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a b s t r a c t

In this paper, we propose a robust empirical likelihood (REL) inference for the parametric
component in a generalized partial linear model (GPLM) with longitudinal data. We make
use of bounded scores and leverage-based weights in the auxiliary random vectors to
achieve robustness against outliers in both the response and covariates. Simulation studies
demonstrate the good performance of our proposed REL method, which is more accurate
and efficient than the robust generalized estimating equation (GEE) method (X. He, W.K.
Fung, Z.Y. Zhu, Robust estimation in generalized partial linear models for clustered data,
Journal of the American Statistical Association 100 (2005) 1176–1184). The proposed
robust method is also illustrated by analyzing a real data set.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Generalized partial linear models (GPLMs) can be regarded as an integration of generalized linear models (GLMs) [10]
and fully nonparametricmodels. By involving both parametric and nonparametric components, GPLMs have great flexibility
in modeling real data, and therefore have attracted many research interests and are widely used in practice.

The inference for GPLMs is usually based on maximum likelihood method and generalized estimating equation (GEE)
method [8]. However, both the classical maximum likelihood and GEE methods are sensitive to outliers. In longitudinal
studies, an outlier in a subject-level measurement can result in multiple outliers in the sample. So many robust methods
have been developed to limit the impact of the outliers, e.g., [14,3,2,23]. Particularly, for theGPLMswith longitudinal data, He
et al. [4] proposed a robust GEE (RGEE)method by using B-spline to approximate the nonparametric function. The commonly
used sandwich method was adopted to obtain the variance estimation of their proposed RGEE estimator for the parametric
component. However, it is well known that the sandwichmethod usually underestimates the variance of the GEE estimator,
which possibly leads to biased statistical inference. For more detail and systematic introductions about the robust statistical
methods we can refer to the book of Heritier et al. [6].

The empirical likelihood (EL) method, first developed by Owen [11], is a popular statistical inference method and has
attracted a great deal of interests [7,16]. Many advantages of the EL over the normal approximation-based method have
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been shown in the literature. For example, the shape of confidence regions based on EL is determined totally by data itself.
The EL is Bartlett correctable, hence comparable to the bootstrap method. In particular, another attractive feature of EL
method is that the statistical inference based on EL does not require variance estimation. Recently, the EL method has been
further developed in the areas of partial linear model and longitudinal data analysis. Wang and Jin [25] and Shi and Lau [22]
considered EL inference for a partial linearmodel. Xue and Zhu [26] considered the ELmethod for a partial linearmodel with
longitudinal data, but they ignored the correlations within subjects, which may lead to the loss of efficiency. Bai et al. [1]
constructed a newweighted EL inference by taking into account the correlationswithin subjects. The ELmethodmay also be
influenced by the outliers due to its close relationship with the maximum likelihood and the GEE methods [16]. Owen [13]
pointed out that the EL confidence regions may be greatly lengthened in the direction of the outliers. Shi and Lau [21]
proposed REL for linear models under median constraints. Qin et al. [15] proposed REL for generalized linear models with
longitudinal data by constructing robust auxiliary random vectors.

To the best of our knowledge, it is lack of literature on the REL inference for GPLMs with longitudinal data, possibly due
to the complexity of the nonparametric component in the GPLMs. In this article, we develop an REL method for inference of
the parametric component in GPLMs with longitudinal data through constructing robust auxiliary random vectors, which
utilizes aweight function to downweight the effect of leverage points and a bounded score function on the Pearson residuals
to limit the influence of outliers in the responses. We extend our work in [15] to deal with GPLMs with longitudinal data,
and the B-spline method is adopted to approximate the nonparametric component in the model. Moreover, our method
incorporates working correlation matrix into the robust auxiliary random vectors to interpret the correlations within the
subjects. Our proposed REL method does not require the estimation of the variance of the proposed estimator, and provides
more accurate inference than the existing RGEE method.

The rest of this article is organized as follows. In Section 2, the REL method for GPLMs is proposed. The asymptotic
normality of the proposed REL estimator and the asymptotic chi-square distribution of the proposed REL ratio are
derived under some regularity assumptions in Section 3. In Section 4, simulation studies are conducted to investigate
the performance of the proposed method. A real data set is modeled by a GPLM and analyzed by the proposed method
in Section 5. The details of the proof is given in Appendix.

2. Model and robust empirical likelihood

2.1. GPLMs for longitudinal data

In this article, we consider a longitudinal study with m subjects and ni observations over time for the ith subject (i =

1, . . . ,m, j = 1, . . . , ni) for a total of n =
m

i=1 ni observations. Let us denote {(xij, yij, tij), i = 1, . . . ,m, j = 1, . . . , ni}

as the observed data set, and E(yij) = µ0,ij and var(yij) = φv(µ0,ij), where φ is a scale parameter and v(·) is a known
variance function. We model the longitudinal data with a GPLM, and specify a marginal model on the first two moments of
yij. Especially, the marginal mean µ0,ij is modeled as

η0,ij = g(µ0,ij) = xTijβ0 + f0(tij), µ0,ij = µ(η0,ij) = g−1(η0,ij), (2.1)

whereβ0 is a p-dimensional vector of regression coefficientwith covariates xij, f0(·) is an unknown smooth function and g(·)
is a given link function. Furthermore, we assume that the observations from different subjects are independent. Without
loss of generality, we also assume that tij are all scaled into the interval [0, 1].

Following He et al. [4], we approximate f0 by a regression spline. Let 0 = s0 < s1 < · · · < skn+1 = 1 be a partition of the
interval [0, 1]. Using the si as knots, we have Nk = kn + l normalized B-spline basis functions of order l− 1 that form a basis
for the linear spline space. Just as pointed out in [4], regression splines have some desirable properties in approximating
a smooth function. It often provides good approximations with a small number of knots. The spline approach also treats a
nonparametric function as a linear functionwith the basis functions as pseudo-design variables, and thus any computational
algorithm developed for the generalized linear models can be used for the GPLM.

