
Accepted Manuscript

Representation of multivariate Bernoulli distributions with a given set of
specified moments

Roberto Fontana, Patrizia Semeraro

PII: S0047-259X(18)30024-1
DOI: https://doi.org/10.1016/j.jmva.2018.08.003
Reference: YJMVA 4398

To appear in: Journal of Multivariate Analysis

Received date : 12 January 2018

Please cite this article as: R. Fontana, P. Semeraro, Representation of multivariate Bernoulli
distributions with a given set of specified moments, Journal of Multivariate Analysis (2018),
https://doi.org/10.1016/j.jmva.2018.08.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jmva.2018.08.003


Representation of multivariate Bernoulli distributions
with a given set of specified moments

Roberto Fontanaa,∗, Patrizia Semeraroa

a DISMA Dipartimento di Scienze Matematiche “Giuseppe Luigi Lagrange”,
Dipartimento di eccellenza 2018-2022, Politecnico di Torino, Torino, Italy

Abstract

We propose a simple but new method of characterizing multivariate Bernoulli variables belonging to a given class,
i.e., with some specified moments. Within a given class, this characterization allows us to generate easily a sample of
mass functions. It also provides the bounds that all the moments must satisfy to be compatible and the possibility to
choose the best distribution according to a certain criterion. For the special case of the Fréchet class of the multivariate
Bernoulli distributions with given margins, we find a polynomial characterization of the class. Our characterization
allows us to have bounds for the higher order moments. An algorithm is presented and illustrated.
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1. Introduction

Dependent binary variables play a key role in many important scientific fields such as clinical trials and health
studies. The problem of simulating correlated binary data is extensively addressed in the statistical literature; see, e.g.,
[3, 7, 9, 20]. Simulation studies are useful for analyzing extensions or alternatives to current estimating methods, such
as generalized linear mixed models, or for the evaluation of statistical procedures for marginal regression models [18].
The simulation problem consists of constructing multivariate distributions for given Bernoulli marginal distributions
and a given correlation matrix ρ. Frequently, assumptions are made about the correlation structure. Probably the
most common is equicorrelation; see, e.g., [3]. A popular approach also uses working correlation matrices [11, 12],
such as first-order moving average correlations or first-order autoregressive correlations; see [16] and references
therein. An important issue for these simulation procedures is the compatibility of marginal binary variables and their
correlations, since problems may arise when the margins and the correlation matrix are not compatible [2–4]. The
range of admissible correlation matrices for binary variables is well-known in the bivariate case. For multivariate
binary distributions with more than three variables, this problem has been widely studied in the literature; see, e.g.,
[10] and references therein. However, its solution from a practical point of view is still an open issue.

We propose a simple but new method to represent multivariate Bernoulli variables belonging to a given class, i.e.,
with some specified moments. This method represents the mass functions of the given class of multivariate Bernoulli
distributions as points of the convex hull whose generators are mass functions which belong to the same class. Our
main contribution is to provide a method and develop an algorithm to find the extreme rays of this convex hull. For
the special case of the Fréchet class of the multivariate Bernoulli distributions with given one-dimensional margins,
a polynomial-based representation of the mass functions is built. This representation is fully characterized, since our
approach allows us to find necessary and sufficient conditions on the polynomial parameters to have a mass function
in the Fréchet class.

Our new approach allows us to generate easily a sample of mass functions which belong to a given class and to
find bounds for the non-specified moments of the distribution. It is worth noting that this method puts no restriction
either on the number of variables or on the specified moments. The range of applications is limited only by the
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amount of computational effort required, because the number of extremal rays increases very quickly as the dimension
of the multivariate Bernoulli variables increases. This method provides a new computational procedure to simulate
multivariate distributions of binary variables with some given moments. Theoretical results on the number of extremal
rays can be found, e.g., in [14]. As we will see in Section 5.6 with respect to the problem of generating mass functions
with given margins and correlations, our method performs better than other commonly used in real applications. In
Section 4 we also show how this method offers the opportunity to choose the best distribution according to a certain
criterion. For example, as the moments of multivariate Bernoulli are always positive, it could be of interest to find one
of the distributions with the smallest sum of all the moments with order greater than 2. This problem can be efficiently
solved using linear programming techniques [1].

The paper is organized as follows. After some preliminary notations in Section 2, Section 3 expresses any given
Fréchet class of distributions with Bernoulli margins as points of the convex hull of the ray mass functions. The
bivariate case is fully characterized in Section 3.2. The generalization to the class defined by a set of moments of any
order is in Section 4. Some real examples and the algorithm are discussed in Section 5. Section 6 concludes.

2. Preliminaries

Let Fd be the set of d-dimensional distributions which have Bernoulli univariate marginal distributions. Let
us consider the Fréchet class F (p1, . . . , pd) ⊆ Fd of distribution functions in Fd with Bernoulli marginal distri-
butions B(p1), . . . ,B(pd), where p1, . . . , pd ∈ (0, 1). If X = (X1, . . . , Xd) is a random vector with joint distribu-
tion in F (p1, . . . , pd), we denote its cumulative distribution function by Fp and its mass function by fp, where
p = (p1, . . . , pd). The column vectors which contain the values of Fp and fp over Sd = {0, 1}d are denoted
Fp = (Fp(x), x ∈ Sd) and f p = ( fp(x), x ∈ Sd), respectively.

We make the non-restrictive hypothesis that the set Sd of 2d binary vectors is ordered according to the reverse-
lexicographical criterion. For example S2 = {00, 10, 01, 11} and S3 = {000, 100, 010, 110, 001, 101, 011, 111}. For
each i ∈ {1, . . . , d}, the marginal cumulative distribution function and the marginal mass function of Xi are denoted
Fp,i and fp,i, respectively; the values fp,i(0) ≡ Fp,i(0) and fp,i(1) are denoted qi and pi respectively. We observe that
for each i ∈ {1, . . . , d}, qi = 1 − pi and that the expected value of Xi is pi, viz. E(Xi) = pi.

Given two matrices A ∈ M(n×m) and B ∈ M(d×`), the matrix A⊗B = ((ai jB)1≤i≤n,1≤ j≤m) ∈ M(nd×m`) indicates
their Kronecker product and

A⊗n = A ⊗ · · · ⊗ A︸       ︷︷       ︸
n times

.

