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a b s t r a c t

Hypothesis testing for the proportionality of covariance matrices is a classical statistical
problem and has been widely studied in the literature. However, there have been few
treatments of this test in high-dimensional settings, especially for the case where the
number of variables is larger than the sample size, despite high-dimensional statistical
inference having recently received considerable attention. This paper studies hypothesis
testing for the proportionality of two covariance matrices in the high-dimensional setting:
m, n ≍ pδ for some δ ∈ (1/2, 1), where m and n denote the sample sizes and p denotes
the number of variables. A test statistic is proposed and its asymptotic distribution is
derived under multivariate normality. The non-asymptotic performance of the proposed
test procedure is numerically examined.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Let x ∼ Np(µx,Σ x) and y ∼ Np(µy,Σ y) be independent p-dimensional random vectors with rank(Σ x) = rank(Σ y) = p,
and let x1, . . . , xm with m ≥ 3 and y1, . . . , yn with n ≥ 3 be independent and identically distributed copies of x and y,
respectively. This paper discusses hypothesis testing for the proportionality of Σ x and Σ y: the null hypothesis H0 and the
alternative hypothesis H1 are expressed as

H0 : Σ x = kΣ y for some k ∈ (0, ∞), (1)

H1 : Σ x ̸= kΣ y for any k ∈ (0, ∞). (2)

Without loss of generality,m ≥ n is assumed throughout this paper.
In the theory of multivariate statistical analysis, numerous hypothesis testing techniques for covariance matrices have

been developed. The hypothesis (1), which is the target of this paper, is a typical problem in two-sample hypothesis testing;
see, e.g., Manly and Rayner [16]. When quadratic discriminant analysis is used, it is known that (1), which is called the
proportional covariancemodel or proportional scattermodel, provides good performances inmany cases [7,8].Moreover, (1)
is sometimes a natural assumption in the quantitative genetics domain [6,10]. Hence, estimating covariance matrices under
the constraint (1) has been studied extensively; see, e.g., [2,4,6,9,16]. To judge whether (1) can be assumed, it is important
to test the hypothesis (1). We will provide a brief review of this test problem in the next paragraph, and in Remark 6 after
presenting our proposed approach. For other hypothesis testing regarding covariancematrices, readers are referred to [2,16].
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Testing (1) against (2) is one of the classical problems in multivariate hypothesis testing, and was first studied by
Federer [5] using an approach based on a likelihood ratio test. The likelihood ratio test requires the condition p <

min(m, n) = n, and under H0 twice the logarithm of its statistic converges in distribution to a chi-squared variable as

m, n → ∞ with fixed p. (3)

Following the work of Federer [5], this problem has frequently been considered [6]. Schott [18] proposed a Wald statistic
under (3) without the normality assumption. However, the tests derived under (3) do not necessarily work well as the
dimensionality (the number of variables) p becomes larger. To overcome this problem, Xu et al. [24] and Liu et al. [15]
constructed tests under the setting where m, n, p increase simultaneously. In particular, Liu et al. [15] proposed a test
procedure that was established under

m, n, p → ∞ with p/m → c1 ∈ (0, 1), p/n → c2 ∈ (0, ∞). (4)

Alternatively, we consider the asymptotic setting

p → ∞, m = m(p) ≍ pδ, n = n(p) ≍ pδ, δ ∈ (0, 1), (5)

where m ≍ pδ means that there exist positive constants C1 and C2 such that C1pδ
≤ m ≤ C2pδ for all sufficiently

large p. Obviously, (5) implies that p/m, p/n → ∞ which clearly differs from (3) and (4). Several settings implying that
p/m, p/n → ∞ have been considered in other hypothesis testing. Specifically, in [20–22], several tests for covariance
matrices have been considered under (5). Under the setting (5) with δ ∈ (1/2, 1), we will propose a test procedure for the
proportionality of two covariance matrices assuming multivariate normality. The proposed procedure is designed for the
case where the dimensionality p is larger than the sample sizes m, n. Under our assumptions that observations follow the
normal distribution and the eigenvalues are asymptotically bounded (see Remark 3), the situations to which our procedure
is applicable are limited. The relaxation of these assumptions is left for future research.

