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a b s t r a c t

In this paper, we study convolutions of heterogeneous exponential random variables with
respect to the mean residual life order. By introducing a new partial order (reciprocal
majorization order), we prove that this order between two parameter vectors implies the
mean residual life order between convolutions of two heterogeneous exponential samples.
For the 2-dimensional case, it is shown that there exists a stronger equivalence.We discuss,
in particular, the case when one convolution involves identically distributed variables, and
show in this case that the mean residual life order is actually associated with the harmonic
mean of parameters. Finally, we derive the ‘‘best gamma bounds’’ for themean residual life
function of any convolution of exponential distributions under this framework.
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1. Introduction

Due to its nice mathematical form and the characterizing memoryless property, the exponential distribution has
been widely used in many areas including life-testing, reliability, and operations research. One may refer to [1,2] for an
encyclopedic treatment to developments on the exponential distribution. Convolutions of independent exponential random
variables often occur naturally in many problems, and especially in reliability theory. Consider a typical reliability scenario
in which there is a redundant standby systemwithout repair consisting of n exponential components. At the time of the first
failure, one standby component is put into operation; next, at the time of the second failure, another standby component
is put into operation, and so on. Finally, the whole system fails at the failure of the last component. It is evident that the
lifetime of the system is then a convolution of n exponential lifetimes. When the n exponential components have a common
hazard rate λ, then the lifetime of the system is clearly distributed as gamma with parameters (n, λ). Since the distribution
theory is quite complicated when the convolution involves non-identical random variables, it will be of great interest to
derive bounds and approximations on some characteristics of interest in this setup.
Let X1, . . . , Xn be independent exponential random variables with Xi having hazard rate λi, i = 1, . . . , n, and Y1, . . . , Yn

be another set of independent exponential random variables with Yi having hazard rate λ∗i , i = 1, . . . , n. Boland et al. [3]
then proved that

(λ1, . . . , λn)
m
� (λ∗1, . . . , λ

∗

n) H⇒

n∑
i=1

Xi≥lr
n∑
i=1

Yi;
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formal definitions of the orderings stated above will be given in the next section. Bon and Pǎltǎnea [4] subsequently showed
that

(λ1, . . . , λn)
p
� (λ∗1, . . . , λ

∗

n) H⇒

n∑
i=1

Xi≥hr
n∑
i=1

Yi, (1)

and theymainly focused on the special casewhen one convolution involved identically distributed randomvariables thereby
obtaining characterizations of some classical stochastic orders of convolutions of exponential random variables presented
in terms of various means (arithmetic mean, geometric mean and harmonic mean) of their parameters.
Kochar and Ma [5] established that

(λ1, . . . , λn)
m
� (λ∗1, . . . , λ

∗

n) H⇒

n∑
i=1

Xi≥disp
n∑
i=1

Yi. (2)

Korwar [6] extended the result in (2) to the case of gamma random variables with different scale parameters but with a
common shape parameter (≥1). Khaledi and Kochar [7] further strengthened the results of Kochar and Ma [5] and Korwar
[6] from usual majorization order to p-larger order (the former implies the latter).
In this paper, we further pursue this problem by examining the mean residual order instead in (1). A new partial order,

called the reciprocal majorization order (denoted by
rm
�), is introduced which is closely related to majorization and p-larger

orders. For the 2-dimensional case, it is proved that

X1 + X2≥mrl X∗1 + X
∗

2 ⇐⇒ (λ1, λ2)
rm
� (λ∗1, λ

∗

2),

and for the general case, we prove that

(λ1, . . . , λn)
rm
� (λ∗1, . . . , λ

∗

n) H⇒

n∑
i=1

Xi≥mrl
n∑
i=1

Yi. (3)

We pay special attention to the case when one convolution involves identically distributed random variables and show in
this case that the mean residual life order is actually associated with the harmonic mean of parameters. Finally, we derive
the ‘‘best gamma bounds’’ for the mean residual life function of any convolution of exponential distributions under this
framework.

2. Definitions

In this section, we first recall some notions of stochastic orders, and majorization and related orders. Then, a new partial
order is introduced which is closely related to the main results to be developed in the subsequent sections. Throughout this
paper, the term increasing is used formonotone non-decreasing and decreasing is used formonotone non-increasing.

