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a b s t r a c t

We consider a nonparametric regression model where the response Y and the covariate
X are both functional (i.e. valued in some infinite-dimensional space). We define a kernel
type estimator of the regression operator and we first establish its pointwise asymptotic
normality. The double functional feature of the problem makes the formulas of the
asymptotic bias and variance even harder to estimate than in more standard regression
settings, and we propose to overcome this difficulty by using resampling ideas. Both a
naive and a wild componentwise bootstrap procedure are studied, and their asymptotic
validity is proved. These results are also extended to data-driven bases which is a key
point for implementing this methodology. The theoretical advances are completed by
some simulation studies showing both the practical feasibility of the method and the good
behavior for finite sample sizes of the kernel estimator and of the bootstrap procedures to
build functional pseudo-confidence area.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The familiar nonparametric regression model can be written as follows:

Y = r(X)+ ε, (1)

where Y is a response variable, X is a covariate and the error ε satisfies E(ε|X) = 0. The nonparametric feature of the
problem comes from the fact that the only restrictions on r are smoothness restrictions. In the past four decades, the
literature on this kind of models has been impressively large but mostly restricted to the standard multivariate situation
where both X and Y are real or multivariate. On the other hand, recent technological advances on collecting and storing
data have put statisticians in front of situations where the datasets are of functional nature (curves, images, etc.) with the
need to develop new models and methods (or for adapting standard ones) to this new kind of data. This field of research,
known as Functional Data Analysis (FDA) has been popularized by Ramsay and Silverman [25,26]) and the first advances
in nonparametric FDA are described in [16] (see also the recent Oxford Handbook of FDA by Ferraty and Romain [14]). In a
natural way, the regression problem (1) took part in the interest for nonparametric FDA and has been the object of various
studies in the past decade. However, as pointed out in the recent bibliographical discussion by Ferraty and Vieu [17] the
existing literature is concentrated on the situation where the response variable Y is scalar (i.e. when Y takes values on the
real line R).
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When both the responseY and the explanatory variableX are of functional nature, mostly functional linear aspects have
been developed, as can be seen for instance in [10,7] or in the bibliographical work of Chiou et al. [5] and the references
therein (see however two recent theoretical works on nonparametric methods by Ferraty et al., [12] and [21]). Several real
examples have been studied in the literature in order to emphasize the usefulness of such a linear functional approach. For
instance, in the precursor work of Ramsay and Dalzell [24], a functional linear regression of average monthly precipitation
curves on average monthly temperature curves is proposed. Müller et al. [23] show the ability of the functional linear
regression to emphasize the relationships that exist between temporary gene expression profiles for different Drosophila
(fly specy) life cycle phases. In the setting of functional time series, the reader can find in [3] lots of theoretical developments
whereas Antoch et al. [1] applied the functional linear model to forecast electricity consumption curves.

Our contribution in this paper is to provide various advances in nonparametric regression when both the response Y
and the explanatory variable X are of functional nature. When from an asymptotic point of view this paper completes
the recent theoretical advances presented by Ferraty et al. [12] and [21], our contribution is the first one to develop
methodological background for dealing with computational and applied issues. Themathematical background for modeling
such infinite dimensional settings is stated in Section 2. Then, the nonparametric model and its associated kernel estimator
are constructed in Section 3. The asymptotic behavior of the procedure is studied in Section 4 by means of an asymptotic
normality result. As it is very often the case in nonparametric high dimensional problems, the parameters of such an
asymptotic distribution of the estimator are very complicated and hardly usable in practice. To overcome this difficulty, a
componentwise bootstrapmethod is introduced in Section 5 in order to approximate this theoretical asymptotic distribution
by an empirical easily usable one. This componentwise bootstrap procedure needs to consider some basis and Section 6 will
give some results allowing to use data-driven bases. The feasibility of the whole procedure will be illustrated in Section 7
by means of some Monte Carlo experiments. In Section 8, some general conclusions will be drawn. Finally, the Appendix
contains the proof of the main theoretical results.

2. The functional background

LetE be a functional space,X be a randomvariable suitably defined on themeasurable space (E,A), and let the hilbertian
random variable Y live in a measurable separable Hilbert space (H,B) with H endowed with inner product ⟨·, ·⟩ and
corresponding norm ∥ ·∥ (i.e. ∥g∥2

= ⟨g, g⟩), and with orthonormal basis {ej : j = 1, . . . ,∞}. Moreover, E is endowedwith
a semi-metric1 d(·, ·) defining a topology tomeasure the proximity between two elements of E andwhich is disconnected of
the definition ofX in order to avoidmeasurability problems. This setting is quite general, since it includes the classical finite
dimensional framework, but also the case where E and/or H are functional spaces, like the space of continuous functions:
Lp-spaces like Sobolev or Besov spaces. At this stage it is worth noticing that this kind of modelization includes the setting
that occurs quite often in practice (but, of course, not always) when E = H . However, even in this simpler situation, one
still needs to introduce two different topological structures: a semi-metric structure d that will be a key tool for controlling
the good behavior of the estimators and also some separable Hilbert structure which is necessary for studying the operator
r component by component. Because the semi-metric d is not a metric in most cases, it is not possible to derive a norm and
a corresponding inner product to define correctly any Hilbert space. This is why these two structures are needed even if X
and Y live in the same space. So, we decided to present our results in the general framework where E is not necessarily
equal to H .

Each of these two structures endows the corresponding space with some specific topology. Concerning the semi-metric
topology defined on E we will use the notation

BE (χ, t) = {χ1 ∈ E : d(χ1, χ) ≤ t}

for the ball in E with center χ and radius t , while in the Hilbert space H we will denote

BH (z, r) = {y ∈ H : ∥z − y∥ ≤ r}

for the ball in H with center z and radius r .
In the sequel, we will also need the following notations. We denote

Fχ (t) = P(d(X, χ) ≤ t) = P(X ∈ B(χ, t)),

which is usually called in the literature the small ball probability function when t is a decreasing sequence to zero. Further,
define for any k ≥ 1:

ϕχ,k(s) = E[⟨r(X)− r(χ), ek⟩ | d(X, χ) = s] = E[rk(X)− rk(χ) | d(X, χ) = s],

where

rk(χ) = E[⟨Y, ek⟩ | X = χ ] = ⟨r(χ), ek⟩,

1 A semi-metric (sometimes called pseudo-metric) d(·, ·) is a metric which allows d(x1, x2) = 0 for some x1 ≠ x2 .
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and define for any k, ℓ ≥ 1:

ψχ,kℓ(s) = E[skℓ(X)− skℓ(χ) | d(X, χ) = s],

where

skℓ(χ) = Cov[⟨Y, ek⟩, ⟨Y, eℓ⟩ | X = χ ].

Also, let

τhχ (s) = Fχ (hs)/Fχ (h) = P(d(X, χ) ≤ hs|d(X, χ) ≤ h) for 0 < s ≤ 1,

and

τ0χ (s) = lim
h↓0
τhχ (s).

