furthermore, using asymptotic expansions with AĎ3 = A
Ď
4 = 0, as in Example 2, Bartlett’s type adjusted LR, LH,

BNP tests (for shortly, B-adjusted (B-ad.)) and Cornish–Fisher’s type adjusted LR, LH, BNP tests (for shortly, CF-adjusted
(CF-ad.)) have the rejection region Bϑ̂(−1)(TLR) > χ2f ,α , Bϑ̂(0)(TLH) > χ2f ,α , Bϑ̂(−2)(TBNP) > χ2f ,α , TLR > CFϑ̂(−1)(χ

2
f ,α),

TLH > CFϑ̂(0)(χ
2
f ,α) and TBNP > CFϑ̂(−2)(χ

2
f ,α), respectively. Following Kakizawa [32] and Cribari-Neto and Ferrari [17],

Bartlett’s typemonotone adjusted LR, LH, BNP tests (for shortly, B-monotone adjusted (B-mon.ad.)) or Cornish–Fisher’s type
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Fig. 1. Averaged estimated Cornish–Fisher’s type transformations for T = TLR, TLH , TBNP ; CFϑ̂(−1)(x), CFϑ̂(0)(x), CFϑ̂(−2)(x) [solid] and CFmonϑ̂(−1)
(x), CFmon

ϑ̂(0)
(x),

CFmon
ϑ̂(−2)

(x) [dashed] (LN, N = 30, repetitions = 10,000).

Fig. 2. Averaged estimated Bartlett’s type transformations for T = TLR, TLH , TBNP ; Bϑ̂(−1)(x), Bϑ̂(0)(x), Bϑ̂(−2)(x) [solid] and Bmonϑ̂(−1)
(x), Bmon

ϑ̂(0)
(x), Bmon

ϑ̂(−2)
(x)

[dashed] (LN, N = 30, repetitions = 10,000).

monotone adjusted LR, LH, BNP tests (for shortly, CF-monotone adjusted (CF-mon.ad.)) are also examined, whose rejection
region are given by Bmon

ϑ̂(−1)
(TLR) > χ2f ,α , B

mon
ϑ̂(0)
(TLH) > χ2f ,α , B

mon
ϑ̂(−2)

(TBNP) > χ2f ,α , TLR > CF
mon
ϑ̂(−1)

(χ2f ,α), TLH > CF
mon
ϑ̂(0)

(χ2f ,α) and

TBNP > CFmonϑ̂(−2)
(χ2f ,α), respectively, where

Bmonc (x) = x

(
1−

2
N

3∑
j=1

cjxj−1 +
1
N2

3∑
j1j2=1

j1j2cj1cj2
j1 + j2 − 1

xj1+j2−2
)
,

CFmonc (x) = x

(
1+

2
N

3∑
j=1

cjxj−1 +
1
N2

3∑
j1j2=1

j1j2cj1cj2
j1 + j2 − 1

xj1+j2−2
)
.

One may suspect that such an additional N−2 term is negligible compared with the error o(N−1) term in Theorem 1, but
we feel that it corrects some bad performance of the right tail in the cubic polynomial Bc(x) = x{1 − (2/N)

∑3
j=1 cjx

j−1
}

(in our case, the cubic polynomial CFc(x) = x{1 + (2/N)
∑3
j=1 cjx

j−1
} evaluated at x = χ2f ,α (see Fig. 1) seems to have

good performance, unlike [17]). To illustrate it, Fig. 2 shows the averaged (repetitions 10,000) estimated polynomials
Bϑ̂(−1)(x), Bϑ̂(0)(x), Bϑ̂(−2)(x), together with B

mon
ϑ̂(−1)

(x), Bmon
ϑ̂(0)
(x), Bmon

ϑ̂(−2)
(x), where the error distribution is (LN) with N = 30.
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Table 1a
Empirical sizes (×100) of tests (CN)

