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multiplier bootstrap. The latter is however characterized by a high implementation cost.
Given the rank-based nature of the empirical copula, the classical empirical bootstrap of
Efron does not appear to be a natural alternative, as it relies on resamples which contain
ties. The aim of this work is to investigate the use of subsampling in the aforementioned
framework. The latter consists of basing the inference on statistic values computed from
subsamples of the initial data. One of its advantages in the rank-based context under
consideration is that the formed subsamples do not contain ties. Another advantage is its
asymptotic validity under minimalistic conditions. In this work, we show the asymptotic
validity of subsampling for several (weighted, smooth) empirical copula processes both
in the case of serially independent observations and time series. In the former case,
subsampling is observed to be substantially better than the empirical bootstrap and
equivalent, overall, to the multiplier bootstrap in terms of finite-sample performance.
© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Let &X', denote a stretch Xj,..

., X, from a stationary time series (X;)icz of d-dimensional random vectors. The

distribution function (d.f.) of each X; is denoted by F and is assumed to have continuous univariate margins Fy, ..., Fj.
By Sklar’s theorem [48], it is then well-known that F can be expressed as

F(x) = C{Fy(x1), ..., Fa(xa)},

xeRY (1)

where C is the unique copula (a d-dimensional d.f. with standard uniform margins) associated with F.

Eq. (1) is at the root of the so-called copula approach to the modeling of multivariate continuous distributions, which is
increasingly applied in numerous fields such as quantitative risk management [32], econometrics [33], or environmental
modeling [41]. Indeed, in order to obtain a parametric estimate of F, the decomposition in (1) suggests to model Fy, ..., Fy

by appropriate univariate parametric d.f.s and C by an adequate parametric copula family. The recent infatuation for such
a two-step approach in the literature is mostly due to the fact that it has the potential of providing better estimates of
the multivariate d.f. F than if a direct classical multivariate approach were used; see, for instance, [28] and the references
therein for more details.
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The modeling of the univariate margins Fy, ..., Fg of F can be based on classical statistical inference techniques. Infer-
ence on the unknown copula C is, however, typically carried out using specific methods exploiting the
two-step nature of the underlying modeling. Among the latter methods, rank-based approaches display particularly good
properties [see, e.g., 20,28]. One of their key ingredients is a nonparametric rank-based estimator of C called the empirical
copula [see, e.g., 13,39]. In the absence of ties in the component samples of the available data &, it is natural to define
the latter simply as the empirical d.f. of the multivariate ranks obtained from X, scaled by 1/n. Two smooth versions,
with better small-sample properties, are the empirical checkerboard copula [see, e.g., 22,24, and the references therein]
and the empirical beta copula [45].

Whatever type of empirical copula is used in inference procedures on the unknown copula C in (1), it is almost always
necessary to rely on resampling techniques to compute corresponding approximate confidence intervals or p-values. A
frequently used approach is the so-called multiplier bootstrap [see, e.g., 38,43]. When X, consists of n independent and
identically distributed (i.i.d.) copies of X, Biicher and Dette [6] empirically found the latter resampling scheme to have
better finite-sample properties than approaches consisting of adapting the empirical (multinomial) bootstrap of Efron
[17]. Both the i.i.d. version of the multiplier bootstrap and its extension to time series investigated in [7] are however
characterized by a high implementation cost which may deter their use in copula inference procedures. The main aim of
this work is to investigate the use of another resampling technique, known as subsampling [34,35], to carry out inference
on the unknown copula C in (1).

In the case of i.i.d. data, subsampling consists of taking subsamples of size b < n without replacement from the initial
data. The statistic of interest is then recomputed for a large number of such subsamples and its sampling distribution is
approximated by the empirical distribution of its subsample values. In the time series case, subsamples are restricted to
consecutive observations to preserve serial dependence. Note in passing that, in the i.i.d. setting, subsampling is connected
to the so-called delete-h jackknife [47,54]; see also Section 2.3 in [46] and, in particular, Remark 2.1 in [34].

A theoretical advantage of subsampling is its asymptotic validity under minimalistic assumptions, weaker than those
of the empirical bootstrap for instance; see [34-36] for details. From a practical perspective, subsampling is very
simple to implement, its only drawback being the necessity of choosing the subsample size b. In the context of copula
modeling based on ranks (and, more generally, in the context of rank-based statistics), it is particularly attractive because
subsamples do not contain ties unlike, for instance, resamples of size n in the case of the empirical bootstrap. The latter
cannot therefore be directly used for rank-based statistics as shall be discussed, for instance, in Section 5 for (certain
functionals of) the empirical copula. For this reason, subsampling appears as a simple way to obtain approximations of
the sampling distributions of the empirical checkerboard and empirical beta copulas, even in a time series context.