Remark 2.1. It is worth noting that the semi-metric plays a major role in this kind of methodology. This is why it is crucial
to fix a well adapted semi-metric. The reader will find in [16] useful discussions and guidelines about the way of choosing
a semi-metric dealing with practical aspects (see Chapter 3) as well as theoretical purposes (see Chapter 13).

3. Construction of the estimator

Let S = {(X1,Y1), . . . , (Xn,Yn)} be a sample of i.i.d. data drawn from the distribution of the pair (X,Y). The estimator
of the regression operator r is given by

rh(χ) =

n
i=1

YiK

h−1d(Xi, χ)


n

i=1
K

h−1d(Xi, χ)

 ,
where χ is a fixed element of E . Here, K is a probability density function (kernel) and h is a bandwidth sequence, tending
to zero when n tends to infinity. This estimator is a functional version of the familiar Nadaraya–Watson estimator, and has
been recently introduced for functional covariates (but for scalar response Y) in [16]. Basically, this estimator is an average
of the observed response Yi for which the corresponding Xi is close to the new functional element χ at which the operator
r has to be estimated. The size of the neighborhood around χ that will be used for the estimation of r(χ) is controlled by
the smoothing parameter h. The shape of the neighborhood is linked to the topological structure introduced on the space E ;
in other words the semi-metric d will play a major role in the behavior of the estimator. The semi-metric d will act on the
asymptotic behavior ofrh(χ) through the functions Fχ and τ0χ and more specifically through the following quantities:

M0χ = K(1)−

 1

0
(sK(s))′τ0χ (s)ds,

M1χ = K(1)−

 1

0
K ′(s)τ0χ (s)ds,

and

M2χ = K 2(1)−

 1

0
(K 2)′(s)τ0χ (s)ds.

4. Asymptotic normality ofr(χ)

From now on, χ is a fixed functional element in the space E . Consider the following assumptions:

(C1) For each k, ℓ ≥ 1, rk(·) and skℓ(·) are continuous in a neighborhood of χ , and Fχ (0) = 0.
(C2) For some δ > 0, all 0 ≤ s ≤ δ and all k ≥ 1, ϕχ,k(0) = 0, ϕ′

χ,k(s) exists, and ϕ
′

χ,k(s) is uniformly Lipschitz continuous
of order 0 < α ≤ 1, i.e. there exists a 0 < Lk < ∞ such that |ϕ′

χ,k(s) − ϕ′

χ,k(0)| ≤ Lksα uniformly for all 0 ≤ s ≤ δ.
Moreover,


∞

k=1 L
2
k < ∞ and


∞

k=1 ϕ
′

χ,k(0)
2 < ∞.

(C3) For some δ > 0, all 0 ≤ s ≤ δ and all k ≥ 1, ψχ,kk(0) = 0, and ψχ,kk(s) is uniformly Lipschitz continuous of order
0 < β ≤ 1, i.e. there exists a 0 < Nk < ∞ such that |ψχ,kk(s)| ≤ Nksβ uniformly for all 0 ≤ s ≤ δ. Moreover,

∞

k=1 Nk < ∞.
(C4) The bandwidth h satisfies h → 0, nFχ (h) → ∞ and (nFχ (h))1/2h1+α

= o(1).
(C5) The kernel K is supported on [0, 1], K has a continuous derivative on [0, 1), K ′(s) ≤ 0 for 0 ≤ s < 1 and K(1) > 0.
(C6) For all 0 ≤ s ≤ 1, τ0χ (s) exists, sup0≤s≤1 |τhχ (s)− τ0χ (s)| = o(1),M0χ > 0 andM1χ > 0.
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(C7) Var(∥Y∥ | X = χ) < ∞, and for all k ≥ 1, E(⟨Y − r(X), ek⟩4 | X = χ) < ∞.

Let

g(χ) = (nFχ (h))−1
n

i=1

YiK


d(Xi, χ)

h


and

f (χ) = (nFχ (h))−1
n

i=1

K


d(Xi, χ)

h


,

and note thatr(χ) =g(χ)/f (χ). Define
Bnχ = h

M0χ

M1χ

∞
k=1

ϕ′

χ,k(0)ek

and let Cχ be the operator characterized by

⟨Cχ f , eℓ⟩ =

∞
k=1

⟨f , ek⟩akl,

where

akl = Cov

⟨Y, ek⟩, ⟨Y, eℓ⟩|X = χ

M2χ

M2
1χ
.

We are now ready to state the asymptotic normality of the estimatorr(χ). While there are already various results of
this kind when the response is scalar (see for instance [22,13] or [9]), this is the first result on the asymptotic normality in
nonparametric kernel regression when both the response and the explanatory variable are functional.

Theorem 4.1. Assume (C1)–(C7). Then, for any χ ∈ E ,

(nFχ (h))1/2
r(χ)− r(χ)− Bnχ


L
→ Wχ ,

where Wχ follows a normal distribution on H with zero mean and covariance operator Cχ .

Remark 4.1. The small ball probability Fχ (h) plays a major role since it appears in the standardization. In fact, the same
standardization is systematically used in all theorems. This is why condition (C4) acting on Fχ (h) is crucial and deserves
some comments. From a probabilistic viewpoint, considering standard processes (i.e. exponential-type) and usual metrics
(i.e. derived from the supremum norm, L2-norm, etc.) leads us to choose the bandwidth h = O


(log n)−η


for some η > 0 in

order to satisfy (C4). In this case, one is able to get only a logarithmic rate of convergence for the nonparametric regression
operator (i.e. the standard polynomial rate is not reached). However, if one adopts the statistical viewpoint, one has at hand a
powerful tuning parameter which is the semi-metric; a relevant choice for the semi-metric may lead to the polynomial rate
which reduces the curse of dimensionality impact. For instance, [16, p. 213] showed that any projection-based semi-metric
(i.e. a semi-metric derived from a distance between projected elements onto some finite-dimensional subspace) allow us to
get the polynomial rate. The data-driven semi-metric dJ(·, ·) involved in the simulation study (see Section 7) is a special case
of such useful projection-based semi-metric. Of course, other relevant families of semi-metrics can be interestingly used in
practice (see again [16] or [27]).