2.1. Stochastic orders

Definition 2.1. For two random variables X and Y with distribution functions F and G, let F̄ = 1− F and Ḡ = 1− G denote
the corresponding survival functions. Then:

(i) X is said to be smaller than Y in the likelihood ratio order (denoted by X ≤lr Y ) if X and Y are absolutely continuous
with respective densities f and g and g(x)/f (x) is increasing in x;

(ii) X is said to be smaller than Y in the hazard rate order (denoted by X ≤hr Y ) if Ḡ(x)/F̄(x) is increasing in x;
(iii) X is said to be smaller than Y in the stochastic order (denoted by X ≤st Y ) if Ḡ(x) ≥ F̄(x);
(iv) X is said to be smaller than Y in themean residual life order (denoted byX ≤mrl Y ) if EXt ≤ EYt , whereXt = (X−t|X > t)

is the residual life at age t > 0 of the random lifetime X;
(v) X is said to be smaller than Y in the mean order (denoted by X ≤mn Y ) if EX ≤ EY .

From [8], it is known that the hazard rate order implies both the usual stochastic order and the mean residual life order,
but neither the usual stochastic order nor the mean residual life order implies the other.
One of the basic criteria for comparing variability in probability distributions is the so-called dispersive order. A random

variable X is said to be less dispersed than another random variable Y (denoted by X ≤disp Y ) if F−1(v) − F−1(u) ≤
G−1(v) − G−1(u), for 0 ≤ u ≤ v ≤ 1, where F−1 and G−1 are the right inverses of the distribution functions F and G
of X and Y , respectively.
For a comprehensive discussion on various stochastic orders, one may refer to [8,9].
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2.2. A new partial order related to majorization and p-larger orders

It is well known that the notion of majorization is quite useful in establishing various inequalities. Let x(1) ≤ · · · ≤ x(n)
be the increasing arrangement of the components of the vector x = (x1, . . . , xn).

Definition 2.2. The vector x is said to majorize the vector y (written as x
m
� y) if

j∑
i=1

x(i) ≤
j∑
i=1

y(i)

for j = 1, . . . , n− 1 and
∑n
i=1 x(i) =

∑n
i=1 y(i).

In addition, the vector x is said to majorize the vector yweakly (written as x
w
� y) if

j∑
i=1

x(i) ≤
j∑
i=1

y(i)

for j = 1, . . . , n. Clearly,

x
m
� y H⇒ x

w
� y.

For extensive and comprehensive discussion on the theory and applications of the majorization order, one may refer to
[10]. Bon and Pǎltǎnea [4] introduced a pre-order on Rn

+
, called p-larger order, which is defined as follows.

Definition 2.3. The vector x in Rn
+
is said to be p-larger than another vector y in Rn

+
(written as x

p
� y) if

j∏
i=1

x(i) ≤
j∏
i=1

y(i)

for j = 1, . . . , n.

Let log(x) be the vector of logarithms of the coordinates of x. It is then easy to verify that

x
p
� y⇐⇒ log(x)

w
� log(y).

Moreover,

x
m
� y H⇒ x

p
� y

for x, y ∈ Rn
+
. The converse is, however, not true. For example, we have (1, 5.5)

p
� (2, 3), but the weak majorization order

clearly does not hold.
We now introduce a new partial order which is closely associated to majorization and p-larger orders.

Definition 2.4. The vector x in Rn
+
is said to reciprocal majorize another vector y in Rn

+
(written as x

rm
� y) if

j∑
i=1

1
x(i)
≥

j∑
i=1

1
y(i)

for j = 1, . . . , n.

Remark 2.5. A natural question that arises here is what relationship exists between reciprocal majorization order and
majorization order or p-larger order. In the special case when n = 2, it can be easily verified that the following implications
hold:

(a1, a2)
m
� (b1, b2) H⇒ (a1, a2)

p
� (b1, b2) H⇒ (a1, a2)

rm
� (b1, b2) (4)

for any two non-negative vectors (a1, a2) and (b1, b2). In the general case when n > 2, we do not know the nature of

the implications. However, the
rm
� order does not imply the

p
� order even in the 2-dimensional case. For example, from the

definition of the
rm
� order, it follows that (1, 4)

rm
� ( 43 , 2), but it is clear that the

p
� order does not hold between these two

vectors.