1.1. Notations

The indicator function is denoted by 1(·). The (i, j)-element of a matrix A is denoted by (A)i,j. For a matrix A, A2 means AA.
Throughout this paper, the asymptotic setting that m, n and p simultaneously tend to infinity is considered, and the limit
operation is denoted by p → ∞. For a sequence of random variables (or random vectors) X = Xp with p ∈ {1, 2, . . .} and
a random variable (or a random vector) Y , X ⇝ Y means that X converges to Y in distribution. Moreover, for a constant b,
X →

p b means that X converges to b in probability. As for the stochastic order symbols OP (·) and oP (·), see Section 2.2 of
van der Vaart [23].

1.2. Organization of this paper

In Section 2, several assumptions on the covariance matrices are introduced. Section 3 presents preliminary results that
will be used in subsequent sections. Following these preparations, a procedure to test the proportionality of two covariance
matrices is proposed in Section 4. The performance of the proposed procedure is verified in Section 5 through a simulation
study. Proofs of two theoretical results, Lemma 1 and Theorem 2, are included in Appendix A. Some technical details of the
proof of Lemma 1 are presented in the Online Supplement.

2. Assumptions on covariance matrices

For i ∈ {1, . . . , 8}, define the following quantities:

ax,i(p) =
1
p
tr(Σ i

x), ay,i(p) =
1
p
tr(Σ i

y), axy(p) =
1
p
tr(Σ xΣ y).

Remark 1. The null hypothesis (1) holds if and only if

Σ x

ax,1(p)
=

Σ y

ay,1(p)
, (6)

which is further equivalent to

ax,2(p)
{ax,1(p)}2

+
ay,2(p)

{ay,1(p)}2
−

2axy(p)
ax,1(p)ay,1(p)

= 0.

We will construct a test statistic based on the above facts.



414 K. Tsukuda and S. Matsuura / Journal of Multivariate Analysis 171 (2019) 412–420

To derive the asymptotic distribution of a test statistic, it is assumed thatΣ x andΣ y satisfy

lim
p→∞

ax,i(p) = ax,i, lim
p→∞

ay,i(p) = ay,i, 0 < ax,i, ay,i < ∞ (7)

for i ∈ {1, . . . , 8}, and

lim
p→∞

axy(p) = axy, 0 < axy < ∞. (8)

Remark 2. Under H0, as ax,2(p) = ay,2(p) = axy(p), (8) is equivalent to (7) for i = 2. It will be proved that a test statistic
converges in distribution under H0, so (7) is sufficient to show our theoretical result.

Remark 3. Assumption (7) is frequently used in the context of high-dimensional statistics; see, e.g., [19,20]. This assumption
means that themoments of the eigenvalues ofΣ x andΣ y are uniformly bounded in p up to eighth order. In some actual data
analyses, this assumption is too strong. To address such cases, the spiked structures proposed by Johnstone [11] have been
applied in different asymptotic regimes; see, e.g., Section 2 of [12]. This new regime requires totally different asymptotic
discussions.

3. Preliminary results

The unbiased sample covariance matrices of x1, . . . , xm and y1, . . . , yn are denoted by Sx and Sy, respectively, that is

Sx =
1

m − 1

m∑
i=1

(xi − x̄)(xi − x̄)⊤, Sy =
1

n − 1

n∑
i=1

(y i − ȳ)(y i − ȳ)⊤,

where x̄ = (x1 + · · · + xm)/m and ȳ = (y1 + · · · + yn)/n.
Let us introduce the following statistics:

âx,1 =
1
p
tr(Sx), ây,1 =

1
p
tr(Sy), âxy =

1
p
tr(SxSy),

âx,2 =
(m − 1)2

p(m − 2)(m + 1)

[
tr(S2

x ) −
{tr(Sx)}2

m − 1

]
, ây,2 =

(n − 1)2

p(n − 2)(n + 1)

[
tr(S2

y) −
{tr(Sy)}2

n − 1

]
.

Note that the so-called trace estimators âx,1, âx,2, ây,1, ây,2 were originally introduced by Bai and Saranadasa [1] in the
context of the two-sample high-dimensional mean testing problem. Other unbiased trace estimators that do not require
the normality assumption have been discussed in [3,14,22,25].