5. Componentwise bootstrap approximation

Both naive and wild bootstrap procedures have been successfully used in the literature to approximate the asymptotic
distribution in functional regression. Themost recent resultwas provided by Ferraty et al. [15]when the explanatory variable
is functional and the response is real. In the following we propose an extension of these bootstrap procedures to the new
situation studied here, i.e. when both variables are functional. The idea is to state that, for any fixed basis element ek, when
one projects onto ek, the bootstrap approximation has a good theoretical behavior, which is the aim of Theorem 5.1. This is
why one introduces the terminology ‘‘componentwise bootstrap ’’.
Naive bootstrap. We assume here that themodel is homoscedastic, i.e. the conditional covariance operator of ε given X does
not depend on X: for any g, h ∈ H, E(⟨ε, g⟩⟨ε, h⟩|X) = E(⟨ε, g⟩⟨ε, h⟩). The bootstrap procedure consists of several steps:

(1) For all i = 1, . . . , n, defineεi,b = Yi −rb(Xi), where b is a second smoothing parameter.
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(2) Letεb = n−1n
i=1εi,b. Define new i.i.d. random elements εboot1 , . . . , εbootn by:

PS

εbooti =εj,b −εb = n−1

for i, j = 1, . . . , n, where PS is the probability conditionally on the original sample (X1,Y1), . . . , (Xn,Yn).
(3) For i = 1, . . . , n, let

Yboot
i =rb(Xi)+ εbooti ,

and denote Sboot
= (Xi,Y

boot
i )i=1,...,n.

(4) Definerboothb (χ) =

n
i=1 Yboot

i K(h−1d(Xi,χ))n
i=1 K(h−1d(Xi,χ))

.

Wild bootstrap. We assume here that the model can be heteroscedastic. With respect to the naive bootstrap, we need to
change the second step: define εbooti =εi,bVi, where V1, . . . , Vn are i.i.d. real valued random variables that are independent
of the data (Xi,Yi) (i = 1, . . . , n) and that satisfy E(V1) = 0 and E(V 2

1 ) = 1.
Before stating the next theorem which is a direct consequence of Theorem 1 in [11,15], let us first enumerate briefly

some additional assumptions (where α is defined in (C2)):

(i) For any k = 1, 2, . . . , E (|⟨Y, ek⟩| |X = ·) is continuous in aneighborhoodofχ and supd(χ1,χ)<ϵ E (|⟨Y, ek⟩|
m
|X = χ1) <

+∞ for some ϵ > 0 and for allm ≥ 1.
(ii) Fχ1(t)/Fχ (t) is Lipschitz continuous of order α in χ1, uniformly in t in a neighborhood of 0.
(iii) ∀χ1 ∈ E,∀0 ≤ s ≤ 1, τ0χ1 exists and supχ1∈E,0≤s≤1

τhχ1(s)− τ0χ1(s)
 = o(1); M0χ > 0, M2χ > 0, infd(χ1,χ)<ϵ M1χ1 >

0 for some ϵ > 0, and Mjχ1 is Lipschitz continuous of order α for j = 0, 1, 2.

(iv) h, b → 0, h/b → 0, h

Fχ (h)

1/2
= O(1), b1+α


nFχ (h)

1/2
= o(1), Fχ (b + h)/Fχ (b) → 1,


Fχ (h)/Fχ (b)


log n = o(1)

and bhα−1
= O(1).

(v) For each n, there exist rn ≥ 1, ln > 0 and t1n, . . . , trnn such that BE (χ, h) ⊂ ∪
rn
k=1 BE (tkn, ln), with rn = O(nb/h) and

ln = o

b

nFχ (h)

−1/2

.

More details about these assumptions can be found in [11,15].

Theorem 5.1. For any k = 1, 2, . . . , and any bandwidths h and b, letrk,h(χ) = ⟨rh(χ), ek⟩ andrbootk,hb (χ) = ⟨rboothb (χ), ek⟩. If,
in addition to (C1), (C2) and (C5), conditions (i)–(v) hold, then, for the wild bootstrap procedure and for any k = 1, 2, . . . , we
have:

sup
y∈R

PS

(nFχ (h))1/2

rbootk,hb (χ)−rk,b(χ) ≤ y


− P

(nFχ (h))1/2

rk,h(χ)− rk(χ)


≤ y
 a.s.

−→ 0,

where PS denotes probability, conditionally on the sample S (i.e. (Xi,Yi), i = 1, . . . , n). In addition, if the model is homoscedas-
tic, then the same result holds for the naive bootstrap.

Indeed, for a fixed k, the problem reduces to a one-dimensional response problem, and hence we can directly apply the
bootstrap result obtained in that case (Theorem 1 in [11,15]).

6. Data-driven basis

The main result of Section 5 investigates the asymptotic behavior of the componentwise bootstrap errors associated to
an orthonormal basis e1, e2, . . . .However, in order to implement this bootstrap procedure, it is necessary to determine this
orthonormal basis. From a statistical point of view, it is reasonable to implement a data-driven basis i.e. an orthonormal
basis estimated from the data (Xi,Yi), i = 1, . . . , n.

In the next theorem, we give a third important result allowing the use of data-driven bases. Any generic data-driven
basis will be denoted by {ek : k = 1, . . . ,∞}. We use the notation rk(χ) to denote the k-th component of the function
r(χ)with respect to this estimated basis, and similarly the estimatorsrk,h(χ) andrbootk,hb (χ) are defined. We show below that
Theorem 5.1 remains valid when the basis {ek : k = 1, . . . ,∞} is employed.

Theorem 6.1. Assume the conditions of Theorem 5.1 hold, and assume in addition that ∥ek − ek∥ = o(1) a.s. and
(h/b)(nFχ (h))1/2∥ek − ek∥ = o(1) a.s. for k = 1, 2, . . . . Then, for the wild bootstrap procedure, we have:

sup
y∈R

PS

(nFχ (h))1/2

rbootk,hb (χ)−rk,b(χ) ≤ y


− P

(nFχ (h))1/2

rk,h(χ)− rk(χ)


≤ y
 a.s.

−→ 0.

In addition, if the model is homoscedastic, then the same result holds for the naive bootstrap.
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Let us now focus on a natural way of building an orthonormal basis from the sample in order to implement our bootstrap
procedure. Inspired by functional principal component analysis (see [8], or [24], among others for early results and for
instance, [4,28,6], or [18], for recent contributions where functional principal component analysis plays a major role),
we introduce the second order moment regression operator Γr(X)(·) = E (⟨r(X), .⟩r(X)) which maps H onto H . The
orthonormal eigenfunctions e1, e2, . . . of Γr(X)(·) are relevant directions for the hilbertian variable r(X). Indeed, for any
fixed strictly positive integer K , the eigenfunctions e1, . . . , eK associated to the K largest eigenvalues minimize the quantity

E

r(X)−

K
k=1

⟨r(X), ψk⟩ψk


2


over any orthonormal sequence ψ1, . . . , ψK . But here, the regression operator r(·) is unknown and we propose now two
examples of useful data-driven bases.

Example 1. One can use the functional response Y instead of r(X). This amounts to consider the orthonormal
eigenfunctions ẽ1, ẽ2, . . . associated to the eigenvalues µ1 ≥ µ2 ≥ · · · of the second order moment operator ΓY =

E (⟨Y, .⟩Y)which can be estimated by its empirical version

ΓY,n(·) =
1
n

n
i=1

⟨Yi, .⟩Yi.