N Original B-ad. B-mon.ad. CF-ad. CF-mon.ad.
LR LH BNP LR LH BNP LR LH BNP LR LH BNP LR LH BNP

120 5.31 6.63 4.12 5.01 4.94 4.93 5.01 4.98 4.94 5.01 5.10 5.00 5.01 5.08 4.98
90 5.40 7.20 3.83 4.99 4.88 4.85 4.99 4.94 4.87 5.00 5.16 4.96 4.99 5.13 4.94
60 5.66 8.60 3.26 5.00 4.71 4.70 5.01 4.85 4.74 5.02 5.40 4.96 5.02 5.31 4.90
30 6.66 13.96 1.76 5.13 2.65 3.93 5.15 4.06 4.05 5.22 6.75 4.88 5.20 6.41 4.63

Significance level (×100) was 100α = 5.

Table 1b
Empirical sizes (×100) of tests (LN)

N Original B-ad. B-mon.ad. CF-ad. CF-mon.ad.
LR LH BNP LR LH BNP LR LH BNP LR LH BNP LR LH BNP

120 5.14 6.40 4.01 5.12 5.04 5.05 5.13 5.07 5.08 5.12 5.20 5.13 5.12 5.18 5.10
90 5.22 6.95 3.73 5.11 4.96 4.98 5.11 5.01 5.02 5.11 5.25 5.12 5.10 5.22 5.08
60 5.51 8.34 3.24 5.18 4.77 4.90 5.19 4.93 4.96 5.19 5.52 5.19 5.19 5.44 5.10
30 6.63 13.51 1.85 5.37 0.82 4.18 5.40 3.94 4.32 5.47 6.90 5.18 5.45 6.59 4.89

Significance level (×100) was 100α = 5.

Table 2a
Empirical sizes and powers (×100) of tests (CN)

tr(Ω) B-ad. B-mon.ad. CF-ad. CF-mon.ad.
LR LH BNP LR LH BNP LR LH BNP LR LH BNP

0 4.99 4.88 4.85 4.99 4.94 4.87 5.00 5.16 4.96 4.99 5.13 4.94
Type A
5 28.74 28.59 28.07 28.75 28.76 28.13 28.76 29.46 28.45 28.76 29.35 28.37
10 56.54 56.58 55.53 56.55 56.78 55.60 56.57 57.56 55.96 56.56 57.43 55.87
15 77.28 77.41 76.35 77.28 77.56 76.40 77.29 78.15 76.67 77.29 78.05 76.61
20 89.32 89.45 88.67 89.33 89.54 88.71 89.33 89.89 88.89 89.33 89.83 88.85

Type B
5 29.19 28.66 28.91 29.19 28.83 28.97 29.21 29.53 29.28 29.20 29.41 29.21
10 57.74 57.00 57.58 57.74 57.19 57.65 57.76 57.97 58.00 57.76 57.84 57.91
15 78.58 77.95 78.53 78.58 78.10 78.58 78.59 78.67 78.83 78.59 78.58 78.77
20 90.42 90.00 90.43 90.42 90.10 90.46 90.43 90.43 90.59 90.43 90.38 90.56

Significance level (×100) was 100α = 5 and sample size was N = 90.

The inequalities TLH ≥ TLR ≥ TBNP (e.g. [1, p337]) indicate that whenever TBNP ≥ χ28,0.05 = 15.507 (we notice that the values
of Tψ are likely to be large as the alternatives are far away from the null), a B-adjusted LH test Bϑ̂(0)(TLH) is likely to be not
rejected at 5% level (actually, Bϑ̂(0)(TLH) can be negative for the large value TLH ). Clearly, such an unsuccessful output can be
got rid of by means of a monotone Bartlett’s type adjusted test Bmon

ϑ̂(0)
(TLH).