Remark 4. Under our assumptions, Lemma 2.1 and Theorem 2.1 of Srivastava [20] imply that the following properties hold
for âx,i and ây,i with i ∈ {1, 2}. For i ∈ {1, 2}, E(âx,i) = ax,i(p) and E(ây,i) = ay,i(p). Moreover, for i ∈ {1, 2},

âx,i →
p ax,i, ây,i →

p ay,i (9)

and

p(1+δ)/2
{âx,1 − ax,1(p)} = OP (1), p(1+δ)/2

{ây,1 − ay,1(p)} = OP (1), (10)

pδ
{ây,2 − ay,2(p)} = OP (1), pδ

{âx,2 − ax,2(p)} = OP (1)

as p → ∞ under assumptions (5) and (7). Note that these properties do not generally hold when our assumptions fail.

Remark 5. As E(âxy) = axy(p) and var(âxy) = O(p−2δ), if (8) holds, then âxy →
p axy as p → ∞.

In the next section, a test procedurewill be proposed. To prove the convergence in distribution of our test statistic, wewill
use the following lemma, which corresponds to the two-sample version of Theorem 1 of Schott [19] in which the asymptotic
setting p/(m + n) ̸→ ∞ is considered. The relation between Z , which will be defined in (11), and t(m+n)p in [19] is

t(m+n)p = p(m + n)Z/(mn).

Our proof employs a similar strategy to Schott [19].

Lemma 1. Assume that (5) with δ > 1/2 and (7) hold. IfΣ x = Σ y then

Z =
mn

m + n
(âx,2 + ây,2 − 2âxy) (11)

converges in distribution to N (0, 4a22) as p → ∞, where a2 = ax,2 = ay,2.
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4. Test statistic

Let us consider the following statistic:

T =
mn

m + n

{
âx,2

(âx,1)2
+

ây,2
(ây,1)2

−
2âxy

âx,1ây,1

}
.

Then, we have the following theorem.

Theorem 2. Assume that (5) with δ > 1/2 and (7) hold. Under H0, T ⇝ N (0, 4b22) as p → ∞, where b2 = ax,2/(ax,1)2 =

ay,2/(ay,1)2.

As b2 is unknown, we use a consistent estimator. Define

b̂2 =
m2

m2 + n2

âx,2
(âx,1)2

+
n2

m2 + n2

ây,2
(ây,1)2

.

The ratio of the weights is m2/n2 because the ratio of the leading terms of the asymptotic variances of âx,2/(âx,1)2 and
ây,2/(âx,1)2 is n2/m2 under H0. For this quantity, Lemma 3 follows from (9).

Lemma 3. Assume that (5) and (7) hold. Under H0, b̂2 →
p b2 as p → ∞.

We now propose the test statistic T̃ = T/(2b̂2) and a one-sided test procedure for the proportionality of the covariance
matrices by regarding T̃ as a standard normal variable, i.e., (1) is rejected when T̃ > Φ−1(1 − α), where Φ−1 is the quantile
function of the standard normal distribution,N (0, 1), and α is an assigned significance level. This procedure is based on the
fact that if H0 is true, T̃ ⇝ N (0, 1) as p → ∞ under assumptions (5) with δ > 1/2 and (7), which follows from Theorem 2
and Lemma 3 combined with Slutsky’s Lemma.

Remark 6. In the literature, there are two approaches for testing (1) against (2): using the likelihood ratio statistics or using
the F-matrices S−1

x Sy. Federer [5] used the former approach, for which a Bartlett correction was derived by Eriksen [4]. As
ln |Sx| and ln |Sy| are used for their test procedures, the condition p < min(m, n) = n is required. The F-matrices approach
is useful because (1) is equivalent to the sphericity of Σ−1

x Σ y. The properties of the F-matrices have been investigated by
Khatri [13], Pillai et al. [17] and Zheng [26]. The test developed by Liu et al. [15] was constructed using a closely related
approach. For this approach, Sx must be full rank and hence the condition p < max(m, n) = m is necessary. Moreover, Xu
et al. [24] applied a pseudo-likelihood method for sphericity, assuming that

m, n, p → ∞ with p/m → c1 ∈ (0, 1), p/n → c2 ∈ (0, 1).