3. Equivalent characterization for the 2-dimensional case

In this section, we will establish an equivalent characterization for the case when convolutions of two 2-dimensional
independent exponential random vectors are ordered in the sense of the mean residual life order.
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Let X1, X2, Y1, Y2 be independent exponential random variables with respective hazard rates λ1, λ2, λ∗1, λ
∗

2 . Bon and
Pǎltǎnea [4] then proved the following equivalence:

X1 + X2≥hr(≥st)Y1 + Y2 ⇐⇒ (λ1, λ2)
p
� (λ∗1, λ

∗

2). (5)

Recently, Zhao et al. [11] showed further that

X1 + X2≥lr Y1 + Y2 ⇐⇒ (λ1, λ2)
w
� (λ∗1, λ

∗

2). (6)

The theorem established below gives an equivalence similar to those in (5) and (6), which reveals the link between the
reciprocal majorization order and the mean residual life order.

Theorem 3.1. Let (X1, X2) be a vector of independent exponential random variables with respective hazard rates λ1, λ2, and
(X∗1 , X

∗

2 ) be another vector of independent exponential random variables with respective hazard rates λ
∗

1, λ
∗

2 . Then,

X1 + X2≥mrl X∗1 + X
∗

2 ⇐⇒ (λ1, λ2)
rm
� (λ∗1, λ

∗

2). (7)

Proof. ⇐H Suppose the RHS of the equivalence in (7) holds, i.e.,min(λ1, λ2) ≤ min(λ
∗

1, λ
∗

2),
1
λ1
+
1
λ2
≥
1
λ∗1
+
1
λ∗2
.

Without loss of generality, let us assume λ1 ≤ λ2 and λ∗1 ≤ λ
∗

2 . Note that if
1
λ1
+

1
λ2
> 1

λ∗1
+

1
λ∗2
, then there exists some λ′2

such that λ2 < λ′2 and
1
λ1
+

1
λ′2
=

1
λ∗1
+

1
λ∗2
. Let Z1 and Z2 be two independent exponential random variables with respective

hazard rates λ1 and λ′2. By Lemma 2.A.8 of [8], it follows immediately that X1 + X2≥mrl Z1 + Z2. Consequently, we find that
it is enough to prove the necessity under the following simpler condition:λ1 ≤ λ

∗

1,
1
λ1
+
1
λ2
=
1
λ∗1
+
1
λ∗2
.

Likewise, if λ1 = λ∗1 , then λ2 = λ
∗

2 which becomes a trivial case. To obtain the desired result, we now need to distinguish
the following two cases.
Case (a) λ1 < λ∗1 < λ∗2 < λ2.
The mean residual life function of X1 + X2 is, for t ≥ 0,

ϕ(X1,X2)(t) =

∫
∞

t F̄(X1,X2)(x)dx

F̄(X1,X2)(t)

=

λ1λ2
λ2−λ1

(
1
λ21
e−λ1t − 1

λ22
e−λ2t

)
λ1λ2
λ2−λ1

(
1
λ1
e−λ1t − 1

λ2
e−λ2t

)
=

1
λ21
e−λ1t − 1

λ22
e−λ2t

1
λ1
e−λ1t − 1

λ2
e−λ2t

.

Proceeding similarly, we obtain the mean residual life function of X∗1 + X
∗

2 as, for t ≥ 0,

ϕ(X∗1 ,X
∗
2 )
(t) =

1
(λ∗1)

2 e
−λ∗1t − 1

(λ∗2)
2 e
−λ∗2t

1
λ∗1
e−λ

∗
1t − 1

λ∗2
e−λ

∗
2t

.