Let f0(t) be approximated by π(t)Tα0, where π(t) = (B1(t), . . . , BNk(t))
T is the vector of basis functions, and α0 ∈ RNk

is the vector of spline coefficient. This linearizes our regression model so that our regression problem becomes

ηij(θ0) = g(µij(θ0)) = xTijβ0 + π(tij)Tα0 = DT
ijθ0, (2.2)

where Dij = (xTij, π
T
ij )

T , and θT0 = (βT
0 , α

T
0) is the vector of combined regression parameters. In matrix notations, we let

µi = (µi1, . . . , µini)
T , Yi = (yi1, . . . , yini)

T , where µij = g−1(DT
ijθ),Dij = (xTij, π

T (tij))T , and define Xi and πi in a similar
fashion for i = 1, . . . ,m, j = 1, . . . , ni.

Remark 1. Selection of knots is generally an important aspect of spline smoothing. Usually, knot selection is less critical for
the estimate of β0 than for the estimate of f0(t) (see, [4]). In this article, for the reason that our main focus is inference on
the parameter β0, and for the sake of simplicity, we use the sample quantiles of {tij, i = 1, . . . ,m, j = 1, . . . , ni} as knots.
Moreover, we use cubic splines (i.e., splines of order 4) and take the number of internal knots to be the integer around n1/5.
This particular choice is consistent with the asymptotic theory of Section 3, and also performs well in the simulations of
Section 4.
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2.2. Robust empirical likelihood for β0

Inmost applications of GPLMs, the primary research interest is tomake statistical inferences on the regression coefficient
β0, along with the understanding of some basic feature of f0(t). For a partially linear model with independent data, Shi and
Lau [22] conducted a EL inference on β0 by taking nonparametric part as nuisance. Thus, we regard the nonparametric
function f0(t), i.e. α0, as nuisance, and conduct a suitable estimator of it to make sure the efficient statistical inference on β0.
In this paper, we let α̂ denote the robust estimator of α0, which is proposed in [4]. Motivated by the idea of Cantoni [2] and
He et al. [4], we adopt a weight function to downweight the effect of leverage points and a bounded score function on the
Pearson residuals to limit the influence of outliers in the response. This is slightly different from theweights on the response
in [2] where they are defined through dividing the Huber function by the Pearson residual; see formula (10) in [2] or formula
(6.9) in [6]. Meanwhile, a working correlation matrix is incorporated into the following auxiliary random vectors as:

Zi(β; α̂) = X∗

i (µi(β; α̂))∆T
i (µi(β; α̂))V−1

i (µi(β; α̂), γ )hi(µi(β; α̂)), (2.3)

where

(X∗T
1 (µ1(β; α̂)), . . . , X∗T

m (µm(β; α̂)))T = (I − P(µ(β; α̂)))(XT
1 , . . . , X

T
m)

T

with

P(µ(β; α̂)) = M(MTΣ(µ(β; α̂))M)−1MTΣ(µ(β; α̂)),

M = (π T
1 , . . . , π

T
m)

T ,

Σ(µ(β; α̂)) = diag{Σ1, . . . ,Σm},

Σi = ∆T
i (µi(β; α̂))V−1

i (µi(β; α̂), γ )Γi(µi(β; α̂))∆i(µi(β; α̂)),

Γi(µi(β; α̂)) = Eḣi(µi(β; α̂)) = E
∂hi(µi(β; α̂))

∂µi
,

∆i(µi(β; α̂)) = diag{µ̇i1(β; α̂), . . . , µ̇ini(β; α̂)}

with µ̇(·) denoting the first derivative of µ(·) evaluated at Xiβ + πiα̂,

Vi(µi(β; α̂), γ ) = Ri(γ )A
1/2
i (µi(β; α̂))

with Ai(µi(β; α̂)) = φ · diag{v(µi1(β; α̂)), . . . , v(µini(β; α̂))}, Ri(γ ) is a working correlation matrix, and

hi(µi(β; α̂)) = Wi(ψ(µi(β; α̂))− Eψ(µi(β; α̂)))

with ψ(µi) = ψ(A−1/2
i (Yi − µi)) where function ψ is considered to be Huber’s psi function ψ(x) = min{c,max{−c, x}},

the tuning constant c is typically chosen to give a certain level of asymptotic efficiency at the underlying distribution and
selected to be 1.5 in this article, and theweightingmatrixWi = diag{wi1, . . . , wini} is a diagonalmatrix. Similar to Sinha [23],
we choose the weight functionwij as a function of the Mahalanobis distance in the form

wij = w(xij) = min


1,


b0
(xij − mx)T S−1

x (xij − mx)

γw/2
,

with γw ≥ 1; b0 is chosen as the 95th percentile of chi-square distribution with degrees of freedom equal to the dimension
of xij, andmx and Sx are some robust estimates of location and scale of xij, such asminimumvolume ellipsoid (MVE) estimates
of Rousseeuw and van Zomerem [19].

Before we move to construct the EL procedure for β , we would like to highlight the goodness of our proposed auxiliary
random vector (2.3). We approximate the nonparametric part through B-spline and absorb it in the auxiliary random vector
by projection to help improve the inferences on β . The auxiliary random vector discriminates from the one in [26] by
considering working correlation to improve the efficiency.

Using the standard empirical likelihood procedure with the proposed auxiliary random vectors Zi(β; α̂), we can get the
REL function of β as

L(β) = sup


m
i=1

pi

 m
i=1

pi = 1, pi ≥ 0,
m
i=1

piZi(β; α̂) = 0


.

Note that
m

i=1 pi attains its maximum at all pi = 1/m. Thus, the REL ratio is defined as

R(β, α̂) = sup


m
i=1

(mpi)

 m
i=1

pi = 1, pi ≥ 0,
m
i=1

piZi(β; α̂) = 0


.