In contrast, our approach is designed for the case m < p < n2. Furthermore, a statistic proposed by Srivastava and
Yanagihara [21] (Q2 in their notation) can be used to test the proportionality hypothesis although this perspective is not
mentioned in their paper.

5. Simulation study

In this section, the non-asymptotic performance of the proposed procedure is verified by conducting a simulation study.
Let us describe the simulation setting. The number of iterations is 10,000, the significance level α is 0.05, and the number of
variables p and the sample sizes are set as follows:

(I) p = d3 and m = n = d2(= p2/3) for d ∈ {3, 4, 5, 6, 7, 8, 9, 10};
(II) p = d5 and m = n = d3(= p3/5) for d ∈ {2, 3, 4}.

The covariance matrixΣ x is always the identity matrix Ip of size p, andΣ y is set as follows:

(A) Σ y = Ip;
(B) Σ y = 5Ip;
(C) (Σ y)i,j = {1 + 4(i − 1)/(p − 1)} × 1(i = j) for i, j ∈ {1, . . . , p};
(D) (Σ y)i,j = 1(i = j) + 0.4 × 1(|i − j| = 1) for i, j ∈ {1, . . . , p};
(E) (Σ y)i,j = 1(i = j) + 0.5 × 1(|i − j| = 1) for i, j ∈ {1, . . . , p};
(F) (Σ y)i,j = 0.4|i−j| for i, j ∈ {1, . . . , p};
(G) (Σ y)i,j = 0.5|i−j| for i, j ∈ {1, . . . , p}.

The rejection rates of H0 obtained under the above settings are summarized in Tables 1 and 2. For cases (A) and (B), the
numbers in the table represent the type I error rates, and for the other cases they represent the powers of the test. The results
can be summarized as follows:
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Table 1
Results (rejection rates of H0) of simulation study (I) p = d3,m = n = d2 .
d Size Power

(A) (B) (C) (D) (E) (F) (G)

3 0.0353 0.0355 0.0675 0.1094 0.1698 0.1258 0.2246
4 0.0401 0.0384 0.1169 0.2639 0.4603 0.3252 0.6150
5 0.0488 0.0451 0.2102 0.5229 0.8160 0.6236 0.9421
6 0.0514 0.0478 0.3387 0.8123 0.9859 0.9001 0.9991
7 0.0489 0.0477 0.5325 0.9662 0.9996 0.9927 1.0000
8 0.0464 0.0475 0.7198 0.9995 1.0000 1.0000 1.0000
9 0.0469 0.0456 0.8872 1.0000 1.0000 1.0000 1.0000

10 0.0486 0.0490 0.9686 1.0000 1.0000 1.0000 1.0000

Table 2
Results (rejection rates of H0) of simulation study (II) p = d5,m = n = d3 .
d Size Power

(A) (B) (C) (D) (E) (F) (G)

2 0.0372 0.0331 0.0569 0.0917 0.1368 0.1022 0.1835
3 0.0420 0.0470 0.2288 0.5923 0.8795 0.7001 0.9745
4 0.0506 0.0493 0.7290 0.9981 1.0000 0.9999 1.0000

(1) The proposed test is conservative for almost all settings.
(2) The Type I error rate approaches α (= 0.05) as d increases, i.e.,m, n and p increase.
(3) The power monotonically increases as d increases.
(4) By comparing settings (I) d = 4 and (II) d = 2, both of which have p/m = p/n = 4, and by comparing (I) d = 9 and

(II) d = 3, both of which have p/m = p/n = 9, we see that the power of (I) is greater than that of (II) when p/m is the
same.