To conclude, we then need to show that, for all t ≥ 0,

ϕ(X1,X2)(t) =

1
λ21
e−λ1t − 1

λ22
e−λ2t

1
λ1
e−λ1t − 1

λ2
e−λ2t

≥

1
(λ∗1)

2 e
−λ∗1t − 1

(λ∗2)
2 e
−λ∗2t

1
λ∗1
e−λ

∗
1t − 1

λ∗2
e−λ

∗
2t
= ϕ(X∗1 ,X

∗
2 )
(t),

which is actually equivalent to showing

ϕ(y1, y2) =

1
y21
e−y1 − 1

y22
e−y2

1
y1
e−y1 − 1

y2
e−y2
≥

1
(y∗1)

2 e
−y∗1 − 1

(y∗2)
2 e
−y∗2

1
y∗1
e−y

∗
1 −

1
y∗2
e−y

∗
2
= ϕ(y∗1, y

∗

2),
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where y1 < y∗1 < y
∗

2 < y2 and
1
y1
+

1
y2
=

1
y∗1
+

1
y∗2
. Letm = 1

y1
+

1
y2
=
y1+y2
y1y2

. Then, the equation y2m− 2y = 0 has a positive

root y = 2
m , which is in fact the harmonic mean of y1 and y2. Denote, for t ∈ [y1,

2
m ),

g(t) =
t

mt − 1
.

Clearly, g(t) is a strictly decreasing function of t with g(y1) = y2. It is easy to see that

g ′(t) = −
mg(t)− 1
mt − 1

= −

g(t)
t
t
g(t)

. (8)

Now, the problem reduces to showing that the function

ϕ(t) =
1
t2
e−t − 1

g2(t)
e−g(t)

1
t e
−t − 1

g(t)e
−g(t)

is decreasing in t ∈ [y1, 2m ). Note that, for t ≥ 0,

ϕ′(t)
[
1
t
e−t −

1
g(t)

e−g(t)
]2

=

[(
−
2
t3
e−t −

1
t2
e−t
)
−

(
−
2
g3(t)

e−g(t) −
1
g2(t)

e−g(t)
)
g ′(t)

]
×

[
1
t
e−t −

1
g(t)

e−g(t)
]

−

[(
−
1
t2
e−t −

1
t
e−t
)
−

(
−
1
g2(t)

e−g(t) −
1
g(t)

e−g(t)
)
g ′(t)

]
×

[
1
t2
e−t −

1
g2(t)

e−g(t)
]

=

[(
1
t2
e−t +

1
t
e−t
)(

1
t2
e−t −

1
g2(t)

e−g(t)
)
−

(
2
t3
e−t +

1
t2
e−t
)(
1
t
e−t −

1
g(t)

e−g(t)
)]

+

[(
2
g3(t)

e−g(t) +
1
g2(t)

e−g(t)
)(
1
t
e−t −

1
g(t)

e−g(t)
)

−

(
1
g2(t)

e−g(t) +
1
g(t)

e−g(t)
)(

1
t2
e−t −

1
g2(t)

e−g(t)
)]
g ′(t). (9)

After some simplification and upon substituting (8) into (9), the RHS of (9) has the same sign as

t
g(t)

[
−
1
t4
e−2t +

{
1
g(t)

(
2
t3
+
1
t2

)
−

1
g2(t)

(
1
t2
+
1
t

)}
e−(t+g(t))

]
−
g(t)
t

[
−
1
g4(t)

e−2g(t) +
{
1
t

(
2
g3(t)

+
1
g2(t)

)
−
1
t2

(
1
g2(t)

+
1
g(t)

)}
e−(t+g(t))

]
sgn
=

[
1
g2(t)

e−2g(t) −
1
t2
e−2t

]
+

[
1− t + g(t)

t2
−
1+ t − g(t)
g2(t)

]
e−(t+g(t))

sgn
=

1
g2(t)

et−g(t) −
1
t2
eg(t)−t +

1− t + g(t)
t2

−
1+ t − g(t)
g2(t)

=
1
g2(t)

∞∑
i=2

(t − g(t))i

i!
−
1
t2

∞∑
i=2

(g(t)− t)i

i!

≤
1
g2(t)

[
∞∑
i=2

(t − g(t))i

i!
−

∞∑
i=2

(g(t)− t)i

i!

]

=
2
g2(t)

∞∑
i=1

(t − g(t))2i+1

(2i+ 1)!

≤ 0,

which completes the proof for Case (a).

Case (b) λ1 < λ∗1 = λ
∗
= λ∗2 < λ2.
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In this case, λ∗ = 2
1
λ1
+
1
λ2

is the harmonic mean of λ1 and λ2. It is then readily seen that X∗1 + X
∗

2 is a gamma random

variable with density function (λ∗)2te−λ
∗t for t ≥ 0; so, the mean residual life function of X∗1 + X

∗

2 can be written as

ϕ(X∗1 ,X
∗
2 )
(t) =

t + 2
λ∗

λ∗t + 1
.