The sequence of orthonormal eigenfunctionse1,e2 . . . of ΓY,n is a well known estimate of the orthonormal basis e1 =

sign(⟨e1, ẽ1⟩)ẽ1, e2 = sign(⟨e2, ẽ2⟩)ẽ2, . . . . However, in order to simplify notations, from now on, we do not distinguish
ẽ1, ẽ2, . . . and e1, e2, . . . .

Proposition 1. Assume the conditions of Theorem 5.1 hold. Assume in addition that there exists a M > 0 such that E∥Y∥
2m <

M m! < ∞ for all m ≥ 1, and that the eigenvalues of ΓY satisfy µ1 > µ2 > · · ·. Then, Theorem 6.1 is valid for the empirical
orthonormal eigenfunctionse1,e2 . . . .
Example 2. Consider now the orthonormal eigenfunctions e1, e2, . . . associated to the eigenvalues (in descending order) of
Γr(X). If the regression operator r(·) would be known as is the case in the simulations, one gets the same result with the
orthonormal eigenfunctions Γr(X),n(·) =

1
n

n
i=1⟨r(Xi), .⟩r(Xi) as soon as r(X) is almost surely bounded (i.e. ∥r(X)∥ ≤

C a.s. For some 0 < C < ∞). When the regression operator r(·) is unknown, which is the usual statistical situation, a more
sophisticatedway of building a data-driven basis consists in using the eigenfunctionse1,e2 . . . of the estimated second order
moment regression operator Γrh(X) =

1
n

n
i=1⟨rh(Xi), .⟩rh(Xi).

Proposition 2. Assume the conditions of Theorem 5.1 hold. Assume in addition that there exists a C > 0 such that ∥r(X)∥ ≤

C < ∞ a.s. and that (nFχ (h))1/2∥Γrh(X) − Γr(χ),n∥∞ = o(b/h) a.s. (where ∥U∥∞ = sup∥x∥=1 ∥U(x)∥). Then, Theorem 6.1 is
valid for the empirical orthonormal eigenfunctionse1,e2 . . . .
Remark 6.1. There exist at least twoways of studying the quantity ∥Γrh(X)−Γr(χ),n∥∞, which are still open questions. They
use the following decomposition:

Γrh(X) − Γr(X),n =
1
n

n
i=1


⟨rh(Xi), .⟩rh(Xi)− ⟨r(Xi), .⟩r(Xi)


=

1
n

n
i=1


⟨rh(Xi)− r(Xi), .⟩(rh(Xi)− r(Xi))+ ⟨r(Xi), .⟩(rh(Xi)− r(Xi))

+ ⟨rh(Xi)− r(Xi), .⟩r(Xi)

.

A first way consists of focusing on the following inequality:

∥Γrh(X) − Γr(X),n∥∞ ≤ sup
x∈S

∥rh(x)− r(x)∥2
+ 2 C sup

x∈S
∥rh(x)− r(x)∥.

Hence, the uniform result of Ferraty et al. [11,15] needs to be extended to the case of hilbertian responses and assumptions
need to be added in order that (nFχ (h))1/2 supχ∈S ∥rh(χ)− r(χ)∥ = o(b/h) a.s.

A second way consists of investigating the asymptotic properties of the quantity

1
n

n
i=1

⟨r(Xi), .⟩(rh(Xi)− r(Xi)),

which is an average of hilbertian variables. This is not a trivial problem, becauserh(·) depends on the whole sample.
Although these are still open problems, one might expect that such results will be stated in the near future.
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Fig. 1. Left panel: 3 functional predictors; right panel: the 3 corresponding functional responses.

7. Simulations

This section aims at illustrating the potentialities of using the bootstrap method in our double functional setting
(functional response and functional explanatory variable). We first detail the simulation of both functional predictors
and functional responses. It is worth emphasizing that this is the first time that the nonparametric functional model is
used in such a setting. In the second part, we focus on the ability of the nonparametric functional regression to predict
functional responses from functional predictors. The third part illustrates the bootstrap methodology and we will see how
the theoretical results parallel the practical experiment. A last part is devoted to building and visualizing functional pseudo-
confidence areas, which is a very interesting new tool for assessing the accuracy of predictions when both response and
regressor are functional. All R routines as well as command lines for reproducing simulations, figures, etc., are downloadable
at http://www.math.univ-toulouse.fr/staph/npfda (click on the ‘‘Additional methods’’ item in the left menu).

Simulating functional responses and functional predictors. Let X1, . . . ,Xn be n = 250 functional predictors such that

Xi(tj) = ai cos(ωi tj)+

j
k=1

Wik,

where a1, . . . , an (resp. ω1, . . . , ωn) are n independent real random variables (r.r.v.) uniformly distributed over [1.5; 2.5]
(resp. [0.2; 2]), 0 = t1 < t2 < · · · < t99 < tp = π are p = 100 equally spaced measurements and the Wik’s are i.i.d.
realizations of N(0, σ 2)with σ 2

= 0.01. The additional sum of Gaussian r.r.v. is just to make the functional predictor quite
rough. The left panel of Fig. 1 displays 3 functional predictors (X1,X2 and X3). The right panel plots the corresponding
responses by using a mechanism described later on. The regression operator r(·) is defined such that, for all i = 1, . . . , n
and j = 1, . . . , 100:

r(Xi)(tj) =

 tj

0
Xi(u)2 d u.

The building of the functional response Y follows the following scheme for all i = 1, . . . , n and j = 1, . . . , 100:

Yi(tj) = r(Xi)(tj)+ εi(tj),

and we discus now the way of simulating the errors εi(tj)’s. One proposes to use the richness of the functional responses
setting tomix two kinds of errors: standard additive noise and structural perturbation. The standard additive noise is defined
as

εaddi (tj) ∼ N

0,

snr × tr(Γrc (X),n)


,

http://www.math.univ-toulouse.fr/staph/npfda
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Fig. 2. (a) Additive error; (b) structural error; (c) additive + structural error. For each panel, we plot r(X1), r(X2), r(X3) (solid lines) and Y1,Y2,Y3
(dashed lines).

where Γrc (X),n = 1/n
n

i=1⟨rc(Xi), .⟩rc(Xi) is the empirical covariance operator of r(X) (with rc(Xi) = r(Xi) −

(1/n)
n

i=1 r(Xi)), tr(·) stands for the standard trace operator and snr is the signal-to-noise ratio. Let Γ add
n =

1
n

n
i=1⟨ε

add
i , .⟩εaddi be the empirical covariance operator of the additive error. Then one has:

tr(Γ add
n ) = snr × tr(Γrc (X),n).

So, snr controls the ratio between the amount of variance in εadd (i.e. tr(Γ add
n )) and in r(X) (i.e. tr(Γrc (X),n)). This is why snr

is termed signal-to-noise ratio.
Another way of perturbing the regression operator r(·) is to use the eigenvalues λ1,n > λ2,n > · · · and corresponding

eigenfunctions e1,n, e2,n . . . of Γr(X),n to build what one calls structural errors as follows:

εstructi (tj) =

p
k=1

ηikek,n(tj),

where, for k = 1, 2, . . . , the r.r.v. η1k, . . . , ηnk are independent and identically distributed as N(0,

snr × λk,n). It is easy

to check that

tr(Γ struct
n ) = snr × tr(Γr(X),n),

where Γ struct
n is the covariance operator of the structural error.