Let us discuss the result of (C)–(G) inmore detail. For case (C), in which the non-diagonal elements ofΣ y (the covariances
of y) are all 0 (which equal the non-diagonal elements of Σ x), but the diagonal elements of Σ y (the variances of y) are
different from those ofΣ x, the power becomes greater as d increases. The power gets closer to 1 as d increases in cases (D)
and (E), too, where the variances of y are all 1 and two consecutive variables are correlated. The power in case (E), with
correlation coefficients 0.5, is greater than that in case (D), with correlation coefficients 0.4, for the same values of d. Similar
results were obtained in cases (F) and (G), although their powers go to 1 more rapidly than in cases (D) and (E). This may be
because all p variables of y are correlated in cases (F) and (G), unlike cases (D) and (E).
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Appendix A. Proofs

Proof of Lemma 1. Assume that Σ x = Σ y and let us denote them by Σ . As Z is invariant if Sx and Sy are transformed to
P⊤SxP and P⊤SyP with any orthogonal matrix P , we assume thatΣ is diagonal without loss of generality. Let us denote the
(i, j)-element of Sw by sij,w for w = x, y, and the (i, i)-element ofΣ by σii. Then, we can write

sij,x =
1

m − 1
σ

1/2
ii σ

1/2
jj z⊤

i,xz j,x, sij,y =
1

n − 1
σ

1/2
ii σ

1/2
jj z⊤

i,yz j,y,

with two independent iid sequences z1,x, . . . , zp,x and z1,y, . . . , zp,y, where for each h ∈ {1, . . . , p}, zh,x is an (m − 1)-
dimensional standard normal variable and zh,y is an (n − 1)-dimensional standard normal variable.

Letting

ρ1,h =
mn

p(m + n)
(m − 1)2

(m + 1)(m − 2)

(
2

h−1∑
ℓ=1

s2ℓh,x + s2hh,x

)
, ρ2,h =

mn
p(m + n)

(n − 1)2

(n + 1)(n − 2)

(
2

h−1∑
ℓ=1

s2ℓh,y + s2hh,y

)
,

ρ3,h = 2
mn

p(m + n)

(
2

h−1∑
ℓ=1

sℓh,xsℓh,y + shh,xshh,y

)
, ρ4,h =

mn
p(m + n)

m − 1
(m + 1)(m − 2)

(
2shh,x

h−1∑
ℓ=1

sℓℓ,x + s2hh,x

)
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and

ρ5,h =
mn

p(m + n)
n − 1

(n + 1)(n − 2)

(
2shh,y

h−1∑
ℓ=1

sℓℓ,y + s2hh,y

)
,

we define a sequence τ1, . . . , τp of random variables by τh = ρ1,h + ρ2,h − ρ3,h − ρ4,h − ρ5,h for each h ∈ {1, . . . , p}. Then,
Z = τ1 + · · · + τp. Moreover, let ρ∗

i,h = ρi,h − E(ρi,h) for each i ∈ {1, . . . , 5}. For each h ∈ {1, . . . , p}, let us introduce a
sigma-field Fp

h generated by {z1,x, . . . , zh,x} and {z1,y, . . . , zh,y}. Then, τ1, . . . , τp is a martingale difference sequence with
respect to the filtration {Fp

1 , . . . ,F
p
p }; see the proof of Theorem 1 in [19]. As we will show that

p∑
h=1

E(τ 2
h |Fp

h−1) →
p 4a22 (A.1)

and
p∑

h=1

E(τ 4
h ) → 0, (A.2)

the Lyapunov type Martingale Central Limit Theorem yields the conclusion.

Proof of (A.1). It is sufficient to show
p∑

h=1

E(τ 2
h ) → 4a22 (A.3)

and

var

{ p∑
h=1

E(τ 2
h |Fp

h−1)

}
→ 0. (A.4)

Proof of (A.3). As τ1, . . . , τp is a martingale difference sequence, one has

E(τ 2
1 ) + · · · + E(τ 2

p ) = E{(τ1 + · · · + τh)2} = var(Z).

It also holds that

var(Z) =
m2n2

(m + n)2
{var(âx,2) + var(ây,2) + 4var(âxy) − 4cov(âx,2, âxy) − 4cov(ây,2, âxy)}.

From cov(âx,2, âxy) = o(p−1m−2n−1) and cov(ây,2, âxy) = o(p−1m−1n−2) (see Subsection 4.2 of [22]), it follows that

var(Z) =
m2n2

(m + n)2

(
4a22
m2 +

4a22
n2 + 4

2a22
mn

)
+ o(1) → 4a22.