Thus, it is sufficient to prove that, for all t ≥ 0,

ϕ(X1,X2)(t) =

1
λ21
e−λ1t − 1

λ22
e−λ2t

1
λ1
e−λ1t − 1

λ2
e−λ2t

≥
t + 2

λ∗

λ∗t + 1
= ϕ(X∗1 ,X

∗
2 )
(t),

which is equivalent to proving the inequality

1
y21
e−y1 − 1

y22
e−y2

1
y1
e−y1 − 1

y2
e−y2
≥
1+ 2

y∗

y∗ + 1
,

where y∗ = 2
1
y1
+
1
y2

is the harmonic mean of y1 and y2. As shown already in the proof of Case (a), the function

ϕ(t) =
1
t2
e−t − 1

g2(t)
e−g(t)

1
t e
−t − 1

g(t)e
−g(t)

is decreasing in t ∈ [y1, y∗). Using l’Hospital’s rule, we obtain

lim
t↑y∗

ϕ(t) = lim
t↑y∗

1
t2
e−t − 1

g2(t)
e−g(t)

1
t e
−t − 1

g(t)e
−g(t)

= lim
t↑y∗

(
−
2
t3
−

1
t2

)
e−t −

(
−

2
g3(t)
−

1
g2(t)

)
g ′(t)e−g(t)(

−
1
t2
−
1
t

)
e−t −

(
−

1
g2(t)
−

1
g(t)

)
g ′(t)e−g(t)

=
1+ 2

y∗

y∗ + 1
,

which then implies

1
y21
e−y1 − 1

y22
e−y2

1
y1
e−y1 − 1

y2
e−y2
= ϕ(y1) ≥ lim

t↑y∗
ϕ(t) =

1+ 2
y∗

y∗ + 1
,

and this completes the proof of Case (b).
H⇒ Suppose X1 + X2≥mrl X∗1 + X

∗

2 . Assume that λ1 6= λ2 and λ
∗

1 6= λ
∗

2 . It can then be verified that

lim
t→∞

ϕ(X1,X2)(t)
ϕ(X∗1 ,X

∗
2 )
(t)
= lim
t→∞

1
λ21
e−λ1t− 1

λ22
e−λ2t

1
λ1
e−λ1t− 1

λ2
e−λ2t

1
(λ∗1)

2 e
−λ∗1 t− 1

(λ∗2)
2 e
−λ∗2 t

1
λ∗1
e−λ
∗
1 t− 1

λ∗2
e−λ
∗
2 t

= lim
t→∞

[
1
λ21
−

1
λ22
e(λ1−λ2)t

] [
1
λ∗1
−

1
λ∗2
e(λ
∗
1−λ
∗
2)t
]

[
1

(λ∗1)
2 −

1
(λ∗2)

2 e
(λ∗1−λ

∗
2)t
] [

1
λ1
−

1
λ2
e(λ1−λ2)t

]
=
λ∗1

λ1
.

Since the assumption X1 + X2≥mrl X∗1 + X
∗

2 implies that ϕ(X1,X2)(t) ≥ ϕ(X∗1 ,X∗2 )(t) for all t > 0, it follows that

lim
t→∞

ϕ(X1,X2)(t)
ϕ(X∗1 ,X

∗
2 )
(t)
≥ 1,
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and hence we conclude that λ1 ≤ λ∗1 . If λ1 = λ2 = λ and λ
∗

1 6= λ
∗

2 , we have

lim
t→∞

ϕ(X1,X2)(t)
ϕ(X∗1 ,X

∗
2 )
(t)
= lim
t→∞

t+ 2
λ∗

λ∗t+1
1

(λ∗1)
2 e
−λ∗1 t− 1

(λ∗2)
2 e
−λ∗2 t

1
λ∗1
e−λ
∗
1 t− 1

λ∗2
e−λ
∗
2 t

=
λ∗1

λ
.

From an argument similar to the one above, we get λ∗1 ≥ λ. Similarly, in the cases λ1 6= λ2 and λ∗1 = λ∗2 = λ∗, and
λ1 = λ2 = λ and λ∗1 = λ

∗

2 = λ
∗, the desired conclusion can be obtained.