Now, the last step consists in building a third error by mixing both previous ones:

εmix
i (tj) =

√
ρ εaddi (tj)+


1 − ρ εstructi (tj),

with ρ ∈ (0, 1) and the covariance operator Γ mix
n of the mixed error satisfies:

tr(Γ mix
n ) = snr × tr(Γrc (X),n).

Fig. 2 gives an idea of how the error-type affects the regression. Finally, in our simulations,we use themixed errorwith snr =

5% and ρ = 0.3. In order to valid the theoretical property of our bootstrap methodology, for both next paragraphs (focusing
on implementation and bootstrap aspects), one considers the situation described at the beginning of Example 2 (Section 6).
This corresponds to the case when the regression operator r is known: e1, e2, . . . (resp.e1,e2, . . .) are the orthonormal
eigenfunctions associated to the eigenvalues (in descending order) of Γrc (X) (resp. Γrc (X),n). As a by-product, a third
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Fig. 3. 3 predicted functional responses (solid lines); corresponding observed functional responses (dashed lines).

paragraph proposes an heuristic and practical way of building functional pseudo-confidence areas where the considered
data-driven basise1,e2, . . . is derived from the covariance operator Γrc (X) whererc(X) =rh(X)− 1/n

n
i=1rh(Xi).

Implementing functional nonparametric regression. Recall that this is the first time that one implements nonparametric
regression when both predictor and response are functional variables. So, before going ahead with the bootstrap method,
it is important to emphasize the quality of prediction reached by our nonparametric regression in this ‘‘double’’ functional
setting. The first step is to fix the semi-metric d(., .). According to the simulated data, the projection-based semi-metric is a
good candidate:

dJ(χ1, χ2) =

 J
j=1

⟨χ1 − χ2, vj,n⟩2,

where v1,n, v2,n, . . . are the eigenvectors associated with the largest eigenvalues of the empirical covariance operator of the
functional predictor X:

ΓX,n = 1/200
200
i=1

⟨Xi, .⟩Xi.

This kind of semi-metric is especially well adapted when the functional predictors are rough (for more details about
the interest of using semi-metrics, see [16]). The original sample is split into two subsamples: the learning sample
(i.e. (Xi,Yi)i=1,...,200) and the testing sample (i.e. (Xi,Yi)i=201,...,250). The learning sample allows us to compute the kernel
estimator (with optimal parameters h and k by using a standard cross-validation procedure). A first way of assessing the
quality of prediction is to compare predicted functional responses (i.e.rh(χ) for any χ in the testing sample) versus the
true regression operator (i.e. r(X)) as in Fig. 3. However, if one wishes to assess the quality of prediction for the whole
testing sample, it is much better to see what happens direction by direction. In other words, displaying the predictions onto
the direction ek,n amounts to plotting the 50 points (⟨r(Xi),ek⟩, ⟨rh(Xi),ek⟩)i=201,...,250. Fig. 4 proposes a componentwise
prediction graph for the four first components (i.e. k = 1, . . . , 4). The percentage of variance explained by these 4
components is 99.7% (i.e. 0.997 = (

4
k=1
λk)/(100

k=1
λk), whereλ1 > λ2 > · · · denotes the eigenvalues of Γrc (X),n). The

quality of componentwise predictions is quite good for each component. Investigating the bootstrap method. We illustrate
now Theorem 5.1 by comparing, for k = 1, . . . , 4, the density function f bootk,χ of the componentwise bootstrapped error

⟨rboothb (χ)−rb(χ),ek⟩
with the density function f truek,χ of the componentwise true error

⟨rh(χ)− r(χ),ek⟩.
So, one has to estimate both density functions and we will do that for any fixed functional predictor χ ∈ {X201, . . . ,X250}.
A standard Monte-Carlo scheme is used to estimate f truek,χ :

1. build 200 samples

(Xs

i ,Y
s
i )i=1,...,200


s=1,...,200,

2. carry out 200 estimates

⟨r sh(χ)− r(χ),ek⟩s=1,...,200, wherer sh is the functional kernel estimator of the regression

operator r(·) derived from the sth sample (Xs
i ,Y

s
i )i=1,...,200,
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Fig. 4. Componentwise prediction quality.

3. compute a standard density estimator over the 200 values
⟨r sh(χ)− r(χ),ek⟩s=1,...,200 .

Concerning the estimation of f bootk,χ , we use the same wild bootstrap procedure as described in [11,15]:

1. computerb(χ) over the initial sample S = (Xi,Yi)i=1,...,200,
2. repeat 200 times the bootstrap algorithm over S by using i.i.d. random variables V1, V2, . . . , drawn from the two Dirac

distributions

0.1(5 +
√
5)δ(1−√

5)/2 + 0.1(5 −
√
5)δ(1+√

5)/2,

which ensures that E(V1) = 0 and E(V 2
1 ) = E(V 3

1 ) = 1,

3. estimate the density f bootk,χ by using again any standard estimator over the 200 values ⟨rboot1hb (χ)−rb(χ),ek⟩, . . . , ⟨rboot200hb
(χ)−rb(χ),ek⟩.

The kernel estimator uses the asymmetric quadratic kernel and the semi-metric d4(., .). The bandwidth h is selected via a
cross-validation procedure and we set b = h. Fig. 5 compares the estimated f bootk,χ with the corresponding estimated f truek,χ
for the four first components (i.e. k = 1, . . . , 4). The first row corresponds to the fixed curves χ = X201, the second to
χ = X202, . . . , the fifth to χ = X205. It is clear that both densities are very close for each component. In order to assess
the overall quality of the bootstrap method, one computes the variational distance between the estimation of f truek,χ and f bootk,χ

(i.e. distχ,k = 0.5


|f truek,χ (t) − f bootk,χ (t)| dt ∈ [0, 1]), at a fixed curve χ in {X201, . . . ,X250} and for the four components.
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Fig. 5. Estimated densities: solid line → true error; dashed line → bootstrap error.