By using the Lagrange multiplier method, we obtain that R(β) is maximized at

pi =
1
m
(1 + λ′Zi(β; α̂))−1, i = 1, . . . ,m,



G. Qin et al. / Journal of Multivariate Analysis 105 (2012) 32–44 35

where the vector λ = (λ1, . . . , λp)
T satisfies the following equation

q(λ) =
1
m

m
i=1

Zi(β; α̂)

1 + λTZi(β; α̂)
= 0. (2.4)

Combining the above equations, we have

− 2 log R(β; α̂) = −2 log
m
i=1

(1 + λTZi(β; α̂))−1
= 2

m
i=1

log(1 + λTZi(β; α̂)). (2.5)

Note that for the choice ofψ(x) = x andwij = 1, we have Eψ(µi) = 0; then, the proposed robust auxiliary random vectors
reduce to ordinary auxiliary random vector and the REL ratio reduces to the ordinary EL ratio.

As discussed in [1], the correlation parameter γ and the scale parameter φ involved in (2.5) can be replaced by their
corresponding

√
n-consistent estimators. Here, we replace them with some robust estimates γ̂ and φ̂, such as the robust

estimating equation estimators proposed by Cantoni [2] andHe et al. [4]. Then,we can obtain the robustmaximumempirical
likelihood estimator (RMELE) of the parameter β0, β̃ , by minimizing the −2 log R(β; α̂) under equation constraints (2.4).

Finally, we make a summary on the process of deriving the RMELE β̃ as follows to finish this section.
1. Get the robust estimator α̂ of α by adopting the RGEE method of He et al. [4].
2. Construct the robust auxiliary score (2.3) for β .
3. Substitute the

√
n-consistent estimators γ̂ and φ̂ for nuisance parameters γ and φ in (2.3).

4. Obtain the RMELE β̃ by minimizing the negative log empirical likelihood ratio (2.5).

3. Asymptotic properties

We use −2 log R(β; α̂, γ̂ , φ̂) to denote −2 log R(β; α̂) with γ and φ replaced by γ̂ and φ̂, and use a similar way to
define Zi(β; α̂, γ̂ , φ̂). We use ∥ · ∥ to denote Euclidean norm. Moreover, let ei = (φv(µ0,i))

−1/2(Yi − µ0,i) be the vector
of standardized responses, and h0,i(ei) = Wi(ψ(ei) − Eψ(ei)). Note that h0,i(ei) is similar to hi(µi(β; α̂)), but the former
centers Yi by its true mean µ0,i, whereas the latter involves centering by µi(β; α̂).

To derive the asymptotic normality of the RMELE β̃ and the asymptotic chi-square distribution of the proposed REL ratio
−2 logR(β0; α̂, γ̂ , φ̂), some regularity conditions similar to He et al. [4] are assumed as follows.
(A.1) The sequence {ni} is a bounded sequence of positive integers, and the distinct values of tij form a quasi-uniform

sequence that grows dense on the internal [0, 1].
(A.2) The rth derivative of f0 is bounded for any r ≥ 2.
(A.3) The regression parameter β0 is identifiable, i.e., there is a unique β0 ∈ B satisfying the meanmodel assumption which

guarantees E(Zi(µ0,i)) = 0, where B is a compact parameter space.
(A.4) There exists positive constant C1 such that 0 < C1 ≤ v(·) < ∞, v(·) has bounded second derivatives and g−1(·) has

bounded third derivatives,
supi≥1 E∥Xi∥

3 < ∞ and Zi(β; α̂, γ̂ , φ̂) is assumed to be continuously differentiable.

To obtain the asymptotic properties of the RMELE β̃ , some assumptions on the covariates X and t are required. One
complicated issue for the GPLMs comes from the dependence between X and t . To this end, we denote xij = (xij1, . . . , xijni)

T

and assume the following relationship as Rice [18]:

xijk = gk(tij)+ δijk, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ k ≤ p, (3.1)

where gk(t) are functionswith bounded rth derivatives, and δijk aremean zero randomvariables independent of ei and of one
another. This is a common used and sufficient condition which had been also used in [5,24]. We also assume the following.
(A.5) For sufficiently large n, kn(MTΣ0M) is non-singular, and the eigenvalues of (kn/n)MTΣ0M are bounded away from

zero and infinity, where Σ0 = diag{Σ0,i},Σ0,i = ∆0,iV−1
0,i Γ0,i∆0,i,∆0,i, V−1

0,i and Γ0,i denote ∆i(µi), V−1
i (µi) and

Γi(µi) evaluated at µ0,i, respectively.
(A.6) (a) EΛn = 0 and supn≥1 ∥Λn∥

2
≤ ∞, and

(b) 1
nKn → K , 1

nSn → S in probability for some positive definite matrix K and S, where Λn is n by p matrix, whose
sth column is δs = (δ11s, . . . , δmnm)

T , Sn =
m

i=1 X
∗T
0,i∆0,iV−1

0,i cov(h0,i(ei))V0,i∆0,iX∗

0,i, Kn =
m

i=1 X
∗T
0,iΣ0,iX∗

0,i, and X∗

0,i
denote X∗

i (µi(β; α̂)) evaluated at µ0,i.
(A.7) We assume that some estimated correlation parameter vector γ̃ is consistent for some γ0; that is ∥γ̃−γ0∥ = Op(n−1/2)

for some γ0.

A similar condition to (A.4) that Zi(β; α̂, γ̂ , φ̂) is assumed to be continuously differentiable is also used by Sinha [23]. As
indicated by Sinha [23], the derivative of Huber’s function used here is not continuous at the points ±c , and as a remedy,
it is possible to smooth the psi function that leads to a continuous derivative. However, there would not be any dramatic
change to the estimate for using such a smoothed psi function.
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Theorem 1. Suppose that conditions (A.1)–(A.7) hold. If the number of knots kn ≈ n1/(2r+1), then
√
n(β̃ − β) → N(0, V ),

where V = K−1SK−1.

In the following numerical studies, we use the method proposed by He et al. [4] to obtain consistent estimates of K
and S.