On the other hand, for the case λ1 6= λ2 and λ∗1 6= λ
∗

2 , by using Taylor’s expansion at the origin, we have, for t > 0,

ϕ(X1,X2)(t) =

1
λ21
−

1
λ22
+ o(1)

1
λ1
−

1
λ2
+ o(1)

=
1
λ1
+
1
λ2
+ o(1).

Similarly,

ϕ(X∗1 ,X
∗
2 )
(t) =

1
λ∗1
+
1
λ∗2
+ o(1).

Clearly, we have 1
λ1
+

1
λ2
≥

1
λ∗1
+

1
λ∗2
. The remaining cases when either λ1 = λ2 or λ∗1 = λ

∗

2 can also be handled by using the
fact

ϕ(X,X)(t) =
t + 2

λ

λt + 1
=
2
λ
+ o(1)

near the origin.
Thus, the equivalence in (7) is proved. �

4. MRL order between convolutions of exponential random variables

The following result is a natural extension of Theorem 3.1 from the special case of n = 2 to the general case.

Theorem 4.1. Let X1, . . . , Xn, Y1, . . . , Yn be independent exponential random variables with hazard rates λ1, . . . , λn, λ∗1, . . . ,
λ∗n , respectively.

(1) If (λ1, . . . , λn)
rm
� (λ∗1, . . . , λ

∗
n), then X1 + · · · + Xn≥mrl Y1 + · · · + Yn;

(2) Conversely, if X1 + · · · + Xn≥mrl Y1 + · · · + Yn, then

min{λ1, . . . , λn} ≤ min{λ∗1, . . . , λ
∗

n} and
1
λ1
+ · · · +

1
λn
≥
1
λ∗1
+ · · · +

1
λ∗n
.

Proof. Without loss of generality, we may assume that λ1 ≤ · · · ≤ λn and λ∗1 ≤ · · · ≤ λ
∗
n .

Proof of (1) Suppose (λ1, . . . , λn)
rm
� (λ∗1, . . . , λ

∗
n), i.e.,

∑j
i=1

1
λi
≥
∑j
i=1

1
λ∗i
, j = 1, . . . , n. The proof is carried out by

induction. The result is obvious for the case n = 1 and can also be readily obtained from Theorem 3.1 for the case n = 2.
Now, let us suppose that the result is true for n− 1 (n ≥ 3). To prove the required result for n, let us distinguish two cases.
Case (i) λ∗1 < λn.
Based on the fact λ1 ≤ λ∗1 < λn, there exists exactly one integer k (1 ≤ k ≤ n− 1) such that λk ≤ λ∗1 < λk+1. Now, upon

observing that (λk, λk+1)
rm
�

(
λ∗1,

1
1
λk
+

1
λk+1

−
1
λ∗1

)
, it follows from Theorem 3.1 that

Xk + Xk+1≥mrl Y1 +W , (10)

whereW is an exponential random variable with hazard rate 1
1
λk
+

1
λk+1

−
1
λ∗1

, independent of Xi and Yi for all 1 ≤ i ≤ n. On the

other hand, it may also be observed that(
λ1, . . . λk−1,

1
1
λk
+

1
λk+1
−

1
λ∗1

, λk+2, . . . , λn

)
rm
� (λ∗2, . . . , λ

∗

k , λ
∗

k+1, . . . , λ
∗

n).

Upon using the induction assumption now, we obtain

X1 + · · · + Xk−1 +W + Xk+2 + · · · + Xn≥mrl Y2 + · · · + Yk + Yk+1 + · · · + Yn. (11)
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It is known from Lemma 2.A.8 of [8] that if the random variables X and Y are such that X ≤mrl Y and if Z is an IFR random
variablewhich is independent ofX and Y , thenX+Z ≤mrl Y+Z . Also, a convolution of distributionswith logconcave densities
has a logconcave density, and hence possesses IFR property. Upon using these two facts and the inequalities in (10) and (11),
we finally can conclude

X1 + · · · + Xn≥mrl X1 + · · · + Xk−1 + Y1 +W + Xk+2 + · · · + Xn≥mrl Y1 + · · · + Yn.