We first study the empirical sizes of three tests (original or B-adjusted or CF-adjusted LR, LH, BNP tests) at significance
level α = 0.05. Table 1 show that (i) the empirical sizes improve with increasing the sample size N and that (ii) the
empirical sizes (×100) of B(or CF)-adjusted tests are closer to 100α than those of original tests, which obviously supports
the higher-order improvements Pr[Bϑ̂(ψ ′′)(Tψ ) > χ2f ,α|H] = α + o(N

−1) and Pr[Tψ > CFϑ̂(ψ ′′)(χ
2
f ,α)|H] = α + o(N

−1) to
Pr[Tψ > χ2f ,α|H] = α+O(N

−1). However, CF-(monotone) adjusted LH tests tend to have a slight size distortion as compared
with CF-(monotone) adjusted LR and BNP tests. On the other hand, for a small sample size as N = 30, B-adjusted LH and
BNP tests, especially, B-adjusted LH test for the case (LN), have substantial size distortion, while the monotone adjustment
Bmon
ϑ̂(0)
(TLH)works reasonably to improve its sizes. In what follows, we set N = 90.
We next study the empirical power of three tests (B-adjusted or CF-adjusted LR, LH, BNP tests), in which their empirical

sizes (×100), rounded to the nearest integer, are identical. Strictly speaking, since their empirical sizes are slightly different,
we cannot, of course, make a definitive conclusion on the power comparison among three tests. But, we can see from Table 2
that under the alternative hypothesis of type A (B), the power of CF-(monotone) adjusted LR tests is greater (less) than that
of BNP tests (a fair power comparison between LH and LR(or BNP) is impossible, since the size (×100); 5.1 or 5.2 of LH is
slightly greater than the size (×100); 5.0 or 5.1 of LR(or BNP)). We observe that a B-adjusted LH test (also a B-adjusted LR
test) suffers a substantial loss of power (especiallywhen the noncentrality parameter tr(Ω) is large andwhen the population
distribution (LN) is considered), as compared with a B-adjusted BNP test, which is caused by a more frequent occurrence of
low values (or negative values) of the transformed statistics Bϑ̂(0)(TLH) and Bϑ̂(−1)(TLR) than those of Bϑ̂(−2)(TBNP). Such a bad
performance, especially for (LN) case, is effectively resolved by considering monotone adjustments Bmon

ϑ̂(−1)
(TLR), Bmonϑ̂(0)

(TLH)
and Bmon

ϑ̂(−2)
(TBNP), as shown in Fig. 2 (the same comment ismade for Table 3b). Under the alternative hypothesis of type A, the
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Table 2b
Empirical sizes and powers (×100) of tests (LN)

tr(Ω) B-ad. B-mon.ad. CF-ad. CF-mon.ad.
LR LH BNP LR LH BNP LR LH BNP LR LH BNP

0 5.11 4.96 4.98 5.11 5.01 5.02 5.11 5.25 5.12 5.10 5.22 5.08
Type A
5 39.73 39.13 39.00 39.78 39.66 39.14 39.76 40.44 39.46 39.74 40.34 39.31
10 67.08 63.27 66.80 67.59 67.60 66.93 67.57 68.22 67.19 67.55 68.15 67.06
15 79.50 68.38 81.21 81.87 81.91 81.39 81.85 82.34 81.57 81.84 82.28 81.47
20 82.88 63.22 88.37 89.10 89.13 88.77 89.09 89.40 88.89 89.08 89.37 88.82

Type B
5 40.60 39.63 40.37 40.64 40.05 40.50 40.63 40.85 40.85 40.60 40.75 40.68
10 71.19 68.02 71.36 71.54 70.99 71.49 71.52 71.65 71.76 71.50 71.57 71.62
15 85.03 75.65 86.75 86.98 86.62 86.96 86.96 87.01 87.12 86.95 86.97 87.03
20 87.85 69.40 93.21 93.88 93.69 93.88 93.88 93.89 93.97 93.87 93.87 93.92

Significance level (×100) was 100α = 5 and sample size was N = 90.