Fig. 6 displays for each component k = 1, 2, 3, 4, the boxplot derived from the 50 values distX201,k, . . . , distX250,k. It appears
clearly that the true errors can be very well approximated by the bootstrapped errors. Toward functional pseudo-confidence
areas. According to the previous developments, one is able to produce componentwise confidence intervals named, for any
component k (k = 1, 2, . . .), confidence intervalsIαkk such that

P
rk(χ) ∈Iαkk


= 1 − αk,

where rk(χ) = ⟨r(χ),ek⟩ with e1, . . . ,eK , the K eigenfunctions associated to the K largest eigenvalues of Γrc (X)
(i.e.e1,e2, . . . is a data-driven orthonormal basis). So, for a finite fixed number K of components, one gets

P


K

k=1

rk(χ) ∈Iαkk


≥ 1 − α,
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Fig. 6. Componentwise variational distances between estimation of f truek,χ and of f bootk,χ .

as soon as, for k = 1, . . . , K , one sets αk = α/K with α ∈ (0, 1). This last inequality amounts to the following one:

P


K

k=1

rk(χ)ek(·) ∈Eα ≥ 1 − α,

withEα =

K
k=1 akek(·), (a1, . . . , aK ) ∈Iα11 × · · · ×IαKK


. This means that one is able to produce a functional pseudo-

confidence area for the projection rK (χ) of r(χ) onto the K -dimensional subspace of H spanned by the K data-driven basis
functionse1, . . . ,eK . Fig. 7 displays this functional pseudo-confidence area for 9 different fixed curves extracted from the
testing sample with α = 0.05 and K = 4 (recall that the four first components contain 99.7% of the variance of r(X)).
The shape of these pseudo-confidence areas is quite natural since the starting point is zero for each simulated functional
response. Moreover, one can remark that r(χ) and its K -dimensional projection ontoe1, . . . ,eK are very close for this
example. Of course, when one replaces the data-driven basis with the eigenfunctions of ΓY , one gets very similar functional
pseudo-confidence areas.

8. Conclusions

This paper proposes significant advances for analyzing a nonparametric regression model when both the response and
the predictor are functional variables.We show that the kernel estimator provides good predictions under thismodel. One of
the main contributions of this work is that we allow for random bases, which is important for implementing our method in
practice.We also show that the bootstrapmethodology remains valid in this double functional setting, from both theoretical
and practical point of view. Consequently, one is able to plot functional pseudo-confidence areas, which is a very interesting
tool for assessing the quality of prediction.
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Appendix. Appendix section

A.1. Proof of Theorem 4.1

Write

(nFχ (h))1/2
g(χ)f (χ) − r(χ)− Bnχ



= (nFχ (h))1/2
g(χ)f (χ) −

Eg(χ)
Ef (χ)


+ (nFχ (h))1/2


Eg(χ)
Ef (χ) − r(χ)− Bnχ


. (A.1)
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We will first show that the second term in right hand side of (A.1) is negligible. Consider

Eg(χ)
Ef (χ) − r(χ) =

E


(Y − r(χ))K


d(X,χ)

h



E


K


d(X,χ)
h



=

∞
k=1

E


ϕχ,k(d(X, χ))K


d(X,χ)

h


ek

E


K


d(X,χ)
h

 . (A.2)

For a fixed direction ek, we can follow the lines of proof of Lemmas 1 and 2 in [13] (replacing ϕ by ϕχ,k), which shows that
(A.2) equals

h
∞
k=1


ϕ′

χ,k(0)
M0χ

M1χ
+ Rn,k


ek,

where the remainder term Rn,k satisfies

|Rn,k| =

h
 ϕ′

χ,k(ξt,k)− ϕ′

χ,k(0)

K(t)dPd(X,χ)/h(t)


K(t)dPd(X,χ)/h(t)

≤ h1+αLk

 tαK(t)dPd(X,χ)/h(t)


K(t)dPd(X,χ)/h(t)

≤ h1+αLk,

with |ξt,k| ≤ ht for any k ≥ 1 and 0 ≤ t ≤ 1, and where 0 < α < 1 and Lk are defined in assumption (C2). Now define
Rn,χ =


∞

k=1 Rn,kek. Then, it follows that the second term in right hand side of (A.1) equals (nFχ (h))1/2Rn,χ . Next, note
that

nFχ (h)∥Rn,χ∥
2

= nFχ (h)
∞
k=1

R2
n,k ≤ nFχ (h)h2(1+α)

∞
k=1

L2k = o(1),

by assumptions (C2) and (C4). Hence, by Slutsky’s theorem, it suffices to prove the weak convergence of

(nFχ (h))1/2
g(χ)f (χ) −

Eg(χ)
Ef (χ)


=
(nFχ (h))1/2f (χ)Ef (χ)


{g(χ)− Eg(χ)}Ef (χ)− {f (χ)− Ef (χ)}Eg(χ).

Again by Slutsky’s theorem and by noting thatf (χ) − M1χ
P

→ 0 (see Lemma 4 in [13]), and that Eg(χ)/Ef (χ) − r(χ) =

Bnχ + O(h1+α) = o(1), the latter expression has the same asymptotic distribution as

(nFχ (h))1/2

M1χ

g(χ)− Eg(χ)− {f (χ)− Ef (χ)}r(χ)
=

1
M1χ

(nFχ (h))−1/2
n

i=1


YiK


d(Xi, χ)

h


− E


r(X)K


d(X, χ)

h



− r(χ)K


d(Xi, χ)

h


+ r(χ)E


K


d(X, χ)

h



=

n
i=1


Zni − EZni


,

where for 1 ≤ i ≤ n,

Zni =
1

M1χ
(nFχ (h))−1/2


YiK


d(Xi, χ)

h


− r(χ)K


d(Xi, χ)

h


.
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Let us now calculate the covariance operator of Sn =
n

i=1 Zni:

E

⟨Sn − ESn, ek⟩⟨Sn − ESn, eℓ⟩


=

n
i=1

E

⟨Zni − EZni, ek⟩⟨Zni − EZni, eℓ⟩


=

n
i=1

E

⟨Zni − E(Zni|Xi), ek⟩⟨Zni − E(Zni|Xi), eℓ⟩


+

n
i=1

E

⟨E(Zni|Xi)− EZni, ek⟩⟨E(Zni|Xi)− EZni, eℓ⟩


=

1
M2

1χFχ (h)
E


⟨Y − r(X), ek⟩⟨Y − r(X), eℓ⟩K 2


d(X, χ)

h



+
1

M2
1χFχ (h)

Cov


⟨r(X)− r(χ), ek⟩K


d(X, χ)

h


,

× ⟨r(X)− r(χ), eℓ⟩K


d(X, χ)

h


. (A.3)

The second term of (A.3) is equal to

1
M2

1χFχ (h)
Cov


ϕχ,k(d(X, χ))K


d(X, χ)

h


, ϕχ,ℓ(d(X, χ))K


d(X, χ)

h



=
1

M2
1χFχ (h)

 1

0
ϕχ,k(ht)ϕχ,ℓ(ht)K 2(t) dPd(X,χ)/h(t)

−

 1

0
ϕχ,k(ht)K(t) dPd(X,χ)/h(t) :

 1

0
ϕχ,ℓ(ht)K(t) dPd(X,χ)/h(t)


= ankℓ,2 (say).

On the other hand, the first term of (A.3) can be written as

1
M2

1χFχ (h)
E


skℓ(X)K 2


d(X, χ)

h


:= ankℓ,1 (say).