If B(τ) is a Bernoulli variable with τ ∈ (0, 1), and Fτ and fτ are its cumulative and mass function, respectively, then
(

fτ(0)
fτ(1)

)
= D ×

(
Fτ(0)
Fτ(1)

)
, with D =

(
1 0
−1 1

)
,

where D is the difference matrix. It follows that given Fp and fp in F (p1, . . . , pd), we have

f p = D⊗d Fp. (1)

We assume that vectors are column vectors. We denote the ith element of a vector a by (a)i ≡ ai and its transpose by
a>. We can thus write f p ∈ F (p1, . . . , pd), Fp ∈ F (p1, . . . , pd) and X ∈ F (p1, . . . , pd).

2.1. Moments of multivariate Bernoulli variables

We observe that, given the Bernoulli variable X ∼ B(τ) with τ ∈ (0, 1) and mass function fτ, we can compute the
vector of moments µ as

µ =

(
E(1)
E(X)

)
= M

(
fτ(0)
fτ(1)

)
with M =

(
1 1
0 1

)
.

It follows that given X = (X1, . . . , Xd) ∈ F (p1, . . . , pd) with multivariate joint mass fp, we can compute the vector
of its moments µ = (E(Xα),α ∈ Sd), where E(Xα) = E(Xα1

1 · · · Xαd
d ), as µ = M⊗d f p. We use µi1,...,ik to denote the
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moment E(Xα1
1 · · · Xαd

d ) where {i1, . . . , ik} = {1 ≤ i ≤ d : αi = 1}. We also observe that the correlation ρi j between two
Bernoulli variables Xi ∼ B(pi) and X j ∼ B(p j) is related to the second-order moment µi j ≡ E(XiX j) as follows:

E(XiX j) = ρi j
√

piqi p jq j + pi p j. (2)

The use of the Krockener product to represent a vectorized version of multivariate Bernoulli distributions can also be
found in [22].

3. Representation of multivariate Bernoulli distributions with given margins

This section represents the Fréchet class of multivariate d-dimensional Bernoulli distributions with given margins,
d ≥ 2, as the points of a convex hull. As a first step, in Proposition 1 we give a polynomial-based representation of
the distributions of a given Fréchet class, which allow us to model all the possible dependence structures.

We consider the set S̃d = {0, 1}d of binary vectors ordered according to the lexicographical criterion, e.g., S̃3 =

{000, 001, 010, 011, 100, 101, 110, 111}. Let θ = {θα,α ∈ S̃d} be a 2d-vector parameter. We denote θα by θi1,...,ik , where
{i1, . . . , ik} = {i ∈ {1, . . . , d} : αi = 1}. Thus we write θ = (θ0, θd, θd−1, θd,d−1, . . . , θ12...d), e.g., in the bivariate case
θ = (θ0, θ2, θ1, θ12). We also define Qd = {q1, 1} × · · · × {qd, 1}, where qi = Fi(0) for all i ∈ {1, . . . , d}. We make the
non-restrictive hypothesis that {q1, 1} × · · · × {qd, 1} is ordered according to the reverse-lexicographical criterion.

In what follows, Up is a 2d × 2d matrix given by Up = Up1 ⊗ · · · ⊗ Upd , where for each i ∈ {1, . . . , d},

Upi =

(
1 pi

1 0

)
.

Proposition 1. Any distribution Fp ∈ F (p1, . . . , pd) admits the representation Fp = ΛpUpθ over Qd in terms of
a 2d × 2d diagonal matrix Λp = diag(q(1−α1)

1 · · · q(1−αd)
d , (α1, . . . , αd) ∈ Sd), and θ = (θ0, θd, θd−1, θd,d−1, . . . , θ12...d)>.

Necessary conditions for Fp being a distribution are θ0 = 1 and θi = 0 for all i ∈ {1, . . . , d}.

Proof. Given u = (u1, . . . , ud) ∈ Qd, let us define the following polynomial:

g(u) =


d∏

i=1

ui



1 +

d∑

k=2


∑

1≤i1<i2<···<ik≤d

θi1i2...ik (1 − ui1 ) · · · (1 − uik )





=


d∏

i=1

ui



1 +
∑

1≤i1<i2≤d

θi1i2 (1 − u j)(1 − uk) + · · · + θ12...d

d∏

i=1

(1 − ui)

 .

For each i ∈ {1, . . . , d}, define also the row vector ai = (1, 1 − ui). We can write g(u) ∈ R as

g(u) =


d∏

i=1

ui

 (a1 ⊗ · · · ⊗ ad)



θ0
θd

θd−1
...

θ12...d



.

Considering all the u ∈ Qd ,we obtain the 2d-vector (g(u),u ∈ Qd) = ΛpUpθ.
We observe that the determinant of Upi is det(Upi ) = −pi , 0. It follows that the determinant of Up, which is

(p1 · · · pd)2, is also different from zero. Because the determinant of Λp , 0, the determinant of ΛpUp is different from
zero. It follows that the rank of ΛpUp is 2d and then any vector y ∈ R2d

, and in particular any distribution Fp, can be
written as Fp = ΛpUpθ.

If Fp is a distribution in F (p1, . . . , pd), it must be such that Fp(1, . . . , 1) = 1 and Fp(1, . . . 1, 0, 1, . . . , 1) = qi for
all i ∈ {1, . . . , d}. It follows that the vector parameter θ must satisfy the following necessary conditions:

(i) θ0 = 1: The condition Fp(1, . . . , 1) = 1 implies θ0 = 1, since Fp(1, . . . , 1) = θ0.
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(ii) θ1 = · · · = θd = 0: The condition Fp(1, . . . 1, 0, 1, . . . , 1) = qi implies θ1 = · · · = θd = 0 because Fp(1, . . . 1,
0, 1, . . . , 1) = qi{1 + θi(1 − qi)}. �

As an example, in the bivariate case

Λp =



q1q2 0 0 0
0 q2 0 0
0 0 q1 0
0 0 0 1


and Up =



1 p2 p1 p1 p2
1 0 p1 0
1 p2 0 0
1 0 0 0


.

We observe that the polynomial g(u) in the proof of Proposition 1 is restricted to the finite set Qd. Note also that its
expression is reminiscent of the Farlie–Gumbel–Morgenstern [15] copula defined, for all u ∈ [0, 1]d, by

C(u) =


d∏

i=1

ui



1 +
∑

1≤i1<i2≤d

θi1i2 (1 − u j)(1 − uk) + · · · + θ12...d

d∏

i=1

(1 − ui)

 .