Table 3a
Empirical powers (×100) of tests using their empirical 5% critical values (CN)

tr(Ω) Original B-ad. B-mon.ad.
LR LH BNP LR LH BNP LR LH BNP

Type A
5 28.78 28.94 28.57 28.77 28.95 28.56 28.77 28.95 28.56
10 56.57 56.98 56.08 56.58 56.99 56.08 56.58 56.98 56.08
15 77.30 77.71 76.77 77.31 77.72 76.77 77.31 77.72 76.77
20 89.33 89.62 88.94 89.34 89.63 88.95 89.34 89.63 88.95

Type B
5 29.22 29.03 29.40 29.22 29.03 29.40 29.22 29.03 29.40
10 57.77 57.39 58.11 57.78 57.41 58.12 57.78 57.41 58.11
15 78.60 78.25 78.92 78.61 78.26 78.92 78.61 78.26 78.92
20 90.43 90.18 90.64 90.44 90.19 90.64 90.44 90.19 90.64

Sample size was N = 90.

Table 3b
Empirical powers (×100) of tests using their empirical 5% critical values (LN)

tr(Ω) Original B-ad. B-mon.ad.
LR LH BNP LR LH BNP LR LH BNP

Type A
5 39.35 39.63 39.02 39.37 39.27 39.05 39.39 39.64 39.06
10 67.18 67.51 66.76 66.78 63.39 66.84 67.27 67.58 66.86
15 81.56 81.82 81.23 79.30 68.48 81.24 81.66 81.89 81.34
20 88.87 89.05 88.63 82.73 63.30 88.39 88.97 89.12 88.74

Type B
5 40.20 40.00 40.39 40.24 39.78 40.42 40.25 40.02 40.43
10 71.12 70.89 71.31 70.90 68.15 71.40 71.23 70.97 71.43
15 86.67 86.52 86.80 84.85 75.75 86.78 86.79 86.61 86.93
20 93.69 93.60 93.76 87.73 69.48 93.23 93.79 93.68 93.86

Sample size was N = 90.

ordering of the power among B-monotone adjusted LR, LH, BNP tests is LH � LR � BNP when the noncentrality parameter
tr(Ω) is large, while, under the alternative hypothesis of type B, a B-monotone adjusted BNP test is more powerful than a B-
monotone adjusted LH test. Another interesting feature is that unlike Table 2b (LN; asymmetric case), Bartlett’s type adjusted
LR, LH, BNP tests in Table 2a (CN; symmetric case) show good performance, as pointed out in Kakizawa and Iwashita [37].
We finally study the empirical power of three tests (original or B-adjusted LR, LH, BNP tests) that exceed their empirical

upper 5% critical values (note that the size corrected original LR, LH, BNP tests correspond to CF-(monotone) adjusted LR,
LH, BNP tests). This enables us to make a fair power comparison of different tests, although such critical values cannot be
evaluated exactly, in applicationswhere the information on the error disturbances is absent. As expected in the higher-order
power analysis of Section 3.1, Table 3 shows that (iii) the power of a B-monotone adjusted test is almost identical to that of
the original test and that (iv) the ordering of the power depends on the sign of the factor Dp,r(Ω), that is, since Dp,r(Ω) > 0
for the type A, the power of a B-monotone adjusted LH test is greater than that of a B-monotone adjusted LR test, which in
turn is greater than that of a B-monotone adjusted BNP test (this ordering is reversed for the type B in which Dp,r(Ω) < 0
holds).
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Our simulation experiments show that both correction methods (B-monotone adjusted and CF-(monotone) adjusted
tests) work well in finite sample sizes. Remarkably, making use of a monotone Bartlett’s type adjustment [32] in place of
a Bartlett’s type adjustment [16] is important to resolve not only the size distortion for the small sample size N but also
the loss of power at alternatives far from the null. Actually, the power problem turns out to be serious for the asymmetric
and leptokurtic distribution, which will be due to the difficulty of estimating summarized cumulants (4)–(6), as well as the
nature of the cubic transformation (because of the inequalities TLH ≥ TLR ≥ TBNP , Bartlett’s type adjusted LH test under
the alternatives far from the null is likely to be smallest value among three tests or have frequently negative value, which
necessarily leads to the loss of the power).