Theorem 2. Under the conditions of Theorem 1, −2 log R(β0; α̂, γ̂ , φ̂) converges to χ2
p in distribution when m → ∞, where

χ2
p is a chi-squared distribution with the degrees of freedom p.

Now an asymptotic empirical likelihood-based 100(1 − τ)% confidence region for β0 can be given by

Υ = {β : −2 log R(β; α̂, γ̂ , φ̂) ≤ χ2
p (τ )}, (3.2)

where χ2
p (τ ) is the upper τ -quantile of the chi-squared distribution with the degrees of freedom p.

Remark 2. As pointed out in [1], the point estimators of EL and GEE methods are asymptotically equivalent according to
the discussion in [16]. However, we still prefer the proposed REL method which is more accurate and efficient in the case of
statistical inferences, since it avoids to estimate the asymptotic variances of estimators which make the inferences unstable
in most cases, especially in the case of outliers. These is also demonstrated numerically by the simulations in following
Section 4.

4. Simulation studies

In this section, some simulations are conducted to investigate the performance of our proposed REL method. The
commonly used normal, binary and Poisson partial linear models are considered. We compare the proposed REL method
with the RGEE method provided by He et al. [4] as well as the non-robust EL and GEE methods in terms of robustness,
accuracy and efficiency.

We adopt the robust estimate γ̂ and φ̂ proposed in [4] to estimate the nuisance parameters γ and φ, and denote β̂
as the RGEE estimator proposed by He et al. [4]. The robust methods, including the EL and GEE methods, reduce to the
corresponding non-robust ones by setting wij = 1, ψ(x) = x. In our simulations, the γw in the weight function wij was
chosen to be 1 and the constant c in the Huber function was chosen to be 1.5. A total of 1000 replicates were generated from
each of the considered models.

Study 1: First, we consider a multiple linear model

yij = x1,ijβ1 + x2,ijβ2 + x3,ijβ3 + x4,iβ4 + sin(2tij)+ ϵij, i = 1, . . . ,m, j = 1, 2, 3, (4.1)

where β1 = β2 = β3 = β4 = 1, and the covariates are generated as follows: x4,i is a subject-level covariate taking values
0 or 1 with equal probability, and x1,ij = bi + u1,ij, x2,ij = zi + u2,ij, x3,ij = tdi + u3,ij and tij = bi + u4,ij with bi, zi, tdi
and all uk,ij, k = 1, . . . , 4 as independent draws from the uniform distribution on [−1, 1], standard norm distribution, t
distribution with 5 degrees of freedom and the uniform distribution on [−1, 1], respectively. (ϵi1, ϵi2, ϵi3)T are multivariate
normal with mean 0 and variance 1, and exchangeable correlation matrix Ri(γ0) = 1i1T

i γ0 + Ii(1 − γ0), where 1i denotes a
ni-dimensional vector with 1 as its components, Ii denotes a ni-dimensional identity matrix and the correlation parameter
γ0 is taken to be 0.5. To study robustness, we contaminated the data by the following two ways.

C1. Creating outliers in the covariates by adding 2 to x1,ij, x2,ij and x3,ij for any randomly chosen observations with 2%
probability. We do not contaminate the subject-level covariate x4.

C2. Besides perturbing the covariates by C1, we also contaminate the response by replacing each yij values with yij + 5 for
other randomly chosen observations with 2% probability.

Remark 3. In practice, our proposed method actually can handle larger level of contaminations. Here, we just present the
results under 2% contamination because most of the time, those non-robust methods under more than 2% contamination
do not converge and are not comparable to our proposed method.

To compare the accuracy of statistical inference based on our proposed RELmethod and the RGEEmethod, 95% confidence
regions for β are computed based on both the EL and GEE methods. Table 1 reports the coverage probabilities (CPs) of the
two types of confidence regions for sample sizesm = 50, 100, respectively. The entries demonstrate that when the sample
size increase from m = 50 to 100, the accuracies of both the EL and GEE methods are satisfactory. Table 2 reports the
empirical biases andmean squares errors (MSEs) of the proposed REL estimators of parameters as well as the corresponding
non-robust estimators under m = 100. In the case of no outliers, the proposed REL method performs almost equally well
with other non-robust or robust methods, since all the CPs are very close to the nominal confidence level 95%. However, in
the case of contaminations, both the two non-robust EL and GEE methods are seriously influenced by the outliers (their CPs
are far away from 95% and the estimating biases are very large), while the robust ones look still acceptable in terms of both
CPs and estimating accuracies. What is worth mentioning, when the data are perturbed, the CPs improve a lot from the EL
method to the proposed REL method, but it is not the case of GEE methods. We believe that this is because the sandwich
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Table 1
CPs of confidence regions in Study 1.

m = 50
ELCorr GEECorr ELInd GEEInd

NC NR 0.886 0.870 0.886 0.861
R 0.894 0.888 0.875 0.872

C1 NR 0.378 0.506 0.478 0.592
R 0.748 0.674 0.814 0.740

C2 NR 0.454 0.556 0.498 0.592
R 0.776 0.686 0.814 0.776

m = 100

NC NR 0.964 0.952 0.934 0.926
R 0.946 0.952 0.944 0.912

C1 NR 0.610 0.814 0.746 0.860
R 0.934 0.902 0.942 0.918

C2 NR 0.626 0.794 0.742 0.836
R 0.926 0.892 0.918 0.902

NOTE: NC = No contamination; C1 or C2 = contamination 1 or 2.
NR or R = Non-robust method or Robust method.
GEE and EL denote used different estimating method.
Corr or Ind denote considering correlation or not.