This approach leads to a polynomial representation whose expression is similar to the Bahadur representation; see
[13]. The main difference between the two approaches is given by the domain of the polynomial, which in our case is
Qd. By contrast, the Bahadur representation depends on Qd and on the support of the marginal distributions.

As a consequence of Proposition 1 and Eq. (1), any mass function fp ∈ F (p1, . . . , pd) admits the following
representation over Sd:

f p = Ypθ, (3)

where Yp = D⊗dΛpUp ∈ M(2d × 2d) and D is the 2 × 2 difference matrix.

Remark 1. As in [19], we can interpret θ. Let us consider d = 1, θ = (θ0, θ1). Simple computations give
(
θ0
θ1

)
=

(
1 1

1/(1 − p) −1/p

) (
f (0)
f (1)

)
.

Thus θ0 = E(1) and θ1 = −E[(X − p)/{p(1 − p)}]. If we consider d ≥ 2 we obtain θi1,...,ik = (−1)k E(Yi1 · · · Yik ), where
Yi j = (Xi j − pi j )/{pi j (1 − pi j )} for all j ∈ {1, . . . , k}. We observe that Yi is a zero-mean random variable which is
obtained by the linear transformation of the Bernoulli B(pi) that moves 0 to −1/qi and 1 to 1/pi for each i ∈ {1, . . . , d}
and that θi1,...,ik are its moments, apart from the plus or minus sign.

We observe that given fp ∈ F (p1, . . . , pd) we can write it as in Eq. (3). Reciprocally, Proposition 1 does not provide
any condition on θi1,...,ik for k ≥ 2 such that D⊗dΛpUpθ represents a mass function fp over Sd. In the remaining part
of this section we will provide a representation of all the mass functions fp ∈ F (p1, . . . , pd). We denote by H1p the
d × 2d sub-matrix of Y−1

p obtained by selecting the rows corresponding to θ1, . . . , θd and we recall that Sd = {0, 1}d is
ordered according to the reverse-lexicographical criterion.

Theorem 1. Let f be a multivariate d-dimensional Bernoulli distribution, f ∈ Fd. Then f is a mass with margins p,
i.e., f ∈ F (p1, . . . , pd) if and only if there exist λ1, . . . , λnC1p

≥ 0 summing up to 1 such that

f =

nC1p∑

i=1

λiR(i)
p , (4)

where R(i)
p = (R(i)

p (x), x ∈ Sd) ∈ F (p1, . . . , pd) are the normalized extremal rays of the cone C1p = {z : H1pz = 0, z ∈
Rd

+} and nC1p is the number of extremal rays in C1p.

Proof. Let us prove that any fp ∈ F (p1, . . . , pd) satisfies Eq. (4). From Proposition 1 and Eq. (3), we have f p = Ypθ
with θ0 = 1 and θ1 = · · · = θd = 0. The conditions θ1 = · · · = θd = 0 can be written as

H1p f p = 0, (5)
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where H1p is the d × 2d sub-matrix of Y−1
p obtained by selecting the rows corresponding to θ1, . . . , θd. It follows that

f p is a point of the cone C1p = {z : H1pz = 0, z ∈ Rd
+} and can be written as

f p =

nC1p∑

i=1

λ̃iR̃
(i)
p

for some choices of non-negative λ̃1, . . . , λ̃nC1p
, where for each i ∈ {1, . . . , nC1p}, R̃(i)

p = (R̃(i)
p,k, k ∈ {1, . . . , 2d}) ∈ R2d

+ is
an extremal ray of the cone C1p [8, 21].

If we define the normalized extremal rays by dividing each R̃(i)
p by the sum of its elements, viz.

R̃(i)
p,+ =

2d∑

k=1

R̃(i)
p,k

we can write f p in the form Eq. (4), where λi = λ̃iR̃
(i)
p,+ and R(i)

p = R̃(i)
p /R̃

(i)
p,+ for all i ∈ {1, . . . , nC1p}. We observe that

λ1, . . . , λd are non-negative and that

nC1p∑

i=1

λi =

nC1p∑

i=1

λ̃iR̃
(i)
p,+ =

nC1p∑

i=1

λ̃i

2d∑

k=1

R̃(i)
p,k =

2d∑

k=1

nC1p∑

i=1

λ̃iR̃
(i)
p,k =

2d∑

k=1

( f p)k = 1

Let us now prove the reciprocal, i.e., that if there exist non-negative λ1, . . . , λnC1p
summing up to 1 such that f ∈ F

is such that Eq. (4) holds, then f ∈ F (p1, . . . , pd).
In Eq. (4), one can take R(i)

p = (R(i)
p (x), x ∈ Sd) ∈ F (p1, . . . , pd) to be the normalized extremal rays of the cone

C1p = {z : H1pz = 0, z ∈ Rd
+}, where λ1, . . . , λnC1p

are non-negative and sum up to 1. Given that f is a convex linear
combination of mass functions, it is therefore a mass function; we have to prove that its corresponding margins are
p1, . . . , pd. We have

E(X j) =
∑

(x1,...,xd)∈Sd

x j fp(x1, . . . , xd) =

nC1p∑

i=1

λi

∑

(x1,...,xd)∈Sd

x jR(i)
p .

Now we observe that each R(i)
p is a point of the cone C1p i.e., H1pR(i)

p = 0. It follows that
∑

(x1,...,xd)∈Sd

x jR(i)
p = p j.

Then we have
nC1p∑

i=1

λi

∑

(x1,...,xd)∈Sd

x jR(i)
p =

nC1p∑

i=1

λi p j = p j

nC1p∑

i=1

λi = p j.

The assertion is thus proved.

We refer to the normalized extremal rays of the cone C1p as the ray mass functions of F (p1, . . . , pd).

Remark 2. The bivariate case is fully described from an analytical point of view; see Section 3.2. In general the
number of extremal rays of the convex cone C1p depends on p and d. For example for trivariate Bernoulli distributions,
in Example 5.3.1 we consider the Fréchet class F (1/2, 1/2, 1/2) and we explicitly find six ray mass functions and the
corresponding θ vectors. In Example 5.3.2 we consider the Fréchet class F (1/4, 1/7, 1/3) and we find 11 ray mass
functions. We also observe that the number of rays can become very large as d increases; see Section 5.5. The
problem of determining bounds for the number of extremal rays of a convex cone without explicitly computing them
is interesting and is studied in algebra and geometry; see, e.g., [14].