Notice that, in the case of i.i.d. observations, subsamples of size b could also be obtained by sampling with replacement
from X, [see, e.g., 3,50]. The resulting resampling technique, sometimes referred to as the b out of n bootstrap (and which
coincides with the empirical bootstrap when b = n), thus forms subsamples with ties and therefore suffers from the
same inconvenience as the empirical bootstrap in the rank-based context under consideration. For this reason, we shall
not investigate it theoretically in this work. We shall however mention this alternative technique again when summarizing
the results of our Monte Carlo experiments.

The rest of this article is organized as follows. In the second section, we introduce the main versions of the empirical
copula appearing in the literature and define the corresponding empirical copula processes. The third section establishes
the asymptotic validity of the subsampling methodology for the latter processes, while the fourth section states weighted
versions of such results, thereby providing a first simple way to carry out inference on quantities which can be expressed
as functionals of weighted empirical copula processes. The fifth section summarizes the results of Monte Carlo experiments
in the i.i.d. and time series cases, and provides recommendations for the choice of the subsample size in the i.i.d. case.
Finally, concluding remarks are gathered in Section 6.

All proofs are deferred to a sequence of appendices. Additional simulation results are provided in a supplement. The
following notation is used in the sequel. The arrow ‘~~’ denotes weak convergence in the sense of Definition 1.3.3 in [52],
and, given a set T, £°°(T) (resp. C(T)) represents the space of all bounded (resp. continuous) real-valued functions on T
equipped with the uniform metric. All convergences are for n — oo if not mentioned otherwise.

2. Empirical copulas and empirical copula processes

It is well-known that the unique copula in (1) can be expressed [see, e.g., 40,48] as
C(uw)=F{Fy (1), ..., Fy(ug)},  me[0,1], (2)
where, for any univariate d.f. H, H~ denotes its associated quantile function (generalized inverse) defined by
H™(y)=inflxe R: H(x) >y}, yel0,1],

with the convention that inf@J = oo.

A first natural definition of the empirical copula, due to Deheuvels [13,14], stems from (2) and the plug-in principle.
Let F, denote the empirical d.f. of X, and let Fy1, ..., F,q be the corresponding univariate margins. The empirical copula
of &, is then defined by

Ca(u) = FoFy(u1), ..., Frg(ua)}, w0, 1] (3)
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Another definition of the empirical copula frequently found in the literature [see, e.g., 21] is

n

d
= 1
Gw) = — > TRy <) welo 1) 4)

i=1 j=1

When there are no ties in the components samples of &, it is well-known that, for any i € {1,...,n} and any

j € {1,...,d}, nFy(Xy) is nothing else then the rank R, of X; among Xyj, ..., Xy. In that case, G, coincides with the
version of the empirical copula appearing in Riischendorf [39] and given by

n d
SN | LUMCET LIRS (5)

i=1 j=1

The latter is merely the empirical d.f. of the sample (Ri1 n, ..., Rign)/n, i € {1, ..., n}, of normalized multivariate ranks.
Before proceeding further, let us formally introduce the no-ties condition.

Condition 1 (No Ties). Foranyj € {1,...,d}, the jth component sample Xyj, ..., Xy of X, does not contain ties.

Remark 1. When the available data &, consist of n i.i.d. copies of the random vector of interest X, continuity of the
marginal d.f.s Fy, ..., F; implies that Condition 1 is satisfied. In a time series context, however, ties may occur with positive
probability even if Fy, ..., Fy are continuous: as suggested in [2], take, for instance, a Markov chain where the current
state is repeated with positive probability.

Under Condition 1, classical calculations [see, e.g., 1, proof of Lemma 4.7], imply that, almost surely,

A d
sup |Cn(u) - Cn(u)| < -.
uel0,1]4 n

(6)

The relative simplicity, computation-wise, of C,1 in (5) over G, in (3) makes it the natural definition in the absence of ties.
In the presence of ties, however, Cn is not unambiguously defined but C, in (4) could still be used as an alternative to C,
in (3). Interestingly enough, C, and C, can be shown to remain sufficiently close under a rather minimalistic condition
that shall be stated towards the end of this section.

In the absence of ties, the empirical copula, whether it is defined by (3) or (5), is not, however, a genuine copula: it
is for instance easy to verify that the univariate margins of C, and G, are not standard uniform but only asymptotically
standard uniform. In the absence of ties, two smoother alternatives to the empirical copula that are genuine copulas are
the empirical checkerboard copula and the empirical beta copula. The empirical checkerboard copula is merely a multilinear
extension of G, and is defined by

1 n d

- anin{max{nuj —Ryjn+1,01, 1), uel0,1]%, (7)

CHu) = .
i=1 j=1

see, e.g., [11,45], and the references therein. It is important to note that the empirical checkerboard copula can also be
defined in the presence of ties and even for discontinuous margins Fy, ..., Fy4; see, for instance, [22-24]. Coming back
to our context of continuous margins, it is easy to verify (see Lemma 1 in Appendix A) that, under Condition 1, almost
surely,

sup [C(u) — Co(u)| <
ue(0,1]4

B\Q..