Proof of (A.4). From τh = (ρ∗

1,h − ρ∗

4,h) + (ρ∗

2,h − ρ∗

5,h) − ρ∗

3,h, it follows that

τ 2
h = (ρ∗

1,h − ρ∗

4,h)
2
+ (ρ∗

2,h − ρ∗

5,h)
2
+ (ρ∗

3,h)
2
+ 2(ρ∗

1,h − ρ∗

4,h)(ρ
∗

2,h − ρ∗

5,h) − 2(ρ∗

1,h − ρ∗

4,h)ρ
∗

3 − 2(ρ∗

2,h − ρ∗

5,h)ρ
∗

3,h.

Hence, to see var[
∑p

h=1 E(τ
2
h |Fp

h−1)} → 0, it is sufficient to prove

var

[ p∑
h=1

E{(ρ∗

1,h − ρ∗

4,h)
2
|Fp

h−1}

]
→ 0, (A.5)

var

[ p∑
h=1

E{(ρ∗

2,h − ρ∗

5,h)
2
|Fp

h−1}

]
→ 0, (A.6)

var

[ p∑
h=1

E{(ρ∗

3,h)
2
|Fp

h−1}

]
→ 0, (A.7)

var

[ p∑
h=1

E{(ρ∗

1,h − ρ∗

4,h)(ρ
∗

2,h − ρ∗

5,h)|F
p
h−1}

]
= 0, (A.8)

var

[ p∑
h=1

E{(ρ∗

1,h − ρ∗

4,h)ρ
∗

3 |F
p
h−1}

]
= 0, (A.9)
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and

var

[ p∑
h=1

E{(ρ∗

2,h − ρ∗

5,h)ρ
∗

3,h|F
p
h−1}

]
= 0. (A.10)

Here, let us briefly explain these assertions; the detailed calculations are presented in the Online Supplement. For (A.5),
one has

var

[ p∑
h=1

E{(ρ∗

1,h − ρ∗

4,h)
2
|Fp

h−1}

]

=

{
mn

p(m + n)
m − 1

(m + 1)(m − 2)

}4

var

[ p∑
h=1

{
8

h−1∑
ℓ=1

(m − 2)σ 2
ℓℓσ

2
hh

(m − 1)3
(z⊤

ℓ,xzℓ,x)2

+ 8
h−1∑
ℓ=1

h−1∑
ℓ′ ̸=ℓ

σℓℓσℓ′ℓ′σ 2
hh

(m − 1)2
(z⊤

ℓ,xzℓ′,x)2 − 8
h−1∑
ℓ=1

h−1∑
ℓ′ ̸=ℓ

σℓℓσℓ′ℓ′σ 2
hh

(m − 1)3
(z⊤

ℓ,xzℓ,x)(z⊤

ℓ′,xzℓ′,x)

⎫⎬⎭
⎤⎦

≤ 3
{

mn
p(m + n)

m − 1
(m + 1)(m − 2)

}4
[
var

{ p∑
h=1

8
h−1∑
ℓ=1

(m − 2)σ 2
ℓℓσ

2
hh

(m − 1)3
(z⊤

ℓ,xzℓ,x)2
}

+ var

⎧⎨⎩8
h−1∑
ℓ=1

h−1∑
ℓ′ ̸=ℓ

σℓℓσℓ′ℓ′σ 2
hh

(m − 1)2
(z⊤

ℓ,xzℓ′,x)2

⎫⎬⎭+ var

⎧⎨⎩8
h−1∑
ℓ=1

h−1∑
ℓ′ ̸=ℓ

σℓℓσℓ′ℓ′σ 2
hh

(m − 1)3
(z⊤

ℓ,xzℓ,x)(z⊤

ℓ′,xzℓ′,x)

⎫⎬⎭
⎤⎦ .

We can also write{
mn

p(m + n)
m − 1

(m + 1)(m − 2)

}4

var

[ p∑
h=1

{
8

h−1∑
ℓ=1

(m − 2)σ 2
ℓℓσ

2
hh

(m − 1)3
(z⊤

ℓ,xzℓ,x)2
}]

= 512
m4n4(m + 2)

p4(m + n)4(m − 2)2(m − 1)(m + 1)3

p−1∑
ℓ=1

( p∑
h=ℓ+1

σ 2
hh

)2

σ 4
ℓℓ

≤ 512
m4n4(m + 2)

p(m + n)4(m − 2)2(m − 1)(m + 1)3
tr(Σ 4)

p

{
tr(Σ 2)

p

}2

→ 0.