Table 2
Empirical biases (MSEs) of β̃ in Study 1.

m = 100
β1 β2 β3 β4

NC
NR ELCorr −0.0064 (0.0057) −0.0009 (0.0035) 0.0027 (0.0026) −0.0020 (0.0091)

ELInd −0.0097 (0.0089) −0.0022 (0.0043) 0.0065 (0.0035) −0.0059 (0.0128)

R ELCorr −0.0080 (0.0061) −0.0009 (0.0037) 0.0036 (0.0028) −0.0028 (0.0095)
ELInd −0.0099 (0.0092) −0.0018 (0.0045) 0.0062 (0.0035) −0.0059 (0.013)

C1
NR ELCorr −0.2220 (0.0672) −0.1313 (0.0256) −0.0966 (0.0150) 0.0022 (0.0126)

ELInd −0.2061 (0.0616) −0.0804 (0.0133) −0.0520 (0.0071) 0.0054 (0.0156)

R ELCorr −0.0643 (0.0117) −0.0393 (0.0060) −0.0271 (0.0038) 0.0043 (0.0092)
ELInd −0.0573 (0.0127) −0.0257 (0.0057) −0.0139 (0.0035) 0.0046 (0.0125)

C2
NR ELCorr −0.2202 (0.0696) −0.1282 (0.0253) −0.951 (0.0145) 0.0074 (0.0139)

ELInd −0.2006 (0.0607) −0.0783 (0.0133) 0.0516 (0.0071) 0.0108 (0.0173)

R ELCorr −0.0638 (0.0131) −0.0356 (0.0059) −0.0264 (0.0040) 0.0072 (0.0108)
ELInd −0.0550 (0.0131) −0.0224 (0.0055) −0.0136 (0.0038) 0.0087 (0.0142)

NOTE: NC = No contamination; C1 or C2 = contamination 1 or 2.
NR or R = Non-robust method or Robust method.
Corr or Ind denote considering correlation or not.

estimation of the variance of the GEE estimator is badly interfered by the perturbed data. For this moment, we think that
the proposed REL method are more robust than the RGEEmethod. We will explore this finding more based on other aspects
in the two subsequent discrete studies.

Before wemove on, wewould like tomention some simulation results that we do not present here for reasons of brevity.
We try different correlation structures in the very beginning of the simulation setting and find that the similar results can be
obtained. Moreover, we do not present the empirical biases and mean squares errors (MSEs) of the GEE or RGEE estimators,
since they are asymptotic equivalent to the corresponding EL estimators ([16], see). For all these reasons, wewill just present
the results under the same simulation structure withm = 100 as above in the following two simulation studies.

Study 2. We considered a logistic partial linear model withm subjects and 3 observations within each subject:

yij ∼ Binomial(1, µij), i = 1, . . . ,m, j = 1, . . . , 3,

and µij satisfies that

logit(µij) = xijβ + sin(2tij), (4.2)

where β = 1, and xij and tij are drawn independently from the uniform distribution on [−1, 1]. Here, we just consider
one single covariate, since it is easy to present the mean lengths (MLs) of confidence intervals as well as CPs. We use
the Madsen and Dalthorp [9] MATLAB package at http://www.stat.oregonstate.edu/people/lmadsen to generate clustered
correlated binary responses with exchangeable correlation structure Ri(γ0) = 1i1T

i γ0 + Ii(1 − γ0) for each subject, and the
correlation parameter γ0 is also taken to be 0.5. Since that the response is binary, we just consider to perturb the covariate
part as follow.

http://www.stat.oregonstate.edu/people/lmadsen
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Fig. 1. Q–Q plots in Study 2 (left panel is based on the GEEmethod and right panel is based on the ELmethod; upper panel is under no contaminations and
lower panel is under contamination 1. In every figure, dash lines are related to considering correlation while dot dash lines are related to not considering
correlation; thick lines are related to the robust method while thin lines are related to the non-robust method).

Table 3
CPs(MLs) of confidence intervals in Study 2.

m = 100
ELCorr GEECorr ELInd GEEInd

NC NR 0.940 (0.647) 0.930 (0.824) 0.932 (0.735) 0.914 (1.026)
R 0.936 (0.648) 0.931 (0.826) 0.924 (0.732) 0.916 (1.029)

C1 NR 0.884 (0.694) 0.798 (0.816) 0.832 (0.760) 0.876 (0.984)
R 0.910 (0.721) 0.874 (0.800) 0.926 (0.780) 0.902 (0.981)

NOTE: NC = No contamination; C1 = contamination 1.
NR or R = Non-robust method or Robust method.
GEE and EL denote used different estimating methods.
Corr or Ind denote considering correlation or not.

C1. Creating outliers in the covariate xij by replacing each xij values by xij + 2 for any randomly chosen observations with
2% probability.

Table 3 reports CPs(MLs) of the corresponding confidence intervals at nominal confidence level of 95% based on different
methods in study 2. Similar to the finding in study 1, CPs of both EL and GEE methods have been close to the nominal
level under m = 100. Moreover, although the choice of the working correlation does not affect CPs, choosing the correct
correlation does improve the efficiency of statistical inference a lot (shorter MLs). Which matches the findings in [1]. We
also find that the proposed REL method are more efficient and accurate than the RGEE method in terms of closer CPs and
shorter MLs. The values of empirical biases (MSEs) of the RMELE of β in Table 4 also tell us the same story as Table 2. Fig. 1
gives the chi-square with 1 degree of freedom quantile–quantile (Q–Q) plots for the REL ratio statistics, −2 log R(β0; α̂; γ̂ ),
and theWald statistics based on the normal approximation TNC = (β̂−β0)

T V̂−1(β̂−β0). In the case of no outliers, the Q–Q
plots obtained by all the methods are close to the 45° line, which means that the distributions of the EL ratio statistics and
the statistics based on normal approximation are close to the chi-square distribution with 1 degree of freedom, and show
the validation of the asymptotic results of these statistics. Meanwhile, in the case of contaminations, the Q–Q plots by the
REL method are closer to the 45° line, which shows that the outliers have smaller impact on the asymptotic distribution of
the proposed REL ratio statistic. This also shows that the proposed REL method can make more accurate inference than the
RGEE method.
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Table 4
Empirical biases (MSEs) of β̃ in Study 2.