(8)

thereby indicating that the empirical checkerboard copula can be thought of as a smoothing of the empirical copula Ca
at bandwidth O(1/n).

The empirical beta copula, proposed by Segers et al. [45], is obtained by replacing indicator functions in (5) by d.f.s of
particular beta distributions. Specifically, the empirical beta copula is defined by

n d
1
" Y[ TFurw). welo, 11 ©

i=1 j=1

where, for any r € {1, ..., n}, F,, denotes the d.f. of the beta distribution with parameters r and n+ 1 —r. The empirical
beta copula is actually a particular case of the empirical Bernstein copula introduced in [42] and further studied in [29],
when the degrees of all Bernstein polynomials are set equal to the sample size. Proposition 2.8 in [45] shows that, under
Condition 1, the uniform distance between the empirical beta copula and Cy is O(n~"2(Inn)'/2), thereby suggesting to
see the empirical beta copula as a smoothing of the empirical copula C, at approximately bandwidth O(n~1/2); see also
Corollary 3.7 in [45].
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The previous definitions give rise to up to five different empirical copula processes. The two most studied ones are

= Vn{G(u) - Cw), uelo 11", (10)
and its asymptotically equivalent version in the absence of ties given by
= Vn{Gy(u)— Cw)},  uelo, 11" (11)

In the case of i.i.d. observations, their weak convergence was investigated for instance in [18,19,44,51,53]. As we shall see
below, the time series case can be elegantly handled using the work of Biicher and Volgushev [9].
For the sake of completeness, we also define the process

= V/n{Cy(u) — Cw)}, welo, 11, (12)

whose study becomes of interest only in a time series context in which ties may occur.
In the absence of ties, two smoother empirical copula processes are obtained from the empirical checkerboard copula
and the empirical beta copula, namely

= /n{Cu) — c(u)}, u <0, 1), (13)

and
Chu) = Vn{Cf(w) - Cw)),  uelo, 1] (14)

The former was studied by Genest et al. [24] in a broader context than the one considered in this work, while the latter
was investigated by Segers et al. [45].

Under the assumption of continuity of the marginals d.f.s Fy, ..., F; made in this work, the weak convergence of the
aforementioned empirical copula processes can be elegantly stated by invoking the two conditions considered in [9]. The
first condition concerns the weak convergence of the multivariate empirical process based on the (unobservable) sample

U,,...,U, obtained from X, by (marginal) probability integral transformations, where
Ui = (FilXn), ..., Fa(Xia)), i€Z. (15)
Notice that U4, ..., U, is a sample from C and let G,, denote its empirical d.f. The multivariate empirical process based
onU,,...,U, is then
= V/n{Gu(u) — C(w)},  uel0, 1] (16)

Condition 2 (Weak Convergence of G,). The multivariate empirical process G, in (16) converges weakly in £°([0, 11%) to a
tight, centered Gaussian process G¢ concentrated on

Co={f €c([0,119): f(1,...,1) = 0 and f(u) = 0 if some components of u are equal to 0}. (17)

The second condition was initially introduced by Segers [44] and is nonrestrictive in the sense that it is necessary for
the candidate weak limit of the empirical copula processes under consideration to exist pointwise and have continuous
sample paths.

Condition 3 (Continuous Partial Derivatives). For any j € {1, ..., d}, the jth partial derivative Cj(u) = 9C(u)/9u; of C exists
and is continuous on the set

Vi={uel0,11":y€(0,1)}. (18)

From Corollary 2.5 in [9], we then know that, under Conditions 2 and 3, the empirical copula process C, in (10)
converges weakly in £%°([0, 1]%) to a tight, centered Gaussian process C¢c which may be expressed in terms of G¢ as

Ce(u) = Gc(u) = Y _ G)Ge?),  uelo, 11, (19)

where, for any j € {1,...,d} and u € [0, 1]¢, uY is the vector of [0, 119 whose components are all equal to 1 except the
jth which is equal to u;, and with the convention that Cj(u) is equal to 0 if u; € {0, 1}.

Under Condition 2, proceeding as in the proof of Lemma 4.7 in [1] and using the asymptotic uniform equicontinuity
in probability of G,, we immediately obtain that

sup |Ca(tt) — Co(w)] = 0pe(n™"72), (20)
uel0,1¢

which, if Condition 3 also holds, is sufficient to conclude that C, in (12) converges weakly in £°°([0, 119) to Cc in (19) as
well. Assuming additionally Condmon 1, that is, the absence of ties, the same holds for C, (since, in that case, C, = C,),
as well as for C¥ in (13) and <C,, in (14) by (8) and Corollary 3.7 in [45], respectively. In other words, the empirical copula
processes under consideration have the same weak limit under Conditions 1-3.
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3. Subsampling empirical copula processes

We start by describing the considered subsampling framework before stating a theorem establishing the asymptotic
validity of the subsampling methodology for the empirical copula processes introduced in the previous section.