Moreover, one has{
mn

p(m + n)
m − 1

(m + 1)(m − 2)

}4

var

⎡⎣ p∑
h=1

⎧⎨⎩8
h−1∑
ℓ=1

h−1∑
ℓ′ ̸=ℓ

σℓℓσℓ′ℓ′σ 2
hh

(m − 1)2
(z⊤

ℓ,xzℓ′,x)2

⎫⎬⎭
⎤⎦

= 64
m4n4

p4(m + n)4(m − 2)4(m + 1)4

⎧⎨⎩2
p−1∑
ℓ=1

p−1∑
ℓ′ ̸=ℓ

p∑
h=max{ℓ,ℓ′}+1

p∑
h′=max{ℓ,ℓ′}+1

σ 2
ℓℓσ

2
ℓ′ℓ′σ

2
hhσ

2
h′h′2(m − 1)(m + 2)

+ 4
p−1∑
ℓ=1

p−1∑
ℓ′ ̸=ℓ

p−1∑
k̸=ℓ,ℓ′

p∑
h=max{ℓ,ℓ′}+1

p∑
h′=max{ℓ,k}+1

σ 2
ℓℓσℓ′ℓ′σkkσ

2
hhσ

2
h′h′2(m − 1)

⎫⎬⎭
≤ 64

m4n4

(m + n)4(m − 2)4

[
4
(m − 1)(m + 2)

(m + 1)4

{
tr(Σ 2)

p

}4

+ 8
(m − 1)p
(m + 1)4

{
tr(Σ )

p

}2 { tr(Σ 2)
p

}3]
and {

mn
p(m + n)

m − 1
(m + 1)(m − 2)

}4

var

⎡⎣ p∑
h=1

⎧⎨⎩8
h−1∑
ℓ=1

h−1∑
ℓ′ ̸=ℓ

σℓℓσℓ′ℓ′σ 2
hh

(m − 1)3
(z⊤

ℓ,xzℓ,x)(z⊤

ℓ′,xzℓ′,x)

⎫⎬⎭
⎤⎦

= 512
m4n4

p4(m + n)4(m − 2)4(m + 1)4

⎡⎣⎧⎨⎩
p−1∑
ℓ=1

p−1∑
ℓ′ ̸=ℓ

p∑
h=max{ℓ,ℓ′}+1

p∑
h′=max{ℓ,ℓ′}+1

σ 2
ℓℓσ

2
ℓ′ℓ′σ

2
hhσ

2
h′h′m

⎫⎬⎭
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+

⎧⎨⎩
p−1∑
ℓ=1

p−1∑
ℓ′ ̸=ℓ

p−1∑
k̸=ℓ,ℓ′

p∑
h=max{ℓ,ℓ′}+1

p∑
h′=max{ℓ,k}+1

σ 2
ℓℓσℓ′ℓ′σkkσ

2
hhσ

2
h′h′ (m − 1)

⎫⎬⎭
⎤⎦

≤ 512
m4n4

(m + n)4(m − 2)4

[
m

(m + 1)4

{
tr(Σ 2)

p

}4

+
p(m − 1)
(m + 1)4

{
tr(Σ )

p

}2 { tr(Σ 2)
p

}3]
.

These right-hand sides converge to 0 because δ > 1/3. In the same way as for (A.5), we can show (A.6). As for (A.7), it holds
that

var

[ p∑
h=1

E{(ρ∗

3,h)
2
|Fp

h−1}

]
= 512

m4n4

p4(m + n)3(m − 1)3(n − 1)3

p−1∑
ℓ=1

σ 4
ℓℓ

( p∑
h=ℓ+1

σ 2
hh

)2

≤ 512
m4n4

p(m + n)3(m − 1)3(n − 1)3

{
tr(Σ 4)

p

}{
tr(Σ 2)

p

}2

→ 0.