ELCorr ELInd
NR R NR R

NC 0.0672 (0.0374) 0.0673 (0.0377) 0.0755 (0.0649) 0.0790 (0.0673)
C1 −0.1740 (0.0775) −0.0681 (0.0562) −0.1736 (0.0864) −0.0548 (0.0855)

NOTE: NC = No contamination; C1 = contamination 1.
NR or R = Non-robust method or Robust method.
Corr or Ind denote considering correlation or not.

Table 5
CPs in Study 3.

m = 100
ELCorr GEECorr ELInd GEEInd

NC NR 0.926 0.907 0.931 0.925
R 0.934 0.927 0.933 0.945

C1 NR 0.872 0.937 0.686 0.885
R 0.940 0.951 0.961 0.935

C2 NR 0.876 0.961 0.846 0.916
R 0.951 0.943 0.963 0.927

NOTE: NC = No contamination; C1 or C2 = contamination 1 or 2.
NR or R = Non-robust method or Robust method.
GEE and EL denote used different estimating methods.
Corr or Ind denote considering correlation or not.

Study 3: Finally, we considered a Poisson partial linear model withm subjects and 3 observations within each subject:

yij ∼ Poisson(µij), i = 1, . . . ,m, j = 1, . . . , 3,

ηij = log(µij) = x1,ijβ1 + x2,ijβ2 + sin(3tij), (4.3)

where β1 = β2 = 1, and the covariates are generated as follows: x1,ij is generated from a standard normal distribution, and
x2,ij = bi + u1,ij and tij = bi + u2,ij with bi, u1,ij and u2,ij as independent draws from the uniform distribution on [−1, 1].
We use the same MATLAB package as above used to generate clustered correlated counting responses with exchangeable
correlation structure Ri(γ0) = 1i1T

i γ0 + Ii(1 − γ0) for each subject, and the correlation parameter γ0 is also taken to be 0.5.
We adopted a little different method from above studies to create outliers. We let all the observations in the same subject
are perturbed at the same time which is common in longitudinal studies and details are as follows.

C1. Creating outliers in the covariate x1,ij by replacing each x1,ij values by x1,ij − 5 for two randomly chosen subject from
m = 100 subject.

C2. Creating outliers both in the covariate and in the response by replacing each x1,ij values with x1,ij − 5 for one randomly
chosen subject from m = 100 subject, and replacing each yij values with yij + 10 for another randomly chosen subject
fromm = 100 subject.

Similar to the above studies, Table 5 reports the CPs of the corresponding confidence regions at nominal confidence level
of 95% under m = 100 in Study 3. The entries show that CPs based on REL and RGEE are comparable. Fig. 2 represents the
confidence regions based on the non-robust EL (or REL) and the non-robust GEE (or RGEE) methods when considering the
true correlation structure. In the case of no outliers, the left panel shows that confidence regions based on EL and REL are
comparable and the areas of the corresponding confidence regions are smaller than those based on GEE or RGEE method.
But in the case of contaminations, the right panel shows that the center of the confidence regions obtained by the non-
robustmethods obviously deviate from the true values (1, 1) and the contaminations appear to havemuch smaller influence
on the confidence region obtained by the robust methods, especially the proposed REL method. Fig. 3 also represents the
similar confidence regions in Study 3, but here we compare the accuracy of the confidence regions under different working
correlations. Generally, one who consider the true exchangeable correlation have smaller areas. The findings from the Q–Q
plots and the empirical biases (MSEs) are similar to the case in Study 2 and omitted here for saving space.

We end this section by making a summary as follows.

1. In the case of no outliers, both the non-robust and robust methods perform almost equally well. However, in the cases of
contaminations, statistical inferences based on the non-robust EL methods are seriously biased (bad CPs) while the CPs
of the proposed REL method still keep close to the nominal 95% level, which shows the robustness of the proposed REL
method. Furthermore, compared with the RGEEmethod, the CPs obtained by the REL method are stable andmuch closer
to the nominal confidence level 95%.

2. Although the choice of the working correlation does not impact the CPs [1], the MLs or confidence regions obtained
by the REL method considering the correlation structure are much shorter or smaller than those considering working
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Fig. 2. Confidence regions based on both GEE and EL methods with considering correlation in Study 3 (left panel includes 4 ellipses without outliers (NC)
while right panel includes 4 ellipses under contamination (C2): thin solid lines for the EL method, thin dot dash lines for the REL method, thick solid line
for the GEE method and thick dot dash line for the RGEE method).
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Fig. 3. Confidence regions based on both non-robust EL and proposed REL methods in Study 3 (left panel includes 4 ellipses without outliers (NC) while
right panel includes 4 ellipses under contamination (C2): solid line for the EL method, dot dash line for the REL method and thick lines for those under
working independent correlation while thin lines for those under working exchangeable correlation).

independence structure, which shows that the REL method considering the correlation structure is more efficient than
that ignoring the correlation.

3. The Q–Q plots tell us that the likelihood ratio test based on the proposed REL method is more accurate than the Wald
test based on the normal approximation, especially in the case of contaminations.

5. Application to GUIDE data of Preisser and Qaqish [14]

We apply the proposed method to analyze the data collected from a study on Guidelines for Urinary Incontinence
Discussion and Evaluation. In the study, there are a total of 137 patients age 76 or older, who had experienced accidental
loss of urine and had been using some of 38medical practices, were asked whether they were bothered by the problem. The
outcome yij is the coded answer, 1 for ‘‘bothered’’ and 0 otherwise, where the subject i refers to the patient and j refers to



G. Qin et al. / Journal of Multivariate Analysis 105 (2012) 32–44 41

Table 6
Regression coefficients estimates in the analysis of the GUIDE data.