Because we shall in part rely on the very general results of Politis et al. [36], we assume that the available sample
X, is a stretch from a strongly mixing stationary sequence (X;)icz. Denote by ]—‘" the o-field generated by (X;)j<i<k,
j.k € Z U {—o0, +<>o} and recall that the strong mixing coefficients correspondmg to the stationary sequence (X;)icz
are then defined by o = 1/2,

of = sup |Pr(A N B) — Pr(A)Pr(B)],

;
AeFO  BeF ™

reN, r>0,

and that the sequence (X;);cz is said to be strongly mixing if ozf — 0asr — oo.
We consider two settings for the sequence (X;)icz:

ii.d. The coefficients oz ,r > 1, are all equal to zero implying that the stretch &', consists of i.i.d. random vectors.

s.m. The sequence (X;)icz is strongly mixing but not i.i.d. with «¥ = 0(r~*) as r — oo, for some a > 1.

Remark 2. The condition on the mixing coefficients stated in the s.m. setting is among the weakest possible ones and,
from Theorem 1 of Biicher [5], implies that Condition 2 is then satisfied. Note that Condition 2 also obviously holds under
the i.i.d. setting as a consequence of Donsker’s theorem.

Let b < n denote the size of subsamples which will be obtained from X’,. Under the i.i.d. setting, subsamples can
be formed simply by sampling without replacement from X’,. The number of possible subsamples is thus Ny, = (Z)
Following Politis and Romano [34], the subsampling methodology, say for C, in (10), consists of, first, evaluating a
computable version of C, for a large number of the Nj, , subsamples Xg"], m e {1,..., Npn}, of size b obtained by sampling
without replacement from X', (considering all of the Nj , subsamples is typically infeasible in practice), and, second, of
carrying out the inference on C using these subsample replicates of C,. The latter are naturally formed as follows. For
me{l,...,Np,} let Flgm] be the empirical d.f. of the sample X[m] let FlE'I"], . FLEZ"] be the univariate margins of FIE'"], and
let

Gy = FM™ET (uy), R (ua)), we (0,11,
be the empirical copula of X[m] The subsample replicates of the empirical copula process C, are then defined by
Cyu) = Vh{G"(w) - Gu(w)),  we 0,11 me(l,..., Nyl 21

Hence, a replicate of C, for a subsample X[m] coincides with Cy, on X[m] up to the centering term which is G, instead of
the unknown copula C.

Remark 3. Both for theoretical and practical reasons, it is often meaningful to correct subsample replicates by multiplying

them by the finite population correction (1 — b/n)""/?> ; see Politis et al. [35 Section 10.3.1] and
Shao and Tu [46, Section 2.3.1]. This factor arises from the analysis of subsampling for the mean: in the case of univariate
iid. observations Xj, ..., Xy, the variance of uncorrected subsample replicates can be verified to be (1 — b/n) times the

variance of \/n{X, — E(X)}, where X, = n~! Z};lx,-. The discussion in Politis et al. [35, Chapter 10] in the case of the
mean suggests that the use of the finite population correction may always be beneficial in finite samples.

Coming back to our setting, given a subsample replicate (C,[Jm] of Cp,, we define its corrected version to be
C = (1—b/my 2y, (22)

To fix ideas further, assume that we are interested in estimating a linear functional v/(C) of the unknown copula C (such
as Spearman'’s rho for instance). An approximate confidence interval of expected asymptotic level 1 — « for ¥ (C) based
on subsampling C,, is then given by

Tate = |W(G) =" R (1= a/2),9(G) = 2Ry, (@/2)] @ e(0,1/2)

where Fy, , is the empirical d.f. of the sample of the N, (corrected) subsample replicates w(C[m]) m e {1,...,Npn},
of ¥ (Cy). The interval T v, , o is nothing else than the subsampling version of the so-called basic bootstrap conﬁdence
interval [see, e.g., 12, Chapter 5]. Since, as already mentioned, Ny, is typically too large for Fy, , to be evaluated, one
generally needs to rely on a stochastic approximation. The latter typically consists of choosing mdependently M integers
Iin, ..., Inn with replacement from {1, ..., Ny »,} and proceeding as previously using the subsample replicates w(C}]IT "J),
me{l,...,M}.

Under the s.m. setting, the only difference is that the approach has to be restricted to subsamples of size b consisting
of consecutive observations so that the serial dependence appearing in X, is partly preserved. Hence, in that case, the
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number of possible subsamples is N, , = n — b + 1 and a computable version of the empirical copula process of interest
has to be evaluated on subsamples X[”ﬂ of the form Xy, ..., Xmip—1, m € {1,..., Npn}.