7. Conclusion and future works

In this paper, we established that for normal-based multivariate tests, the local power properties stated in Anderson [1,
p. 336] remain valid even for the nonnormal GMANOVA model, after either Bartlett’s type adjustment or Cornish–Fisher’s
type size adjustment under nonnormality. The essential point behind this paper is that the statistical inference on the
mean structure of the multivariate model is often asymptotically robust. More precisely, since several test statistics derived
under normality (including the likelihood ratio (LR) criterion, Lawley–Hotelling’s trace and Bartlett–Nanda–Pillai’s trace)
are all functions of the eigenvalues of a characteristic determinantal equationwhich involves the restricted and unrestricted
residual sum of squares matrices, the (non)null distributions of these multivariate tests admit the (non)central chi-square
type asymptotic expansion. It has also an implication of the correctness up to order o(N−1) of the coverage probability of
the bootstrap confidence region R•W = {D : T

•

W (D) ≤ z
∗

W (α)} of D ≡ BΞC based on the Wald test statistic T •W (D) ≡ T
•

W ,
where z∗W (α) is the residual-based nonparametric bootstrap critical value for T

•

W (details are omitted to preserve space). See
Hall [29] for asymptotically normal statistics.
One of themost important problems for regression analysis, where the underlying distribution of the error is unknown, is

how to construct a reasonable test or confidence region. Since its introduction as a nonparametric likelihood alternative to
traditional likelihood-based methods for inference, Owen’s empirical likelihood has gained increasing popularity among
statisticians and econometricians. For the one-way MANOVA setting, Owen [52, subsection 4.4] mentioned a EL-based
solution, in which the observations do not need to be normal distributed, or to have a common covariance matrix, and the
sample size need not be equal (for the univariate case, the Euclidian likelihood ratio test described in [52, subsection 4.10]
was essentially James’s test [31]). Thus, itwould be of some interest to investigate a higher-order power comparison between
the EL approach and the classical normal-based approach discussed in Kakizawa and Iwashita [36,37] and Kakizawa [34]. For
the one-sample case, Chen [13] investigated the EL-based test as a counterpart of Hotelling’s T 2 test, which can be viewed
as the Euclidian likelihood ratio test in the EL framework (e.g. [52, p65]), and then showed that the second-order power of
the EL-based test is not always more powerful than that of the bootstrap T 2 test. Similar noncomparable conclusions on the
second-order powers for a class of tests from the empirical discrepancy approach (the ED-based Cressie-Read tests) is found
in Bravo [8], unless one considers the averaged power criterion (e.g. [48]). It would also be of interest to extend the results
for the univariate linear regression model (e.g. [51,52,12]) to the GMANOVAmodel. As in the univariate case [52, Section 4],
the multivariate linear regression model Y = XΘ + U will be expected to have the empirical likelihood approach through
estimating equation associated with the ordinary least squares (LS) estimator Θ̂Y ,LS = (X′X)−1X′Y (which is the maximum
likelihood estimator under normality), whereas, for theGMANOVAmodelY = XΞA+U, attentionmust be paid to the choice
of the arbitrary estimating function. As pointed out in Kariya [40, p26], there is a problem of choice between the OLSE and
the GLSE, ifm < p (generally, the MLE Ξ̂Y ,ML = (X′X)−1X′YE−1Y A′(AE−1Y A′)−1 under normality, which can be viewed as the
generalized (or weighted) least squares estimator, that is, theminimizer of the criterion (1/2)tr[Σ̂−1Y (Y−XΞA)′(Y−XΞA)],
is not equal to the LSE Ξ̂Y ,LS = (X′X)−1X′YA′(AA′)−1, so the least squares approach may be inefficient).