Theorem 1 allows us to give a characterization of the space of the parameters θ. From Eq. (3) we know that any
fp ∈ F (p1, . . . , pd) can be written as Ypθ.
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Proposition 2. Let f ∈ Fd. Then f is a mass function with margins p, i.e., f = Ypθ ∈ F (p1, . . . , pd) if and only if
there exist non-negative numbers λ1, . . . , λnC1p

summing up to 1 such that f p = Ypθ, with

θ =

nC1p∑

i=1

λiθ
(i)
p , (6)

where θ(i)
p = Y−1

p R(i)
p are the parameters of the ray mass functions of the cone C1p and nC1p is the number of the

extremal rays of C1p.

Proof. ⇒) From Theorem 1, using f p = Ypθ we get

θ = Y−1
p f p = Y−1

p


nC1p∑

i=1

λiR(i)
p

 =

nC1p∑

i=1

λiY−1
p R(i)

p =

nC1p∑

i=1

λiθ
(i)
p ,

where θ(i)
p are the parameters of the ray mass functions of the cone C1p and λ1, . . . , λnC1p

are non-negative numbers
summing up to 1.
⇐) Let us consider θ given by Eq. (6), where for each i ∈ {1, . . . , nC1p}, θ(i)

p is the parameter of the ray mass
function R(i)

p , and λ1, . . . , λnC1p
are non-negative numbers summing up to 1. We get

Ypθ = Yp

nC1p∑

i=1

λiθ
(i)
p =

nC1p∑

i=1

λiYpθ
(i)
p =

nC1p∑

i=1

λiR(i)
p .

From Theorem 1 we find f p = Ypθ ∈ F (p1, . . . , pd).

Note that the above proposition provides the set of admissible parameters for the polynomial g(u), which is the
region of the convex hull of the parameters θ(i)

p of the polynomials of the ray mass functions obtained using non-
negative scalars λ1, . . . , λnC1p

summing up to 1. We also point out that the parameters of the ray mass functions depend
on the marginal parameters p, which implies that the admissible range for the parameters θ depends on the marginal
parameters. This fact is made explicit in Section 3.2 and in the first example of Section 5. Further note that Theorem 1
makes it extremely easy to generate any mass function fp of the Fréchet class F (p1, . . . , pd). It is enough to take a
positive vector λ = (λ1, . . . , λnC1p

) whose components add up to 1 and to build f p using Eq. (4).
Using Theorem 1 we represent each Fréchet class F (p1, . . . , pd) as the intersection of the convex hull of the ray

mass functions with the probability simplex. We observe that the ray mass functions depend only on the marginal
distributions F1, . . . , Fd, i.e., by p1, . . . , pd. Building the (2d × nC1p)-ray matrix

Rp =



R(1)
p,1 . . . R

(nC1p )

p,1
. . .

R(1)
p,2d . . . R

(nC1p )

p,2m



whose columns are the ray mass functions R(1)
p , . . . , R

nC1p
p we write Eq. (4) simply as f p = Rpλ with the vector

λ = (λ1, . . . , λnC1p
) whose components are non-negative and add up to 1.

In practice the extremal rays R̃(i)
p of the cone C1p and therefore the ray mass functions R(i)

p can be found using the
software 4ti2 [21]. In Section 5 and in the Appendix we use SAS and 4ti2 to show some numerical examples.

3.1. Second-order moments of multivariate Bernoulli variables with given margins

This section focuses on the problem of studying second-order moments of multivariate Bernoulli variables with
given first-order moments. Given f p ∈ F (p1, . . . , pd), we observe from Theorem 1 that each moment E(Xα) with
α ∈ Sd can be computed as

µ = M⊗d f p = M⊗dRpλ.
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Let Akp = (M⊗d)kRp where (M⊗d)k is the sub-matrix of M⊗d obtained by selecting the rows corresponding to the
kth order moments and Rp is the ray matrix. We observe that the columns of the matrix Akp contain the moments of the
ray mass functions. We denote by Ap the matrix whose columns contain all the moments of the ray mass functions,
viz. Ap = M⊗dRp.

In particular for the second-order moments µ2 = E(Xα : α ∈ Sd, ‖α‖0 = 2), where ‖α‖0 = α1 + · · ·+αd, we get the
following result, which is crucial for the solution of the problem of simulating multivariate binary distributions with a
given correlation matrix.

Proposition 3. One has µ2 = A2pλ, where λ = (λ1, . . . , λnC1p
) is a vector whose non-negative components sum to 1.

It follows that the target second-order moments are compatible with the means if they belong to the part of the
convex hull generated by the points which are the columns of the A2p = (M⊗d)2Rp matrix restricted to λ1, . . . , λd ≥ 0
and λ1+· · ·+λnC1p

= 1. As a direct consequence of Proposition 3 we also get the univariate bounds for the second-order
moments and the correlations.

Proposition 4. For each α ∈ Sd, ‖α‖0 = 2, the second-order moment µ(α)
2 must satisfy the following bounds

min A(α)
2p ≤ µ(α)

2 ≤ max A(α)
2p

and the correlations ρi j must satisfy the following bounds

min A(α)
2p − pi p j

√piqi p jq j
≤ ρi j ≤

max A(α)
2p − pi p j

√piqi p jq j
,

where A(α)
2p is the row of the matrix A2p such that µ(α)

2 = A(α)
2p λ and {i, j} = {k : αk = 1}.

Proof. From Proposition 3 using the the proper row of A2p we get

µ(α)
2 = A(α)

2p λ.

To prove (4) it is enough to observe that

a) because the λi’s are non-negative and add up to 1, it follows that the minimum (maximum) value of µ(α)
2 is

obtained by choosing λ equal to one of the ei vectors, where for each i ∈ {1, . . . , nC1p}, ei ∈ {0, 1}nC1p is the
binary vector with all the elements equal to 0 apart from the ith which is equal to 1;

b) the product A(α)
2p ei gives the ith element of A(α)

2p .

To prove (4) we simply observe that using Eq. (2) the bounds in (4) can be transformed to those suitable for correla-
tions.

Generalization to kth order moments (k > 2) is straightforward.

Proposition 5. For each α ∈ Sd, ‖α‖0 = k, the kth order moment µ(α)
k must satisfy the following bounds

min A(α)
kp ≤ µ(α)

k ≤ max A(α)
kp ,

where A(α)
kp is the row of the matrix Akp such that µ(α)

k = A(α)
kp λ.