The asymptotic validity of the subsampling methodology for the empirical copula processes introduced in the previous
section is established under conditions which are very close to the weakest possible ones necessary for the weak
convergence of these processes. These rather minimalistic conditions are not surprising as explained in Remark 5. For
any m € {1,..., Ny}, let Cb"’] C,Em] C# ‘M and C’g M he the versions of C, in (4), C, in (5), C¥ in (7) and cf in (9),
respectively, computed from the subsample X[m] The subsamples replicates of C,, Cn, (C# and (CE are then respectively
defined by

CiM) = Vb{CM(u) — Cy(u)}, (23)
CiM) = Vb{CM(u) — Cy(u)}, (24)
Cy™) = Vb{cF ™) — ¢ (w)}, (25)
™) = V(e ™ () — chu)), (26)

foru € [0,1]9 and m € {1,..., Ny}, and their corrected versions (Cbmc], (C,[,"? (C# M and (Cﬁ ™ respectively, are defined
analogously to (22). The following theorem is proven in Appendix A.

Theorem 1 (Subsampling Empirical Copula Processes). Assume that Condition 3 holds and that b = b, — oc. Also, let I ,
and I, , be independent random variables, independent of X, and uniformly distributed on the set {1, ..., Npn}.
(i) Under the iid. setting, if b/n — « € [0, 1), then
(Cn Ty, Cp2") = (Cc ) (27)
(Ea G C) ~ € ) (28)
ct, eyl eyl (e, e, ¢, (29)
(Ch. o™ €™ - ) (30)
in {£°°([0, 119)}3, where (C[C” and (C[Cz] are independent copies of Cc in (19).
(ii) Under the s.m. setting, if b/n — O,

(Cnr i 2y L (e, Y, 2, (31)
(Cn, (CLH nl Cl[,lz nJ) (Ce, Clc”’ C[CZJ), (32)
in {£%°([0, 11)}3. If Condition 1 additionally holds,
(@, & @l2nly L (e, e, e, (33)
((C# (Ct 2l (C#b# W2, nJ) (Cc, (C[C”’ (C[CZ])’ (34)
@t il chlenly | (ce, e, @, (35)

n {€=([0, 119,

Remark 4. Choosing b such that b/n — 0 as in (ii) is the usual assumption found in asymptotic validity results for
the subsampling methodology; see [34-36]. Imposing that b/n — « € (0, 1) seems only possible in the i.i.d. setting in
“mean-like” situations such as those considered in [37,54]; see also Remark 2.2.3 in [35]. In the case of serially dependent
observations, Lahiri [31] showed that, in the case of the sample mean, the condition b/n — 0 is necessary; see also
Remark 3.2.2 in [35].

Remark 5. Apart from the assumptions related to the subsampling methodology, no additional conditions than those
necessary for the weak convergence of the empirical copula processes are involved in the theorem. For b/n — 0,
this is not surprising in view of the general results obtained in [34,36] which state that the subsampling methodology
is asymptotically valid under minimalistic conditions, weaker than those necessary for the asymptotic validity of the
empirical bootstrap, for example. As far as the empirical copula process C, is concerned for instance, the assumptions of
Theorem 1 are indeed weaker than, for example, those of Proposition 4.2 in [7] on the dependent multiplier bootstrap
for Cp,.

Remark 6. The proof of (i) relies in part on the key results of Preestgaard and Wellner [37] on the exchangeable bootstrap
for the general empirical process; see also van der Vaart and Wellner [52, Section 3.6]. The latter are specialized therein
to obtain the asymptotic validity of the delete-h jackknife [47,54] for the general empirical process. The proof of (ii) is
essentially a consequence of the general result on subsampling stated in Theorem 3.1 in [36].
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Remark 7. All the weak convergences stated in (i) involve corrected subsample replicates obtained, as explained in
Remark 3, by multiplying the initial replicates by the finite population correction (1 — b/n)~1/? ; see, for instance, (22).
The finite population correction is not needed in the weak convergences stated in (ii) because (1 — b/n)~"/? tends to 1
under the assumption that b/n — 0. It cannot, however, be dispensed with under the i.i.d. setting if b/n — « € (0, 1);
see also Preestgaard and Wellner [37, Example 3.6]. From a practical perspective, as already mentioned in Remark 3, the
discussion in Politis et al. [35, Chapter 10] (in the case of the mean) suggests that the use of the finite population correction
may always be beneficial in finite samples. Our Monte Carlo experiments for empirical copula processes, whose results
are partly reported in Section 5, essentially corroborate that claim.

Remark 8. The convergence results stated in (i) and (ii) establish the asymptotic validity of the subsampling methodology
for the empirical copula processes of interest by stating their weak convergence jointly with two subsample replicates.
By Lemma 3.1 in [8], these unconditional asymptotic validity results are equivalent to more classical conditional results
which rely, however, on a more subtle mode of convergence. For instance, (27) can be equivalently informally stated as
“(CL“C"] converges weakly to C¢ in £°([0, 1]9) conditionally on &, in probability”; see, e.g., [30, Section 2.2.3] or [8] for a
precise definition of that mode of convergence in terms of an appropriate version of the bounded Lipschitz metric.