Case (ii) λ∗1 ≥ λn.
In this case, we have λi ≤ λ∗i for all 1 ≤ i ≤ n, and the result is then a direct application of Theorem 2.A.9 of [8].

Proof of (2) From Sen and Balakrishnan [12], when the parameters λi’s are pairwise unequal, i.e., λi 6= λj for any i 6= j, the
density function of Sn = X1 + · · · + Xn is given by the formula

fSn(t) =
n∑
i=1

λie−λit
n∏

j=1,j6=i

(
λj

λj − λi

)
, t ≥ 0.

Consequently, the mean residual life function of Sn may be written as

ϕSn(t) =

∫
∞

t F̄Sn(u)du

F̄Sn(t)
=

n∑
i=1

1
λi
e−λit

n∏
j=1,j6=i

(
λj

λj−λi

)
n∑
i=1
e−λit

n∏
j=1,j6=i

(
λj

λj−λi

) , t ≥ 0, (12)

where F̄Sn denotes the survival function of Sn. Using Taylor’s expansion at the origin, we obtain, for t > 0,

ϕSn(t) =
1
λ1
+ · · · +

1
λn
+ o(1).

In a similar way, the mean residual life function of S∗n = X
∗

1 + · · · + X
∗
n is given by

ϕS∗n (t) =
1
λ∗1
+ · · · +

1
λ∗n
+ o(1) for t ≥ 0.

From the assumption, it follows that ϕSn(t) ≥ ϕS∗n (t) for all t ≥ 0, and hence

1
λ1
+ · · · +

1
λn
= lim
t→0,t>0

ϕSn(t) ≥ lim
t→0,t>0

ϕS∗n (t) =
1
λ∗1
+ · · · +

1
λ∗n
.

Assume both λi and λ∗i are pairwise unequal. From (12), we have

ϕSn(t)
ϕS∗n (t)

= e(λ
∗
1−λ1)t

1
λ1

n∏
i6=1

λi
λi−λ1

+

n∑
k=2

1
λk
e−(λk−λ1)t

n∏
i6=k

λi
λi−λk

1
λ∗1

n∏
i6=1

λ∗i
λ∗i −λ

∗
1
+

n∑
k=2

1
λ∗k
e−(λ

∗
k−λ
∗
1)t

n∏
i6=k

λ∗i
λ∗i −λ

∗
k

×

n∏
i6=1

λ∗i
λ∗i −λ

∗
1
+

n∑
k=2
e−(λ

∗
k−λ
∗
1)t

n∏
i6=k

λ∗i
λ∗i −λ

∗
k

n∏
i6=1

λi
λi−λ1

+

n∑
k=2
e−(λk−λ1)t

n∏
i6=k

λi
λi−λk

.

If λ1 > λ∗1 , then limt→∞ ϕSn(t)/ϕS∗n (t) = 0, which contradicts the hypothesis that ϕSn(t)/ϕS∗n (t) ≥ 1 for all t > 0. Therefore,
we can claim that λ1 ≤ λ∗1 . If either λi or λ

∗

i are not pairwise unequal, the desired result can be obtained by using a limiting
argument.
The theorem is thus proved. �

In what follows, we focus on the special case when one sum involves identically distributed random variables. Bon and
Pǎltǎnea [4] summed up the connections between some classical stochastic orders for convolutions of exponential random
variables and various means (arithmetic mean, geometric mean and harmonic mean) of their parameters.

Proposition 4.2 ([4]). Let Sn(λ1, . . . , λn) =
∑n
i=1 Xi and Tn(λ, . . . , λ) =

∑n
i=1 Yi, where Xi (1 ≤ i ≤ n) are independent

exponential random variables with respective parameters λi, and Yi are i.i.d. exponential random variables with a common
parameter λ. Then:

(i) Sn(λ1, . . . , λn)≥mn Tn(λ, . . . , λ)⇐⇒ λ ≥ n
1
λ1
+···+

1
λn
;

(ii) Sn(λ1, . . . , λn)≥st Tn(λ, . . . , λ)⇐⇒ λ ≥ n
√
λ1 . . . λn;

(iii) Sn(λ1, . . . , λn)≥hr Tn(λ, . . . , λ)⇐⇒ λ ≥ n
√
λ1 . . . λn;

(iv) Sn(λ1, . . . , λn)≥lr Tn(λ, . . . , λ)⇐⇒ λ ≥
λ1+···+λn

n ;
(v) Sn(λ1, . . . , λn)≤lr(≤hr ,≤st) Tn(λ, . . . , λ)⇐⇒ λ ≤ min(λ1, . . . , λn).
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Fig. 1. Plot ofmean residual life function of convolution of three exponentials (1, 2, 4) and those of gamma random variableswith parameters as arithmetic
mean, geometric mean, harmonic mean, and 1, respectively.