In Section 3.2 we recover these bounds for the bivariate case. In the examples we exhibit these bounds for other
specified Fréchet classes.
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3.2. Bivariate Bernoulli distributions with given margins

In this section we consider bivariate distributions, i.e., the class F (p1, p2) of 2-dimensional random variables
(X1, X2) which have Bernoulli marginal distributions F1 ∼ B(p1), F2 ∼ B(p2). This class has been extensively studied
and we can provide the analytical expression of the ray matrix Rp.

In the bivariate case, two key distributions are FL and FU , the lower and upper Fréchet–Hoeffding bound of
F (p1, p2), respectively defined, for all x = (x1, x2) ∈ {0, 1}2, by

FL(x) = max{F1(x1) + F2(x2) − 1, 0}, FU(x) = min{F1(x1), F2(x2)}. (7)

For any Fp ∈ F (p1, p2), one has
FL(x) ≤ Fp(x) ≤ FU(x) (8)

for all x ∈ {0, 1}2. For an overview of Fréchet classes and their bounds, see [5].
The number of rays is independent of the Fréchet class F (p1, p2). We have two ray mass functions. We make

the non-restrictive hypothesis p1 ≥ p2 which implies q1 ≤ q2 and we consider separately the cases q1 + q2 ≤ 1 and
q1 + q2 > 1.

3.2.1. Case 1: q1 + q2 ≤ 1
From (8) we get

Rp =



0 q1
q2 q2 − q1
q1 0

1 − q1 − q2 p2


.

If we denote by θ(i) the vector of parameters corresponding to R(i)
p , i ∈ {1, 2} we obtain θ(1) = (1, 0, 0,−1/(p1 p2)) and

θ(2) = (1, 0, 0, 1/(p1q2)), which yields −1/(p1 p2) ≤ θ12 ≤ 1/(p1q2). Finally we get the following well-known bounds
for the correlation:

−
√

q1q2

p1 p2
≤ ρ12 ≤

√
p2q1

p1q2
.

3.2.2. Case 2: q1 + q2 > 1
From (8) we get

Rp =



q1 + q2 − 1 q1
p1 q2 − q1
p2 0
0 p2


.

If we denote by θ(i) the vector of parameters corresponding to R(i)
p , i ∈ {1, 2} we get

θ(1) = (1, 0, 0,−(q1 + q2 − 1 − q1q2)/(q1q2 p1 p2)) and θ(2) = (1, 0, 0, 1/(p1q2)),

which yields

−q1 + q2 − 1 − q1q2

q1q2 p1 p2
≤ θ12 ≤ 1

p1q2
.

Finally we get the following well-known bounds for the correlation:

−
√

p1 p2

q1q2
≤ ρ12 ≤

√
p2q1

p1q2
.

It is simple to verify that, in Cases 1 and 2, the ray mass functions are the lower and upper Fréchet–Hoeffding
bounds of the Fréchet class F (p1, p2).
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4. Multivariate Bernoulli variables with some given moments

We now extend our method to characterize the class of multivariate Bernoulli variables with a given set of moments
of any order. The constraints E(X1) = p1, . . . ,E(Xd) = pd allow us to obtain an interesting interpretation of the matrix
H1p of (5). We have

E(Xi) =
∑

(x1,...,xd)∈Sd

xi fp(x1, . . . , xd).

For each f p ∈ F (p1, . . . , pd) and all i ∈ {1, . . . , d}, we have x>i f p = pi and (1− xi)> f p = qi, where 1 is the vector with
all the elements equal to 1 and xi is the vector which contains only the ith element of x ∈ Sd, e.g., for the bivariate
case x1 = (0, 1, 0, 1) and x2 = (0, 0, 1, 1). If we consider the odds of the event Xi = 1, γi = pi/qi we have γiqi − pi = 0.
We can write

γi = pi/qi, {γi(1 − xi)> − x>i } f p = 0.

Then we observe that H1p is simply the d × 2d matrix whose rows, up to a non-influential multiplicative constant,
are γi(1 − xi)> − x>i for i ∈ {1, . . . , d}. This approach can be easily generalized to solve the problem of studying
the class of Bernoulli variables with given kth order moments, k ∈ {1, . . . , d}. Let us consider the class Fk(µk) of
multivariate Bernoulli distributions with given kth order moments µk = (µα : α ∈ Sd, ‖α‖0 = k); with this notation
F1(µ1) ≡ F (p1, . . . , pd). Let us denote by fk a mass function of Fk(µk) .

We observe that
E(Xα) =

∑

(x1,...,xd)∈Sd

xα1
1 · · · xαd

d fk(x1, . . . , xd),

for all α ∈ Sd with ||α‖0 = k. It follows that

x>α f k = µα, (1 − xα)> f k = 1 − µα,
where xα is the vector which contains the product xα ≡ xα1

1 · · · xαd
d , x ∈ Sd, e.g., for the bivariate case x(1,1) =

(0, 0, 0, 1). If we consider the odds of the event Xα = 1, γα = µα/(1 − µα), we have γα(1 − µα) − µα = 0, i.e.,

γα = µα/(1 − µα), {γα(1 − xα)> − x>α } f k = 0.

Let us denote by Hkµk
the

(
d
k

)
× 2d matrix whose rows are γα(1 − xα)> − x>α , α ∈ Sd for all ||α‖0 = k.

Theorem 2. Let f ∈ Fd be a multivariate d-dimensional Bernoulli distribution. Then f is a mass function with kth
order moments µk, i.e., f ∈ Fk(µk) if and only if there exist non-negative λ1, . . . , λnCkµk

adding up to 1 such that

f =

nCkµk∑

i=1

λiR(i)
µk
,

where R(i)
µk

= (R(i)
µk

(x), x ∈ Sd) ∈ Fk(µk) are the normalized extremal rays of the cone Ckµk
= {z : Hkµk

z = 0, z ∈ Rd
+}

and λ1, . . . , λnC1µk
are non-negative constants adding up to 1.

Proof. The proof is analogous to that of Theorem 1, where H1p is replaced by Hkµk
.

The generalization of this approach to any given set of moments is straightforward. We describe this generalization
in a specific case which is extremely relevant from the point of view of applications. We suppose that first- and second-
order moments are specified, viz. p = (p1, . . . , pd) and µ2 = (µ12, . . . , µd−1,d). If the correlations ρ = (ρ12, . . . , ρd−1,d)
are specified instead of the second-order moments, the desired correlations ρi j are transformed into the corresponding
desired second-order moments E(XiX j) for all i, j ∈ {1, . . . , d} with i < j using Eq. (2).