For (A.8), (A.9) and (A.10), see the Online Supplement.

Proof of (A.2). It follows from Jensen’s inequality that

E(τ 4
h ) ≤ 53

[E{(ρ∗

1,h)
4
} + E{(ρ∗

2,h)
4
} + E{(ρ∗

3,h)
4
} + E{(ρ∗

4,h)
4
} + E{(ρ∗

5,h)
4
}].

The right-hand side of the above expression is O(p−2δ), because some simple calculations give

E{(ρ∗

1,h)
4
} ≤

m4n4

p4(m + n)4
(m − 1)8

(m + 1)4(m − 2)4

[
σ 4
hh[O(m

−4)tr(Σ 4) + O(m−5)tr(Σ 3)tr(Σ )

+ O(m−5)tr(Σ 2){tr(Σ )}2 + O(m−4){tr(Σ 2)}2 + O(m−6){tr(Σ )}4] + σ 8
hhO(m

−2)
]

=
m4n4

p4(m + n)4
O(p−6δ+4) = O(p−2δ),

E{(ρ∗

3,h)
4
} =

16m4n4

p4(m + n)4

[
σ 4
hh[O(m

−2n−2)tr(Σ 4) + O(m−2n−2){tr(Σ 2)}2]

+ σ 6
hhO{(m + n)m−2n−2)tr(Σ 2) + σ 8

hhO(m
−1n−1)

]
=

m4n4

p4(m + n)4
O(p−4δ+2) = O(p−2),

E{(ρ∗

4,h)
4
} ≤

m4n4

p4(m + n)4
(m − 1)8

(m + 1)4(m − 2)4

[
σ 4
hh[O(m

−7)tr(Σ 4) + O(m−7)tr(Σ 3)tr(Σ )

+ O(m−6)tr(Σ 2){tr(Σ )}2 + O(m−6){tr(Σ 2)}2 + O(m−6){tr(Σ )}4] + σ 8
hhO(m

−6)
]

= O(p−2δ),

Now E{(ρ∗

2,h)
4
} = O(p−2δ), and E{(ρ∗

5,h)
4
} = O(p−2δ); see also the evaluation on pp. 6541–6542 of [19]. Thus, we conclude

from δ > 1/2 and (7) for i ∈ {1, . . . , 8} that E(τ 4
1 ) + · · · + E(τ 4

p ) = O(p1−2δ) → 0. This completes the argument. □

Proof of Theorem 2. Write T = T1 + T2 + T3 + T4 + T5, where

T1 =
mn

m + n

[
âx,2

{ax,1(p)}2
+

ây,2
{ay,1(p)}2

−
2âxy

ax,1(p)ay,1(p)

]
,

T2 = âx,2

{
1

âx,1
+

1
ax,1(p)

}
mn

m + n

{
1

âx,1
−

1
ax,1(p)

}
, T3 = ây,2

{
1

ây,1
+

1
ay,1(p)

}
mn

m + n

{
1

ây,1
−

1
ay,1(p)

}
,

T4 =
âxy
âx,1

2mn
m + n

{
1

ây,1
−

1
ay,1(p)

}
, T5 =

âxy
ay,1(p)

2mn
m + n

{
1

âx,1
−

1
ax,1(p)

}
.

First, we see that T = T1 + oP (1). It follows from (10) that

mn
m + n

{
1

âx,1
−

1
ax,1(p)

}
=

mn
p(1+δ)/2(m + n)

p(1+δ)/2
{ax,1(p) − âx,1}

âx,1ax,1(p)
→

p 0

and
mn

m + n

{
1

ây,1
−

1
ay,1(p)

}
→

p 0,
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which imply T2, T3, T4, T5 →
p 0. It remains to show that

T1 ⇝ N (0, 4b22). (A.11)

Letting x̃ = x/
√
ax,1(p) and ỹ = y/

√
ay,1(p), one has var(x̃) = Σ x/ax,1(p) and var(ỹ) = Σ y/ay,1(p). If we regard these x̃

and ỹ as the original x and y, respectively, Lemma 1 implies (A.11), recalling thatH0 is equivalent to (6). This completes the
argument. □

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2019.01.011.
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