Let ankℓ = ankℓ,1 + ankℓ,2. It now follows from Theorem 1 in [19] that it suffices to show the following three conditions:

(i) limn→∞ ankℓ = akℓ for all k, ℓ ≥ 1.
(ii) limn→∞


∞

k=1 ankk =


∞

k=1 akk < ∞.
(iii) ∀δ > 0, ∀k ≥ 1: limn→∞

n
i=1 E


⟨Zni, ek⟩2I{|⟨Zni, ek⟩| > δ}


= 0.

Proof of (i). Using the continuity of ϕχ,k and ϕχ,ℓ it is easily seen that ankℓ,2 = o(1). Moreover, the continuity of skℓ(χ)
leads to

ankℓ,1 =
1

M2
1χFχ (h)

skℓ(χ)E


K 2


d(X, χ)

h


(1 + o(1))

=
1

M2
1χFχ (h)

skℓ(χ)Fχ (h)M2χ (1 + o(1))

= akℓ + o(1),

where the second equality follows from Lemma 5 in [13].
Proof of (ii). For the second condition, a more refined derivation is needed, since the remainder terms in the calculation
leading to akℓ should be summable. This can be achieved using arguments similar to those used for the bias term Bnχ . In
fact, using assumption (C3) we have that

ankk,1 =
1

M2
1χFχ (h)

E

ψχ,kk(d(X, χ))K 2

d(X, χ)
h


+

M2χ skk(χ)
M2

1χ
(1 + o(1))

≤
1

M2
1χFχ (h)

NkE

(d(X, χ))βK 2

d(X, χ)
h


+

M2χ skk(χ)
M2

1χ
(1 + o(1)).
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Hence,

∞
k=1

ankk,1 = O(hβ)
∞
k=1

Nk +

M2χ

∞
k=1

skk(χ)

M2
1χ

(1 + o(1))

=


∞
k=1

akk


(1 + o(1)),

since


∞

k=1 Nk < ∞ by assumption (C3). Similarly, we have that
∞
k=1

ankk,2 = o(1),

provided that


∞

k=1 ϕ
′

χ,k(0)
2 < ∞ and


∞

k=1 L
2
k < ∞ (see condition (C2)). This shows that (ii) is valid, since

∞
k=1

akk =

∞
k=1

Var

⟨Y, ek⟩|X = χ

M2χ

M2
1χ

= Var

∥Y∥ |X = χ

M2χ

M2
1χ
,

which is finite by assumptions (C6) and (C7).
Proof of (iii). Finally, for condition (iii) above, consider

n
i=1

E

⟨Zni − EZni, ek⟩2I{|⟨Zni − EZni, ek⟩| > δ}



≤

n
i=1


E

⟨Zni − EZni, ek⟩4


P{|⟨Zni − EZni, ek⟩| > δ}

1/2

≤ 16Fχ (h)−1


E


⟨Y − r(χ), ek⟩4K 4


d(X, χ)

h


P

⟨Y − r(χ), ek⟩K


d(X, χ)

h



− E


⟨Y − r(χ), ek⟩K


d(X, χ)

h

 > δ(nFχ (h))1/2
1/2

≤ 16Fχ (h)−1


E


⟨Y − r(χ), ek⟩4|X = χ


1 + o(1)

1/2

E


K 4


d(X, χ)

h

1/2

×Var


⟨Y − r(χ), ek⟩K


d(X, χ)

h

1/2

δ−1(nFχ (h))−1/2,

and this tends to zero since E(⟨Y − r(χ), ek⟩4|X = χ) < ∞, E{K 4(
d(X,χ)

h )} = O(Fχ (h)) and Var{⟨Y − r(χ), ek⟩
K( d(X,χ)h )} = O(Fχ (h)).

This shows that all the conditions of Theorem 1 in [19] are satisfied and hence
n

i=1[Zni − EZni] converges to a zero mean
normal limit with covariance operator given by Cχ . �

A.2. Proof of Theorem 6.1

We give the proof for the wild bootstrap procedure. For the naive bootstrap, the arguments for the calculation of the
variance need to be slightly adapted (see the end of the proof for more details). Write (with an = (nFχ (h))1/2)

PS

an
rbootk,hb (χ)−rk,b(χ) ≤ y


− P


an
rk,h(χ)− rk(χ)


≤ y


= PS


an
rbootk,hb (χ)−rk,b(χ) ≤ y


− PS


an
rbootk,hb (χ)−rk,b(χ) ≤ y


+ PS


an
rbootk,hb (χ)−rk,b(χ) ≤ y


− P


an
rk,h(χ)− rk(χ)


≤ y


+ P


an
rk,h(χ)− rk(χ)


≤ y


− P


an
rk,h(χ)− rk(χ)


≤ y


. (A.4)
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The second term of (A.4) is o(1) a.s. by Theorem 5.1. For the third term, note that if we write Zn = an(rh(χ) − r(χ)), then
an(rk,h(χ)− rk(χ)) = ⟨Zn,ek⟩ and an(rk,h(χ)− rk(χ)) = ⟨Zn, ek⟩. Hence,

⟨Zn,ek⟩ = ⟨Zn, ek⟩ + ⟨Zn,ek − ek⟩ ≤ ⟨Zn, ek⟩ + ∥Zn∥ ∥ek − ek∥ = ⟨Zn, ek⟩ + oP(1),

since ∥ek − ek∥ = oP(1) and ∥Zn∥ = OP(1) (this last point follows from E∥Zn∥2 < ∞ under the conditions of Theorem 5.1).
Hence the third term of (A.4) is o(1). It remains to consider the first term of (A.4). It follows from the proof of Theorem 1
in [11,15] that this term is equal to

Φ


y − an{ES

[rbootk,hb (χ)] −rk,b(χ)}
an

VarS[rbootk,hb (χ)]


− Φ


y − an{ES

[rbootk,hb (χ)] −rk,b(χ)}
an

VarS[rbootk,hb (χ)]


+ o(1)

a.s., and that this is o(1) a.s. uniformly in y provided

an|ES
[rbootk,hb (χ)] −rk,b(χ)− ES

[rbootk,hb (χ)] +rk,b(χ)| = o(1), a.s., (A.5)

and

VarS[rbootk,hb (χ)]
VarS[rbootk,hb (χ)]

→ 1, a.s. (A.6)

For the proof of (A.5) note that the expression between absolute values equals (where the subindex h infh(χ) is added to
make clear which bandwidth we are using)

(nFχ (h))−1fh(χ)
n

i=1

rk,b(Xi)−rk,b(χ)−rk,b(Xi)+rk,b(χ)Kh−1d(Xi, χ)


=
(nFχ (h))−1fh(χ)

n
i=1

⟨rb(Xi)−rb(χ),ek − ek⟩K

h−1d(Xi, χ)



=
(nFχ (h))−1fh(χ)

n
i,j=1

Kh(d(Xi, χ))


Kb(d(Xj,Xi))
ℓ

Kb(d(Xℓ,Xi))
−

Kb(d(Xj, χ))
ℓ

Kb(d(Xℓ, χ))