To obtain all the multivariate Bernoulli mass functions f which have the given p and µ2, it is enough to build the
matrix H1p,2µ2

as the row-juxtaposition of the matrices H1p and H2µ2
, viz.

H1p,2µ2
=

(
H1p
H2µ2

)
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and to compute the normalized extremal rays of the cone {z : H1p,2µ2
z = 0, z ∈ Rm

+ }. If we denote the corresponding
ray matrix by Rpµ2

, we obtain f = Rpµ2
λ, with λ = (λi) a vector whose non-negative components add up to 1.

We observe that the choice of a particular solution does not modify the distributions of the sample means and
of the sample second-order moments, which depend only on p1, . . . , pd and µ2 = (µ12, . . . , µd−1,d) respectively. To
explain this point let us consider a random sample {(Xk1, . . . , Xkd), k = 1, . . . ,N} extracted from a randomly selected m-
dimensional Bernoulli variable with given first-order moments p = (p1, . . . , pd) and with given second-order moments
µ2 = (µ12, . . . , µd−1,d). For each i ∈ {1, . . . ,m}, the sample mean Xi is N−1 times a Binomial(N, pi) and for each
i, j ∈ {1, . . . , n} with i < j, the sample second-order moments XiX j =

∑N
k=1(XkiXk j)/N is N−1 times Binomial(N, µi j).

Remark 3. In general different distributions which have the same p and µ2, will have different kth order moments,
with k ≥ 3. As a consequence of Proposition 5 we observe that the minimum (maximum) value of the kth order
moment µαk is obtained choosing λ equal to one of the vectors ei. It follows that the ray matrix Rpµ2

provides interesting
mass functions because they are extremal from the point of view of kth order moments.

This method offers the opportunity to choose the best distribution according to a certain criterion. For example, as
the moments of multivariate Bernoulli are always positive, it could be of interest to find one of the distributions with
the smallest sum of all the moments with order greater than 2. This problem can be efficiently solved using linear
programming techniques [1]. It can be simply stated as

min
f∈Fd

{
1>(M⊗d)3...d f

}

subject to H1p2µ2
f = 0, where (M⊗d)3...d is the sub-matrix of M⊗d obtained by selecting the rows corresponding to the

kth moments, with k ≥ 3.
If the margins p and the second order moments µ2 (or equivalently the correlations ρ) are not compatible, the

system H1p2µ2
f = 0 does not have any solution. In this case it is possible to search for a feasible ρ∗ which is the

correlation closest to the desired ρ, according to a chosen distance.
Finally it is worth noting that this method provides a geometrical characterization of multivariate Bernoulli vari-

ables with specified moments. Given a set of moments S (S contains the chosen moments α ∈ Sd and their corre-
sponding values µα ∈ R+) and built the corresponding matrix HS , the mass functions are the subset of the cone

CS = {z : Hs z = 0, z ∈ Rm
+ } =



nCS∑

i=1

λiR(S )
i , λ1 ≥ 0, . . . , λnCS

≥ 0



obtained imposing λ1 + · · · + λnCS
= 1. We show the algorithm and some examples in Section 5.

5. The algorithm and examples

5.1. The algorithm
In this section we briefly describe the algorithm that we use for the examples. The inputs are d, the dimension of

the multivariate Bernoulli distributions, and S , the chosen moments α ∈ Sd and their corresponding values µα ∈ R+.
The main output is the ray matrix RS . If the chosen moments are not compatible, RS is empty and the algorithm

stops. Otherwise, the algorithm also gives the moments of the ray mass functions AS , and the bounds for the moments
of the distribution which belong to the class of multivariate Bernoulli distributions specified by S .

The algorithm has the following main steps:

Step 1: Construction of the matrix HS whose rows are given, for all (α,µα) ∈ S , by

γα(1 − xα)> − xα, γα =
µα

1 − µα .

Step 2: Generation of the ray matrix RS .

Step 3: Computation of the moments of the ray mass functions, AS = M⊗dRS .

10



Step 4: Computation of the bounds of each moment µα as the minimum and the maximum values of the correspond-
ing row of AS .

Steps 1, 3 and 4 are implemented in SAS/IML. The rays of the cone CS are generated using 4ti2 [21]. The
software code is available on request. We performed the analysis using a standard laptop (CPU Intel core I7-2620M
CPU 2.70GHz 2.70GHz, RAM 8GB).

In this section we show some results corresponding to different multivariate Bernoulli distributions. In Exam-
ple 5.3.1 we show how to implement the algorithm at each step.

5.2. Bivariate Bernoulli distribution

In the bivariate case we have an analytical expression for the ray mass functions, the bounds of θ and the bounds
of the linear correlation, as discussed in Section 3.2. Here, we show a numerical example. Let us choose q1 = 1/4
and q2 = 1/2. We have q1 + q2 ≤ 1. Therefore from (3.2.1) we obtain Rp

Rp =



0 1/4
1/2 1/4
1/4 0
1/4 1/2


.

If we denote by θ(i) the vector of parameters corresponding to R(i)
p , i ∈ {1, 2} we obtain θ(1) = (1, 0, 0,−8/3) and

θ(2) = (1, 0, 0, 8/3), which means −8/3 ≤ θ12 ≤ 8/3. For θ12 = 8/3 we find the upper Fréchet–Hoeffding bound.
In fact R(2)

p = (1/4, 1/4, 0, 1/2) implies F(2) = (1/4, 1/2, 1/4, 1), which coincides with the upper Fréchet–Hoeffding
bound in (7). Finally we get the following bounds for the correlation −√1/3 ≤ ρ12 ≤

√
1/3.

5.3. Trivariate Bernoulli distributions

5.3.1. Case 1: p = (1/2, 1/2, 1/2)
Let us consider the case where d = 3 and the chosen first-order moments are p = (1/2, 1/2, 1/2). The algorithm

has the following main steps.

Step 1: Construction of the matrix HS , which in this case has three rows and eight columns. For example the row
corresponding to α = (1, 0, 0) is γα(1− xα)> − xα = (1,−1, 1,−1, 1,−1, 1,−1), as γα = (1/2)/(1− 1/2) = 1 and
xα ≡ x1 = (0, 1, 0, 1, 0, 1, 0, 1). We get

HS =


1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1

 .

Step 2: Using 4ti2, giving HS as input, we generate the ray matrix RS where the columns are the ray mass functions
R(i), after normalization.