Appendix

A.1. Technical lemma

Recall (3) and (13). We need an asymptotic representation of V̇ by means of the so-called perturbation method (e.g. [59,
Section 4.6]).

Lemma A.1. For a given spectral decomposition of the q× q idempotent matrixM;

M = Vdiag(1, . . . , 1︸ ︷︷ ︸
r times

, 0, . . . , 0)V′ = V(1:r)(V(1:r))′,

with V(1:r) = [v(1), . . . , v(r)] being the first r columns of V (q× q orthogonal matrix), there exist q× q orthogonal matrix V̇ and
q× q matrix V1 such that V̇ = V+ N−1V1 + o(N−1) and (13).
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Proof. WithΛ = diag(1, . . . , 1︸ ︷︷ ︸
r times

, 0, . . . , 0), we have from (7)

V′ṀV = Λ+ N−1V′M1V+ o(N−1)

and

V′M1V =
(

Or,r [V′Q̃1Q
1/2V](12)

[V′Q1/2Q̃1V](21) Or−q,q−r

)
, (A.1)

where [A](b1b2) denotes the (b1, b2)th block of any matrix A. Since the eigenvalues of V′ṀV are one (with multiplicity r)
and zero (with multiplicity q − r), there exists a q × q orthogonal matrix Ẇ, such that Ẇ = Iq + N−1W1 + o(N−1) and
V′ṀV = ẆΛẆ′. That is, by considering the N−1 terms of the equations ẆẆ′ = Iq and V′ṀV = ẆΛẆ′, such a q × q
matrixW1 must satisfy the relationW1 = −W′1 (W1 is skew-symmetric, hence all diagonal elements ofW1 are zero) and
V′M1V = W1Λ+ ΛW′1. It follows from (A.1) that(

Or,r [V′Q̃1Q
1/2V](12)

[V′Q1/2Q̃1V](21) Or−q,q−r

)
=

(
Or,r −[W1](12)
[W1](21) Oq−r,q−r

)
(we set [W1](11) = Or,r and [W1](22) = Oq−r,q−r here, since the off-diagonal elements of [W1](11) and [W1](22) can be chosen
arbitrarily). Thus, we can take V1 = VW1. �

A.2. Additional lemmas for GMANOVA

Lemma A.2. Let δ◦(1:r)E = [δ
◦(1)
E , . . . , δ

◦(r)
E ] = (Θ

◦

ε)
′V(1:r). Let

f (γ (1:r)) = P̃ (QΣγ (1:r)) exp{iP̃e(QΣγ (1:r))}

and

f̃ (γ (1:r)) = P̃⊥(PΣγ (1:r))P̃ (QΣγ (1:r)) exp{iP̃e(QΣγ (1:r))},

where P̃e(γ
(1:r)) ∈ R[γ (1:r)] and P̃ (γ (1:r)), P̃⊥(γ

(1:r)) ∈ C[γ (1:r)]. Here, R[γ (1:r)] (C[γ (1:r)]) is the set of polynomials of finite
degree with coefficients in R (C). Then,

Ξ0̃f (γ (1:r) + δ
◦(1:r)
E )|γ (1:r)=Op,r = EZ0 [P̃⊥(z

(1:r)
0 )]Ξ0f (γ (1:r) + δ

◦(1:r)
E )|γ (1:r)=Op,r ,

where EZ0 [P̃⊥(z
(1:r)
0 )] denotes the expectation of P̃⊥(z

(1:r)
0 ) with respect to independent p-variate normal distributions z(b)0 ∼

Np(0, PΣ ) (b = 1, . . . , r).
Proof. As in Kakizawa and Iwashita [36],

Ξ0̃f (γ (1:r) + δ
◦(1:r)
E )|γ (1:r)=Op,r = EZ◦ [P̃⊥(P

Σz◦(1:r))P̃ (QΣz◦(1:r)) exp{iP̃e(QΣz◦(1:r))}],

where EZ◦ [ ] is the expectation with respect to independent p-variate normal distributions z◦(b) ∼ Np(δ
◦(b)
E ,Σ) (b =