4. Subsampling weighted empirical copula processes

Empirical copula processes were recently shown to converge weakly also with respect to stronger metrics than the
supremum distance. A first seminal result in that direction is due to Berghaus et al. [1] for the empirical cogula processes
. and C,. Berghaus and Segers [2] have shown a similar result for the empirical beta copula process C;,. Because the
latter involves the empirical beta copula Cn , which is a genuine copula, its statement is simpler and takes the form of a
weighted weak convergence in £°°([0, 1]9) (that is, with respect to the uniform metric). The weight function considered
in the aforementioned references is

d
gu) = /\ Ui A \/ (1—uw)}, u e [0, 119, (36)
j=1
k#]

where A and V denote the minimum and maximum operators, respectively. The corresponding weighted weak conver-
gence results were proven under the two following additional conditions.

Condition 4 (Exponential Mixing). The sequence (X;)icz is strongly mixing with ai‘ =0(a") asr — oo, for some a € (0, 1).
Condition 5 (Smooth Second-order Partial Derivatives). For any ji,j» € {1,...,d}, the second-order partial derivative

sz( ) = 9%C C(u)/0u;, du;, of C exists and is continuous on the set V;, N V;,, where V; is defined by (18). Moreover, there
exists a constant k > 0 such that

|Gyyjy ()] Skmin{ VueVv, Nv,.

1
uh(l - ujl)’ Uj2(1 - u]z) } ’

Note that Condition 5 first appeared in [44] where it was used to prove the almost sure representation for C, originally
conjectured in [49]. As discussed in [2], this condition is satisfied for several commonly occurring copulas.

Theorem 2 in [2] then states that, under Conditions 1, 3, 4 and 5, for any w € [0, 1/2), the weighted empirical beta
copula process (Cf/g“’ converges weakly in £°°([0, 1]%) to C¢/g®, where C¢ and g are given in (19) and (36), respectively.
In the previous statement, since the zero-set of C;, includes the zero-set of g, (C‘,?/g‘” is taken to be zero as soon as g = 0 by
convention. The previous result relies in part on Theorem 2.2 in [1] which provides a similar weighted weak convergence
for C, in (10) and C, in (12), but only on the interior of the unit hypercube since C,/g® and C,/g® are not bounded on
the whole of [0, 1]¢.

The aforementioned weighted weak convergence results allow us to prove the asymptotic validity of the subsampling
methodology for the empirical copula processes considered in this work weighted by 1/g“. To be able to state the results
for the processes C, and C,,, we need to introduce some additional notation first. Let

Ca(u) = Gy(u) — iQ(u)Gn(u@), uelo, 1% (37)
=1
where G,, is defined in (]16) and, for any m € {1, ..., Ny}, let
Cl[)m]( G[m] ZC G[m] u(}) uelo, 1],
where

G = V(G - Gy), (38)
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and G[m] is the empirical d.f. of the subsample of size b obtained from X[m] by (marginal) probability integral transfor-
matlons see (15). The two following theorems are proven in Appendix A.

Theorem 2 (Subsampling the Processes C,/g® and C,/g®). Assume that Conditions 3 and 5 hold, and that b = b, — oc.
Also, let I , and I, , be independent random variables, independent of X, and uniformly distributed on the set {1, ..., Ny n}.

(i) Under the i.i.d. setting, if b/n — « € [0, 1), then, for any w € [0, 1/2),
~ w — [l n] — _[I ,n] w 10} w w
(Ca/g®, (1= b/n)y""2C,"" /g®, (1 = b/n)™V2C,>" /g°) ~ (Cc /g, C( /g”, €' /8",
in {£2°([0, 119)}3, where (C[C” and (C[CZ] are independent copies of Cc in (19).
(ii) Under the s.m. setting and Condition 4, if b/n — 0, then, for any w € [0, 1/2),
[I1,n] [I2,n] 12}
(Ca/g”. C,"" /8%, C,"" /g") = (Cc/g”. C¢/8°. €' /8°),
in {£([0, 1)),

Furthermore, under the assumptions in (i) or (ii), for any c € (0, 1) and any w € [0, 1/2),

Ca(u)  Calu)

_ o 39
uelo,114 {g(u)}* {g(u)}e opr(1) )
g(u)=c/n

c,"w) )
Y e 40
u:[ﬁ?]d {g(u)}e (g(u)}e opr(1) m e {1,2} 0
gu)=c/b
and
Ca(u)  Colw)

_ o 41
ook gy~ fgany| =Y (41)
g(u)=c/n

@l[)’m,n](u) (—:l[)lm,n](u)
_ o b 42
ueslglljjd {gu)}® {gu)}® opr(1) m e {1,2} "

g(u)=c/b

where Cy, Cy, CJ™, ™, m € {1,..., Ny}, are defined in (10), (12), (21) and (23), respectively.