Step 3: We compute the moments of the ray mass functions R(i) as AS = M⊗3RS .

Step 4: We compute the bounds of each moment µα as the minimum and the maximum values of the corresponding
row of AS .

The output is

a) the ray matrix RS , which has 6 ray mass functions R(1), . . . , R(6), in Table 1;

b) the moments of the ray mass functions R(1), . . . , R(6) in Table 2;

c) the bounds for the moments of the distribution which are 0 ≤ µi j ≤ 0.5 for all i, j ∈ {1, 2, 3} with i < j and
0 ≤ µ123 ≤ 0.5.
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Table 1: Ray mass functions d = 3, p = (1/21/2, 1/2).

x1 x2 x3 R(1) R(2) R(3) R(4) R(5) R(6)

0 0 0 0 0 0 0 0.5 0.25
1 0 0 0 0 0.5 0.25 0 0
0 1 0 0 0.5 0 0.25 0 0
1 1 0 0.5 0 0 0 0 0.25
0 0 1 0.5 0 0 0.25 0 0
1 0 1 0 0.5 0 0 0 0.25
0 1 1 0 0 0.5 0 0 0.25
1 1 1 0 0 0 0.25 0.5 0

Table 2: Moments of the ray mass functions d = 3, p = (1/2, 1/2, 1/2).

α1 α2 α3 Order µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 0 0 0 1 1 1 1 1 1
1 0 0 1 0.5 0.5 0.5 0.5 0.5 0.5
0 1 0 1 0.5 0.5 0.5 0.5 0.5 0.5
1 1 0 2 0.5 0 0 0.25 0.5 0.25
0 0 1 1 0.5 0.5 0.5 0.5 0.5 0.5
1 0 1 2 0 0.5 0 0.25 0.5 0.25
0 1 1 2 0 0 0.5 0.25 0.5 0.25
1 1 1 3 0 0 0 0.25 0.5 0

By construction all the mass functions have first-order moments equal to 0.5. The ray density R(5) is the upper
Fréchet–Hoeffding bound of the class and it has correlations ρ12 = ρ13 = ρ23 = 1. For dimension d > 2, the lower
Fréchet–Hoeffding bound is not in general a distribution function. For d > 2, the lower and upper Fréchet–Hoeffding
bounds FL and FU of F (p1, . . . , pd) are respectively defined by

FL(x) = max{F1(x1) + · · · + Fd(xd) − d + 1, 0}, FU(x) = min{F1(x1), . . . , Fd(xd)},

where x = (x1, . . . , xd) ∈ {0, 1}d. For any Fp ∈ F (p1, p2, . . . , pd), one has FL(x) ≤ Fp(x) ≤ FU(x) for all x ∈ {0, 1}d.
Both the rays R(4) and R(6) are mass functions of not correlated random variables, but that have different third-order
moments, 0.25 and 0 respectively. The independent distribution is inside the convex hull and it is the distribution
R(4)/2 + R(6)/2. The rays R(1), R(2) and R(3) exhibit both negative and positive correlations, for example for R(1) we
have ρ12 = 1 and ρ13 = ρ23 = −1.

Using Eq. (4) we get −1 ≤ ρi j ≤ 1 for all i, j ∈ {1, 2, 3} with i < j. Finally by Proposition 2 we compute the θ(i)

corresponding to the ray mass function R(1), . . . , R(6), which are reported in Table 3.
In the Appendix we give two examples where we also choose the second-order moments.

Table 3: θ(i) of the ray mass function R(i), i ∈ {1, . . . , 6} d = 3, p = (1/2, 1/2, 1/2).

α1 α2 α3 θ(1)
α θ(2)

α θ(3)
α θ(4)

α θ(5)
α θ(6)

α

0 0 0 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 1 0 4 –4 –4 0 4 0
0 0 1 0 0 0 0 0 0
1 0 1 –4 4 –4 0 4 0
0 1 1 –4 –4 4 0 4 0
1 1 1 0 0 0 –8 0 8

12



5.3.2. Case 2: p = (1/4, 1/7, 1/3)
As the last example of trivariate Bernoulli distributions we consider p = (1/4, 1/7, 1/3). The ray matrix Rp,

rounded to the third decimal digit, has 11 ray mass functions, viz.

Rp =



0.274 0.417 0.417 0.524 0.524 0.56 0.607 0.607 0.667 0.667 0.637
0.25 0.107 0.25 0 0 0.107 0 0.06 0 0 0

0.143 0 0 0 0.143 0 0.06 0 0 0 0
0 0.143 0 0.143 0 0 0 0 0 0 0.03

0.333 0.333 0.19 0.226 0.083 0.19 0 0 0 0.083 0
0 0 0 0.107 0.25 0 0.25 0.19 0.19 0.107 0.22
0 0 0.143 0 0 0 0.083 0.143 0.083 0 0.113
0 0 0 0 0 0.143 0 0 0.06 0.143 0



.

Using Eq. (4) we get

−0.236 ≤ ρ12 ≤ 0.707, −0.408 ≤ ρ13 ≤ 0.816, −0.289 ≤ ρ23 ≤ 0.577.

We also report the correlations of random variables corresponding to each ray mass function in Table 4.

Table 4: Correlations ρi j of random variables whose mass functionis R(i), i ∈ {1, . . . , 11} d = 3, p = (1/4, 1/7, 1/3).

i j R(1) R(2) R(3) R(4) R(5) R(6) R(7) R(8) R(9) R(10) R(11)

1 2 –0.236 0.707 –0.236 0.707 –0.236 0.707 –0.236 –0.236 0.157 0.707 –0.039
1 3 –0.408 –0.408 –0.408 0.117 0.816 0.292 0.816 0.525 0.816 0.816 0.671
2 3 –0.289 –0.289 0.577 –0.289 –0.289 0.577 0.217 0.577 0.577 0.577 0.397

The mass function R(10) corresponds to the upper Fréchet–Hoeffding bound, while in this case the lower Fréchet–
Hoeffding bound is also a distribution and it has mass function R(1). Consequently the ray mass functions exhibit both
the maximal and the minimal correlations.

5.4. Multivariate d = 5 Bernoulli distributions
Let us consider the case p = (1/2, 1/2, 1/2, 1/2, 1/2). We obtain 2712 ray mass functions. If we choose the

additional constraints ρ12 = 0.3, ρ13 = 0.2, ρ14 = 0.2, ρ15 = 0.1, ρ23 = −0.2, ρ24 = 0.3, ρ25 = 0.2, ρ34 = 0.2, ρ35 = 0.1
and ρ45 = −0.2, we obtain 25,100 ray mass functions.