× ⟨Yj,ek − ek⟩, (A.7)

where for any h, Kh(u) = K(h−1u). For fixed values of i and j,

Kh(d(Xi, χ))


Kb(d(Xj,Xi))
ℓ

Kb(d(Xℓ,Xi))
−

Kb(d(Xj, χ))
ℓ

Kb(d(Xℓ, χ))



= Kh(d(Xi, χ))


Kb(d(Xj,Xi))


1

nFXi(b)fb(Xi)
−

1

nFχ (b)fb(χ)


+
1

nFχ (b)fb(χ)

Kb(d(Xj,Xi))− Kb(d(Xj, χ))



≤


CKh(d(Xi, χ))I


d(Xj, χ) ≤ b + h


(nFχ (h))−1/2

+ hα

(nFχ (b))−1

+f −1
b (χ)Kh(d(Xi, χ))I


d(Xj, χ) ≤ b + h

h
b
(nFχ (b))−1


(1 + o(1)),

for some 0 < C < ∞, since it follows from Lemmas 5 and 6 in [11,15] that

sup
d(χ1,χ)≤h

|fb(χ1)−fb(χ)| = o

(nFχ (h))−1/2


a.s.

and since it follows from the Lipschitz continuity of Fχ1(t)/Fχ (t) of order α uniformly in t that

sup
d(χ1,χ)≤h

|Fχ1(b)− Fχ (b)| = o

hαFχ (b)


a.s.,
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where α is defined in condition (C2). It now follows that the absolute value of (A.7) multiplied by (nFχ (h))1/2 is
asymptotically bounded by

C(nFχ (h))−1/2
+ Chα +f −1

b (χ)
h
b


(nFχ (h))−1/2(nFχ (b))−1

×f −1
h (χ)

n
i,j=1

Kh(d(Xi, χ))I

d(Xj, χ) ≤ b + h


∥Yj∥ · ∥ek − ek∥

≤


C +

h
b
(nFχ (h))1/2


∥ek − ek∥E(∥Y∥|X = χ)

Fχ (b + h)
Fχ (b)

(1 + o(1)),

since hα = O(h/b), and this is o(1) a.s. by the assumptions given in the statement of the theorem. Next, consider the
verification of (A.6):

VarS[rbootk,hb (χ)] − VarS[rbootk,hb (χ)]

=
1

(nFχ (h))2f 2h (χ)
n

i=1


⟨Yi −rb(Xi),ek⟩2 − ⟨Yi −rb(Xi), ek⟩2


K 2(h−1d(Xi, χ))

=
1

(nFχ (h))2f 2h (χ)
n

i=1

⟨Yi −rb(Xi),ek − ek⟩⟨Yi −rb(Xi),ek + ek⟩K 2(h−1d(Xi, χ))

≤
1

(nFχ (h))2f 2h (χ)
n

i=1

K 2(h−1d(Xi, χ))∥Yi −rb(Xi)∥
2
∥ek − ek∥(∥ek∥ + ∥ek∥)

≤
M2χ

nFχ (h)
E(∥Y − r(X)∥2

|X = χ)∥ek − ek∥(∥ek∥ + ∥ek∥)(1 + o(1)),

which is o((nFχ (h))−1) a.s., since ∥ek − ek∥ = o(1) a.s. Note that when the naive bootstrap is used, we have that (whereσ 2
ε,k = n−1n

i=1⟨εi,b −εb, ek⟩2 and similarly forσ 2
ε,k):

VarS[rbootk,hb (χ)] − VarS[rbootk,hb (χ)] =
1

(nFχ (h))2f 2h (χ)
n

i=1

K 2(h−1d(Xi, χ))[σ 2
ε,k −σ 2

ε,k]

≤
M2χ

nFχ (h)
E(∥Y − r(X)∥2)∥ek − ek∥(∥ek∥ + ∥ek∥)(1 + o(1)) = o((nFχ (h))−1).

The proof is now complete. �

A.3. Proof of Proposition 1

According to Bosq [2], for any fixed k, there exists a constant Ck (0 < Ck < ∞) such that

∥êk − ek∥ ≤ Ck ∥ΓY,n − ΓY∥∞, (A.8)
where ∥ · ∥∞ is the standard operator norm (i.e. ∥U∥∞ = sup∥x∥=1 ∥U(x)∥). The proof of Proposition 1 is then based on the
following intermediate result:

Lemma 1. Let Y1, . . . ,Yn be an i.i.d. sequence of hilbertian random variables and assume that there exists M > 0 such that
E∥Y1∥

2m
≤ Mm!. Then, we have:

∥ΓY,n − ΓY∥∞ = Oa.co.


log n
n


. (A.9)

The proof of this lemma is based on Yurinskii’s Corollary [29, p. 491] and is quite standard (this is why we omitted its proof
which is available on request). For more details and references on the literature dealing with this kind of results, see for
instance [3] or [20].
Now, (A.9) combined with (A.8) leads to, for any fixed k,

∥êk − ek∥ = Oa.co.


log n
n


.

In order to end the proof of Proposition 1, it remains to prove that
√
log n/n = o


(b/h)(n Fχ (h))−1/2


or equivalently

(h/b)

log n Fχ (h) = o(1).
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Case 1: log n Fχ (h) = O(1). The result is trivial since h/b = o(1).
Case 2: log n Fχ (h) → +∞. Theorem 5.1 assumes b1+α


n Fχ (h) → 0which implies that (n/ log n)b2+2α

= o(1) and hence
b = o ((log n/n)ϵ), with ϵ > 0 (α ∈ (0, 1]). On the other hand, Theorem 5.1 assumes also that b hα−1

= O(1), which
is equivalent to h = O(b1+ϵ

′

)with ϵ′ > 0 and this leads us to h/b = o

(log n/n)ϵ

′′

with ϵ′′ > 0. Then, it is easy to

see that (h/b)
√
log n = o


n−ϵ′′(log n)ϵ

′′
+1/2


= o(1) and (h/b)


log n Fχ (h) = o(1) holds. �

A.4. Proof of Proposition 2

The proof is based on the following decomposition:

∥Γrh(X) − Γr(X)∥∞ ≤ ∥Γrh(X) − Γr(X),n∥∞ + ∥Γr(X),n − Γr(X)∥∞. (A.10)

By using (A.9) with r(X) instead of Y, we obtain:

∥Γr(X),n − Γr(X)∥∞ = Oa.co.


log n
n


. (A.11)

Taking the hypotheses of Proposition 2 together with (A.10) and (A.11), one gets:

∥Γrh(X) − Γr(X)∥∞ = o


b

h

n Fχ (h)


+ O


log n
n


, a.s.

Remember that
√
log n/n = o(b/(h


n Fχ (h))) (see the end of the proof of Proposition 1), and for any fixed k, there exists a

0 < Ck < ∞ such that ∥ek − ek∥ ≤ Ck∥Γrh(X) − Γr(X)∥∞, from which Proposition 2 follows. �
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