Remark 9. The weak convergence C,/g® ~ Cc/g® in £2°([0, 119) for all @ € [0, 1/2) combined with (39) (or its Cy
version (41)) is the slight extension of Theorem 2.2 in [1] used in the proof of Theorem 2 in [2]. From the definition of g
in (36), some thought reveals that, for any ¢ € (0, 1), the set {u € [0, 1]¢ : g(u) > c/n} contains the set [c/n, 1 — c/n]".
The asymptotic equivalence in (39) (or in (41)) therefore holds on the set [c/n, 1 — c/n]¢ as stated in Theorem 2.2 in [1].

Theorem 3 (Subsampling the Processes C¥/g® and Cﬁ/g“’), Assume that Conditions 3 and 5 hold and that b = b, — oo.
Also, let I , and I, , be independent random variables, independent of X, and uniformly distributed on the set {1, ..., Ny n}.

(i) Under the i.i.d. setting, if b/n — « € [0, 1), then, for any w € [0, 1/2),

#[l nl o ~Flbnl, o ® ® ®

(Cl/g”. Cy ™ /g, Cy 2™ /8) ~ (Cc/g”, € /g, € /g*), (43)
[l nl [l nl w 9 ®

(/g c’* 1l g cplenl rgoy (e /g, el g, 2 /g®), (44)

in {£2°([0, 119)}3, where C[C” and (CICZJ are independent copies of Cc in (19), and C# M and (Cﬂ oLm] ,me{l,...,Npn},
are the corrected versions of the subsample replicates defined in (25) and (26), respectwely
(ii) Under the s.m. setting and Conditions 1 and 4, if b/n — 0, then, for any w € [0, 1/2),

#,[11,n] #nl , ® @
(Ck/ge, " /g?, €yt Jg®) - (Cc/g®, €l /g, 21 /g?),
Snl Al , ® ® ®
(Ch/g”. cy " /g”, P /g - (Ce /g, € /g, € /),

in {£>°([0, 119)}3.

Remark 10. A by-product of practical interest of the proof of Theorem 3 is the weighted weak convergence of the
empirical checkerboard copula process under the assumption of continuous marginal d.f.s Fy, ..., F; considered in this
work; see also Lemma 3 in Appendix A.

We end this section by giving an example of application of Theorem 3. Following again Berghaus and Segers [2,
Section 4], we consider the issue of estimating an extreme-value copula and state a result that confirms that basing
the related inference on subsampling is asymptotically valid under the assumptions of Theorem 3
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Let Ag_1 = {(w1, ..., wa_1) € [0, 111 : wy +--- + wy_1 < 1} be the unit simplex. A copula C is an extreme-value
copula if and only if there exists a function A : A;_1; — [1/d, 1] such that, for any u € (0, 114 \{(1,..., 1)},

Inu, Inuy )}
) =ex In u; .
pKZ ) (z ny Y

The function A is called the Pickands dependence function associated with C. As explained, for instance, in [2, Section 4], it
can be expressed as a functional of C through

A(w) = v(C)(w), we Agq, (45)
where the map v from £°([0, 1]¢) to £°(A4_1) is defined, for any f € £°([0, 1]9) and w € A4_4, by

1
v(f)(w) = exp [—V +/ (™, .. u) —1uele”', 1)) du ] ; (46)
0

ulnu

with y = 0.5572 ... the Euler-Mascheroni constant.

Starting from (45), a natural approach to obtain an estimator of A consists of using the plug-in principle. Instead of
replacing C by the empirical copula C, in (5) (and thus obtaining the rank-based version of the Capérad-Fougéres—Genest
estimator of A; see [10,25,27]), Berghaus and Segers [2] proposed to use the empirical beta copula Cff in (9), which leads
to the estimator

Af(w) = v(Cf)(w), we Ag_q.
One could also consider the analogue estimator of A based on the empirical checkerboard copula Cf in (7), namely
Af(w) = v(C,f)(w), weE Ag_.

Let A# = /n (A# A) and Aﬂ = /n (A’3 A), and define their corresponding (corrected) subsample replicates by
AP = (1—b/n) 1/2f (CFMy—u(ct)} and AL ™ = (1-b/n)~V2/b{u(C) ™)~ 0(CP)} m € {1,..., Ny}, respectively.
The following result, proven in Appendlx A, is then a consequence of Themem 3

Corollary 1 (Subsampling the Processes A¥ and Aﬁ ). Let C be an extreme-value copula with Pickands dependence function A.
Under the assumptions of Theorem 3,

#[’ nl #.l2n] 1 2

(AF, A ™A™ - (Ac, AN AR, (47)
ﬂ[l nl  B.ll2nl 1 2

(A8, AL P Ay M)~ (A, AN, AR, (48)

in {£*°(Aq_1)}3, where I, , and I, » are independent random variables, independent of X, and uniformly distributed on the set
{1,...,Npn}, and AlC” and A[CZJ are independent copies of Ac defined by