As a direct application of Theorem 4.1, we can readily obtain the following corollary which corresponds to the mean
residual life order, and thus forms a nice extension of Proposition 4.2.

Corollary 4.3. Under the assumptions of Proposition 4.2, we have:

(vi) Sn(λ1, . . . , λn)≥mrl Tn(λ, . . . , λ)⇐⇒ λ ≥ n
1
λ1
+···+

1
λn
;

(vii) Sn(λ1, . . . , λn)≤mrl Tn(λ, . . . , λ)⇐⇒ λ ≤ min(λ1, . . . , λn).

It is well known that Tn(λ, . . . , λ) is a gamma random variable with parameters (n, λ)with density function

f(n,λ)(t) =
λntn−1

(n− 1)!
e−λt , t ≥ 0.

Let ϕ(n,λ)(t) be themean residual life function of the gamma random variable Tn(λ, . . . , λ), and let ϕ(λ1,...,λn)(t) be themean
residual life function of the convolution Sn(λ1, . . . , λn). Then, from Corollary 4.3, the best gamma bounds for the mean
residual life function ϕ(λ1,...,λn)(t) can be derived as follows:

ϕ(
n, n
1
λ1
+···+

1
λn

)(t) ≤ ϕ(λ1,...,λn)(t) ≤ ϕ(n, min
1≤i≤n

λi)(t)

for all t ≥ 0.
We now present an example to illustrate the best gamma bounds. For the case n = 3, we have

ϕ(λ1,λ2,λ3)(t) =
1
λ1
e−λ1t

[
λ2λ3

(λ2−λ1)(λ3−λ1)

]
+

1
λ2
e−λ2t

[
λ1λ3

(λ1−λ2)(λ3−λ2)

]
+

1
λ3
e−λ3t

[
λ1λ2

(λ1−λ3)(λ2−λ3)

]
e−λ1t

[
λ2λ3

(λ2−λ1)(λ3−λ1)

]
+ e−λ2t

[
λ1λ3

(λ1−λ2)(λ3−λ2)

]
+ e−λ3t

[
λ1λ2

(λ1−λ3)(λ2−λ3)

]
and

ϕ(3,λ)(t) =
λ2t2 + 4λt + 6
λ3t2 + 2λ2t + 2λ

.

Let us choose (λ1, λ2, λ3) = (1, 2, 4). Then, the arithmetic mean, geometric mean and harmonic mean are λ1+λ2+λ3
3 =

7
3 ,

3
√
λ1λ2λ3 = 2, and 3

1
λ1
+
1
λ2
+
1
λ3

=
12
7 , respectively, and min{λ1, λ2, λ3} = 1. Then, Fig. 1 illustrates the following

inequality:

ϕ
(3, 73 )

(t) ≤ ϕ(3,2)(t) ≤ ϕ(3, 127 )(t) ≤ ϕ(1,2,4)(t) ≤ ϕ(3,1)(t).

Clearly, for the mean residual life function ϕ(1,2,4)(t), the best gamma lower bound ϕ(3, 127 )(t) is the best approximation near
the origin, while the best gamma upper bound ϕ(3,1)(t) is the best approximation in the right tail.
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[4] J.L. Bon, E. Pǎltǎnea, Ordering properties of convolutions of exponential random variables, Lifetime Data Analysis 5 (1999) 185–192.
[5] S.C. Kochar, C. Ma, Dispersive ordering of convolutions of exponential random variables, Statistics & Probability Letters 43 (1999) 321–324.
[6] R.M. Korwar, On stochastic orders for sums of independent random variables, Journal of Multivariate Analysis 80 (2002) 344–357.
[7] B.-E Khaledi, S.C. Kochar, Ordering convolutions of gamma random variables, Sankhyā 66 (2004) 466–473.
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