Semiparametric model Parametric model
RMELEInd RMELECorr He et al. Sinha

Intercept – – – −3.593 (0.952)
Age – – – −1.298 (0.632)
GENDER −1.63 (0.612) −1.59 (0.603) −1.57 (0.61) −1.297 (0.632)
DAYACC 0.50 (0.112) 0.53 (0.131) 0.59 (0.14) 0.506 (0.116)
SEVERE 0.72 (0.410) 0.70 (0.345) 0.67 (0.40) 0.827 (0.373)
TOILET 0.31 (0.092) 0.33 (0.125) 0.27 (0.10) 0.240 (0.110)

NOTE: the entries in the parenthesis are their standard errors.

the jth medical practice. The data has been well analyzed by many authors. Preisser and Qaqish [14] fitted the data through
a GLM and provided robust GEE to estimate the regression coefficients. More recently, Sinha [23] analyzed the data by
a generalized linear mixed model and He et al. [4] conducted a GPLM to analyze the GUIDE data by allowing one of the
covariates to enter the model as a nonlinear curve. Here, we use the same GPLM as He et al. did:

Log
E[yij]

1 − E[yij]
= GENDERiβ1 + DAYACCijβ2 + SEVEREiβ3 + TOILETijβ4 + f (AGEij),

where the five covariates are explained as follows: GENDER (1 for female, 0 otherwise), the number of leaking accidents per
day (DAYCC), severity of leaking (SEVERE) on a scales of 1–4, the number of times during the day they usually go to the toilet
to urinate (TOILET), and the standardized age (AGE, (age in year-76)/10).

As pointed by Sinha [23], the potential perturbed observations may include the patient 7, 10, 27, 56, 59, 97 and 131.
Particularly, the patient 97 appears to be the most extreme one. We calculate the values of the weights wij used in our
proposed REL. The heavily downweighted points (with weights less than 0.10) include the patients 10, 45, 47, 56, 59, 97, 98
and 131. Specially, patients 97 reports SEVERE = 3, DAYACC = 16.7, and TOILET = 8 and appears to be the most extreme
one with the smallest weight 0.005 which is consistent with that in [23]. So the REL method can downweight those subjects
and more accurately reflect the relationship in the majority of patients.

Although there are very weak within-patient correlations (refer to [4]), we analyze the data under both working
exchangeable and working independence. Table 6 gives our proposed RMELE estimators of the regression coefficients in
comparison with the estimates of both He et al. [4] and Sinha [23]. Basically, we are quite in agreement with He et al. [4],
except that the variable SEVERE could be significantwith our proposed REL under considering theweak correlation. Tomake
sure of this, we conduct the profile EL ratio test for the significance of the variable SEVERE and obtain the P-values 0.049 for
working independent and 0.032 for working exchangeable. For this moment, we agree with Sinha [23] that we should pay
attentions on the variable SEVERE in the GUIDE study.
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Appendix. Proofs of Theorems 1 and 2

In this section, we consider the casewhere the correlation parameter γ is known. The same asymptotic results holdwhen
γ is estimated under condition (A.7), but we omit the details. Let

ξ(β, α) =


ξ1
ξ2


=


K 1/2
n (β − β0)

k−1/2
n Hn(α − α0)+ k1/2n H−1

n MTΣ0X(β − β0)


,

where H2
n = knMTΣ0M . We denote XT

0,i = K−1/2
n X∗T

0,i ,
MT

0,i = k1/2n H−1
n π T

i , Rni = πiα0 − f0(ti), where f0(ti) = (f (ti1),
. . . , f (tini))

T , and ζi =X0,iξ1 + M0,iξ2 + Rni, then ηi(θ) = Diθ = η0,i + ζi, i = 1, . . . ,m, where η0,i = Xiβ0 + f0(ti).
In order to prove Theorems 1 and 2, we first introduce the following lemmas.

Lemma 1. Under condition (A.1) and (A.2), there exist α0 ∈ RNk depending on f0, and a constant C3 depending only on l and C0
such that

sup
t∈[0,1]

|f0(t)− π T (t)α0| ≤ C3k−r
n . (A.1)

The proof of this lemma follows easily from Theorem 12.7 in [20].
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Lemma 2. Under the conditions (A.1)–(A.6), we have

n−1/2
m
i=1

Zi(β0; α̂) → N(0, S). (A.2)

Proof. We multiply n1/2K−1/2
n to n−1/2m

i=1 Zi(β0; α̂). If we show K−1/2
n

m
i=1 Zi(β0; α̂)→D N(0, K−1/2SK−1/2), then

Lemma 2 holds since n1/2K−1/2
n is a consistent estimate of K−1/2. Next, we shall show K−1/2

n
m

i=1 Zi(β0; α̂)→D N(0, K−1/2S
K−1/2).

We have

K−1/2
n

m
i=1

Zi(β0; α̂) =

m
i=1

X̃i(β0; α̂)∆i(β0; α̂)
TV−1

i (β0; α̂)hi(β0; α̂), (A.3)

where X̃i(β0; α̂) = K−1/2
n X∗

i (β0; α̂). Take a to be any p-dimensional vector which satisfies that ∥a∥ = 1. Thenwe can expand
aT
m

i=1 X̃i(β0; α̂)∆i(β0; α̂)
TV−1

i (β0; α̂)hi(β0; α̂) into a Taylor series, and get

aT
m
i=1

X̃i(β0; α̂)∆i(β0; α̂)
TV−1

i (β0; α̂)hi(β0; α̂) = aT
m
i=1

X̃0,i∆
T
0,iV

−1
0,i h0,i + aT

m
i=1

X̃0,i∆
T
0,iV

−1
0,i ḣ0,i∆0,iζi(β0; α̂)

+

m
i=1

ζi(β0; α̂)∆
T
0,i

 ∂aT X̃i∆iV−1
i

∂µi


µi=µ0,i

 h0,i + R∗

m(µ
∗)

.
= I1 + I2 + I3 + I4, (A.4)

where R∗
m(µ

∗) =
m

i=1 R
∗

i (µ
∗

i ) and R∗

i (µ
∗

i ) =
1
2ζi(β0; α̂)