5.5. Multivariate d ≥ 6 Bernoulli distributions
For d = 6 and p = (1/21/2, 1/2, 1/2, 1/2, 1/2) we obtain 707,264 ray mass functions. In general we observe that

if the number of rays is too large with respect to the available computer power and if the objective can be reduced to
the problem of finding just one mass function f ∈ Fd with given margins p and second order moments µ2, it is enough
to find one solution of the system

(M⊗d)1 f = p, (M⊗d)2 f = µ2,

using standard linear programming tools; see, e.g., [1].
In [3] trivariate Bernoulli distributions with respect to four scenarios relative to different choices of p1, p2, p3, ρ12,

ρ23 are considered. In Table 5 as an example, we report their first scenario. The other scenarios give similar results.
We observe that none of the methods considered can reach the theoretical bounds computed by [3]. On the contrary
our method computes the ray mass functions which are extremal with respect to the moments. We get the four ray
mass functions R(1), . . . , R(4) that we report in Table 6.

5.6. Comparison with some methods for simulating correlated binary variables
We compare our method with those that have been considered on p. 201, in Section 4 of [3], namely (i) the

discretized normal method of Emrich and Piedmonte [6]; (ii) the extension of the beta-binomial multivariate binary
model [18]; and (iii) the method of Park [17].

It is easy to verify that if we consider X(1) ∼ R(1) we obtain ρ13 ≈ −0.13 and if we consider X(4) ∼ R(4) we obtain
ρ13 ≈ 0.61 where −0.13 and 0.61 are the theoretical lower and upper bounds for this case.
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Table 5: Range of ρ13 given p1, p2, p3, ρ12, ρ23; CJ theoretical bounds, EP method of Emrich and Piedmonte, Q method of Qaqish and PPS method
of Park.

p1 p2 p3 ρ12 ρ23 CJ EP Q PPS
0.2 0.3 0.4 0.1 0.7 (−0.13, 0.61) (−0.12, 0.33) (−0.09, 0.15) (0, 0.17)

Table 6: Ray mass functions d = 3, p = (0.2, 0.3, 0.4), ρ12 = 0.1, ρ23 = 0.7.

x1 x2 x3 R(1) R(2) R(3) R(4)

0 0 0 0.455 0.455 0.577 0.577
1 0 0 0.122 0.122 0 0
0 1 0 0 0.023 0 0.023
1 1 0 0.023 0 0.023 0
0 0 1 0.123 0.123 0.001 0.001
1 0 1 0 0 0.122 0.122
0 1 1 0.222 0.199 0.222 0.199
1 1 1 0.055 0.078 0.055 0.078

6. Conclusion

The proposed approach can be applied to any given set of moments, even of different orders. The method has
the advantage of making it possible to generate all the mass functions which belong to a given class of multivariate
Bernoulli variables, where the class is specified by a set of moments of any order. It is clear that this approach is
different from obtaining one solution using linear programming techniques.

The availability of all the mass functions has an important impact on practical applications. Let us suppose that
a researcher needs a sample of N observations from a multivariate Bernoulli distributions with given moments to
analyze extensions or alternatives to current estimating methods. She will get more robust results if she considers
k ∈ {2, . . . ,N} different distributions and a sample of proper size from each of them, instead of taking a sample of
size N from a single distribution, which can be obtained using a linear programming approach. In this way she will
consider a variety of distributions that will be different from each other, relative to the unspecified moments, i.e., the
moments that do not belong to S . Depending on how large N is, the selected distributions could include the rays and
some other randomly generated distributions, e.g., randomly selecting some λ vectors.
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Appendix A. Examples with given higher order moments

Case 1: p = (1/2, 1/2, 1/2) and ρ12 = ρ13 = ρ23 = 0
Let us consider the case in which X1, X2, X3 must have means equal to 1/2 and must also be not correlated, which

means that the second-order moments are all equal to 1/4. We obtain the two ray mass functions R(1) and R(2) that
we report in Table A.1. We know that one solution to this problem is the uniform distribution whose mass function is
f (x) = 1/8, x ∈ S3. We find it as λ1R(1) + λ2R(2) with λ1 = λ2 = 1/2.

The third-order moments of X(1) ∼ R(1) and X(2) ∼ R(2) are reported in Table A.2. Therefore any mass function in
this class has the third-order moment between 0 and 0.25.
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Table A.1: Ray mass functions d = 3, pi = 1/2, ρi j = 0, i, j ∈ {1, 2, 3}, i < j.

x1 x2 x3 R(1) R(2)

0 0 0 0 0.25
1 0 0 0.25 0
0 1 0 0.25 0
1 1 0 0 0.25
0 0 1 0.25 0
1 0 1 0 0.25
0 1 1 0 0.25
1 1 1 0.25 0

Table A.2: Third-order moments of the ray mass functions d = 3, p = (1/2, 1/2, 1/2), ρi j = 0, i, j ∈ {1, 2, 3}, i < j.

α1 α2 α3 Order µ(1) µ(2)

1 1 1 3 0.25 0

Case 2: p = (1/2, 1/2, 1/2) and ρ12 = 0.2, ρ13 = −0.3, ρ23 = 0.4
Let us consider the case in which X(1), X(2), X(3) must have means equal to 1/2 and correlations ρ12 = 0.2, ρ13 =

−0.3 and ρ23 = 0.4. We obtain the 2 ray mass functions R(1) and R(2) reported in Table A.3. For example if we choose
λ1 = λ2 = 1/2 the corresponding mass function is

f>p = (0.1625, 0.1875, 0.0125, 0.1375, 0.1375, 0.0125, 0.1875, 0.1625) .

Table A.3: Ray mass functions d = 3, p = (1/2, 1/2, 1/2), ρ12 = 0.2, ρ13 = −0.3, ρ23 = 0.4.

x1 x2 x3 R(1) R(2)

0 0 0 0.15 0.175
1 0 0 0.2 0.175
0 1 0 0.025 0
1 1 0 0.125 0.15
0 0 1 0.15 0.125
1 0 1 0 0.025
0 1 1 0.175 0.2
1 1 1 0.175 0.15

The third-order moments of X(1) ∼ R(1) and X(2) ∼ R(2) are reported in Table A.4. Therefore any mass function in
this class has the third-order moment between 0.150 and 0.175.
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