1, . . . , r). The assertion follows from the fact that

vec(PΣz◦(1:r)) = (Ir ⊗ PΣ )vec(z◦(1:r) − δ◦(1:r)E ) ∼ Npr(0, Ir ⊗ PΣ )

is independent of vec(QΣz◦(1:r)) = (Ir ⊗ QΣ )vec(z◦(1:r)), since QΣΣPΣ = Op,p, PΣΣPΣ = PΣ and δ◦(1:r)E

′

PΣ = Or,p. �

We now define H̃QΣ (γ
(1:r)) = tr[(γ (1:r))′QΣγ (1:r)] =

∑r
b=1(γ

(b))′QΣγ (b).

Lemma A.3. For any δ◦(1:r) = [δ◦(1), . . . , δ◦(r)] ∈ Rp×r and t ∈ R, one has

exp

(
1
2

r∑
b=1

∂(b)
′
Σ∂(b)

)
exp{itH̃QΣ (γ

(1:r)
+ δ◦(1:r))}|γ (1:r)=Op,r

= (1− 2it)−rs/2 exp
[

it
1− 2it

tr{QΣδ◦(1:r)(δ◦(1:r))′}
]

and

exp

(
1
2

r∑
b=1

∂(b)
′
Σ∂(b)

)
∂
(b1)
j1
· · · ∂

(bv)
jv exp{itH̃QΣ (γ

(1:r)
+ δ◦(1:r))}|γ (1:r)=Op,r

= (1− 2it)−rs/2 exp
[

it
1− 2it

tr{QΣδ◦(1:r)(δ◦(1:r))′}
]
Q̃ b1...bvj1...jv

(
δ◦(1:r);

it
1− 2it

)
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for v ∈ N; b1, . . . , bv ∈ {1, . . . , r}, where the general formula for Q̃
b1...bv
j1...jv
{δ◦(1:r); it/(1− 2it)} is given by

Q̃ b1...bvj1...jv
(ϕ) =

ν∑
h=0

(ϕ − 1)v−h
〈

v!

2hh!(v − 2h)!

〉
2h|1v−2h

[QΣ ]j1j2b1b2 · · · [Q
Σ
]
j2h−1j2h
b2h−1b2h

δ̃
◦(b2h+1)
j2h+1

· · · δ̃
◦(bv)
jv

for v = 2ν(6= 0) or 2ν + 1 (ν ∈ N0; the nonnegative integers {0, 1, 2, . . . , }) with ϕ = (1 − 2it)−1 and QΣδ◦(b) =
(̃δ
◦(b)
1 , . . . , δ̃

◦(b)
p )′ (b = 1, . . . , r). Here, [QΣ ]j1j2b1b2 = [Q

Σ
]j1j2δb1b2 is the (j1, j2)th element of the (b1, b2)th block of Ir ⊗QΣ , and

〈n〉2h|1v−2h before terms with indices is a sum of n similar terms obtained by the permutation of
{(

b1
j1

)
, . . . ,

(
bv
jv

)}
.

Proof. This lemma is an extension of Kakizawa and Iwashita [37, Lemma A1], who considered the case of QΣ = Σ−1 (with
A = C = Ip). A proof of Lemma A.3 follows the arguments in proving Kakizawa and Iwashita [36, Proposition 2]. We omit
the detail (the essential point here is thatΣ1/2QΣΣ1/2 is idempotent with rank s ≤ p). �
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