T∆T
i


∂2aT X̃i∆iV

−1
i hi

∂µi∂µ
T
i


∆iζi(β0; α̂) evaluated at µ∗

i = g−1(η0,i +

τiζi(β0; α̂)), i = 1, . . . ,m with 0 < τi < 1.
By the central limit theorem,

I1 → N(0, aTK−1/2SK−1/2a). (A.5)

For I2, considering that ξ1(β0) = 0, we have

I2 = aT
m
i=1

X̃0,i∆
T
0,iV

−1
0,i ḣ0,i∆0,iζi(β0; α̂)

= aT
m
i=1

X̃0,i∆
T
0,iV

−1
0,i ḣ0,i∆0,i(X̃0,iξ1(β0)+ M̃0,iξ2(β0; α̂)+ Rni)

= aT
m
i=1

X̃0,i∆
T
0,iV

−1
0,i ḣ0,i∆0,i(M̃0,iξ2(β0; α̂)+ Rni)

= aT
m
i=1

X̃0,i∆
T
0,iV

−1
0,i (ḣ0,i − Γ0,i)∆0,iM̃0,iξ2(β0; α̂)+ aT

m
i=1

X̃0,i∆
T
0,iV

−1
0,i ḣ0,i∆0,iRni

.
= I21 + I22. (A.6)

For I21, applying the Cauchy–Schwarz inequality, we have

I221 =


aT

m
i=1

X̃0,i∆
T
0,iV

−1
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0,iV
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2

∥ξ2(β0; α̂)∥
2, (A.7)
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where p̄ = Nk, then by conditions (A.4)–(A.6) and ∥ξ2(β0; α̂)∥ = Op(k
1/2
n ), we can obtain

E(I221) ≤

p
k

p̄
j

m
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E

1T
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0,iV
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2

≤ C
p
k

p̄
j
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1T
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2
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1T
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T
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1T
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2

= C sup
i

trace(X̃0,iX̃T
0,i)trace


m
i=1

M̃0,iM̃T
0,i


∥ξ2(β0; α̂)∥

2

≤ Ckn sup
i

trace(X̃0,iX̃T
0,i)∥ξ2(β0; α̂)∥

2

= O(k2nn
−1), (A.8)

where the finite constant C , independent ofm, may vary from line to line. Consequently, we have

sup
aT a=1

|I21| = Op(knn−1/2) = op(1). (A.9)

It is not difficult to show

sup
aT a=1

|I22| = Op(k−r
n ) = op(1). (A.10)

Combining (A.9) and (A.10), we have

sup
aT a=1

|I2| = op(1). (A.11)

Using the similar arguments to proof of (A.11), we can obtain supaT a=1 |I3| = op(1) and supaT a=1 |I4| = op(1).
So far, we prove K−1/2

n
m

i=1 Zi(β0; α̂)→D N(0, K−1/2SK−1/2), hence Lemma 2 is proved. �

Lemma 3. Under the conditions (A.1)–(A.6), we have

1/n
m
i=1

Zi(β0; α̂)Zi(β0; α̂)
T

→ S. (A.12)

Using Taylor expansion and similar arguments to the proof of Theorem 2 in [17], Lemma 3 can be obtained.

Lemma 4. Under the conditions (A.4)–(A.6), we have

sup
i

∥Zi(β0; α̂)∥ = op(n1/2), (A.13)

and

∥λ∥ = Op(n−1/2). (A.14)

Proof. By conditions (A.4)–(A.6), we have ∥X∗

i (β0; α̂)∥ = Op(n−1/2). Note that functionψ(·) is a bounded function, then we
have

sup
i

∥Zi(β0; α̂)∥ = sup
i

∥X∗

i (β0; α̂)∆
T
i (β0; α̂)V−1

i (β0; α̂)hi(β0; α̂)∥ = op(n1/2).

By Lemmas 2 and 3, Taylor expansion and using the same arguments as those used in the proof of (2.14) in [12], we can
prove (A.14). �

Proof of Theorem 1. We first define bivariate functions Q1(β, λ; α̂) and Q2(β, λ; α̂) respectively as

Q1(β, λ; α̂) =
1
m

m
i=1

Zi(β; α̂)

1 + λTZi(β; α̂)
, (A.15)
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and

Q2(β, λ; α̂) =
1
m

m
i=1

1
1 + λTZi(β; α̂)


∂Zi(β; α̂)

∂β

T

λ. (A.16)

Under the conditions (A.3)–(A.4) and (A.6), if β̃ is the RMELE of β , and λ̃ = λ(β̃) is the root of (2.4), following Lemma 1
in [16], we have

Q1(β̃, λ̃; α̂) = 0, Q2(β̃, λ̃; α̂) = 0.

By Taylor expansion at (β0, 0), conditions (A.4)–(A.6) and Lemmas 2 and 3, we have
√
n(β̃ − β0) = (K T S−1K)−1K T S−1√nQ1(β0; α̂)+ op(1)

= (K T S−1K)−1K T S−1√nQ1(β0; α̂)+ op(1) → N(0, V ). �

Proof of Theorem 2. Applying Taylor’s expansion to (2.5), we have

− 2 log R(β0; α̂) = 2
m
i=1


λTZi(β0; α̂)−

1
2
(λTZi(β0; α̂))

2


+ op(1). (A.17)

By Lemmas 2–4, we have the following representations:

λ =


m
i=1

Zi(β0; α̂)ZT
i (β0; α̂)

−1 m
i=1

Zi(β0; α̂)+ op(n−1/2); (A.18)

m
i=1

(λTZi(β0; α̂))
2

=

m
i=1

(λTZi(β0; α̂))+ op(1). (A.19)

By (A.17)–(A.19) and Lemmas 2 and 3, we have

−2 log R(β0; α̂) =

m
i=1

(λTZi(β0; α̂))+ op(1)

→


1

√
n

m
i=1

Zi(β0; α̂)

T 
n−1

m
i=1

Zi(β0; α̂)ZT
i (β0; α̂)

−1 
1

√
n

m
i=1

Zi(β0; α̂)


+ op(1)

→ χ2
p . �
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