1
d
Ac(w) = A(w) / Celu™, ... um)—
0

weE Aqq.
ulnu

The previous corollary can be used, for example, to obtain an asymptotically valid symmetric 1 — « confidence band
(see, e.g., [30], Chapter 2) for A. Relying for instance on A¥, such a confidence band is given by A* & ]-‘IE’* 1—a)//n,

a € (0,1/2), where f,’\f, is the empirical d.f. of a sample of M (corrected) subsample replicates sup,.,,_, |A# “’"”](w)l,
me{l,..., M}, of supyeq, , |A*(w)|, where Iy , . .., Iy are chosen independently with replacement from {1, ..., Ny ,}.

5. Monte Carlo experiments

The theoretical results provided in the preceding sections state conditions under which the subsampling methodology
can be used to obtain asymptotically valid approximations of various (smooth, weighted) empirical copula processes. The
results cover two types of subsampling: in the case of i.i.d. observations, subsamples of size b < n are taken without
replacement from the available data X’,; in the time series case, subsamples are restricted to consecutive observations
to preserve serial dependence. In both cases, a crucial step prior to applying subsampling is the choice of the subsample
size b.

5.1. Subsampling for i.i.d. observations

To investigate the influence of b on the finite-sample performance of the subsampling methodology for the studied
empirical copula processes in the case of i.i.d. observations, we considered an experimental setting similar to the one used
in [6]. Since all the empirical copula processes under consideration are rank-based, samples X, were generated directly
from a d-dimensional copula C chosen so that its bivariate margins have a Kendall’s tau of t. For the d-dimensional copula
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Table 1

First horizontal block: (accurately estimated) covariance of C, at the points P = {(i/3,j/3) :i,j = 1,2},
for n = 100, C a bivariate Clayton copula and t = 0.33. Remaining horizontal blocks: averages of 1000
covariance estimates based on subsampling (sub), empirical bootstrap (boot) and multiplier bootstrap
(mult) approximations of C,.

(1/3,1/3) (173, 2/3) (2/3,1/3) (213, 2/3)

(1/3, 1/3) 0.0488 0.0198 0.0200 0.0100

& (1/3, 2/3) 0.0337 0.0091 0.0185
" (2/3,1/3) 0.0338 0.0185
(213, 2/3) 0.0513

(1/3, 1/3) 0.0562 0.0205 0.0207 0.0089

ub (1/3, 2/3) 0.0371 0.0084 0.0182
10.28n] (2/3, 1/3) 0.0375 0.0183
(213, 2/3) 0.0583

(1/3, 1/3) 0.0619 0.0241 0.0244 0.0096

Eboot (1/3,2/3) 0.0452 0.0094 0.0209
n (2/3,1/3) 0.0458 0.0211
(213, 2/3) 0.0690

(1/3, 1/3) 0.0511 0.0199 0.0203 0.0092

Gomle (1/3, 2/3) 0.0350 0.0091 0.0181
n (2/3,1/3) 0.0356 0.0185
(2/3,2/3) 0.0536

C, we considered either a Clayton copula (which is lower-tail dependent) or a Gumbel-Hougaard copula (which is upper-
tail dependent). The values of n, d and t were taken to vary in the sets {25, 50, 100, 200, 400}, {2, 4} and {0.33, 0.66},
respectively. The experiments that were carried out are presented in detail hereafter along with a subset of representative
results. More comprehensive results are available in the supplementary material.

Subsampling approximation of the covariance of €, and choice of b. Following [6], our first experiment, restricted to d = 2,
consisted of measuring how well the subsampling methodology can approximate the covariance of the empirical copula
process C, in (11) at the points P = {(i/3,j/3) :i,j = 1, 2}. We began by precisely estimating the covariance of €, at the
points in P from 100,000 samples X,. For n = 100, C a bivariate Clayton copula and t = 0.33, these covariance values are
given in the first horizontal block of Table 1. Next, for a given value of b and each combination of C, n and 7, we generated
1000 samples &, and, for each sample, we computed M = 1000 (corrected) subsample replicates (f:l[,’,lc’”l, cee, @L{"ﬁ‘”l
defined analogously to (22) from (24), and where I p, .. ., Iy n are independent random variables uniformly distributed on
{1,..., Npn}. These M = 1000 subsample replicates of C, were used to estimate the covariance of C,, at the points in P. For
n = 100, C a bivariate Clayton copula, T = 0.33 and b = |0.28n], the means over the samples &X', of the 1000 covariance
estimates are given in the second horizontal block of Table 1, while the corresponding (empirical) mean squared errors
(MSEs) (with respect to the target values reported in the first horizontal block of Table 1) multiplied by 10* are given in
the first horizontal block of Table 2. To investigate the influence of b on such MSEs, a grid of b values was considered. We
added to the grid the value b = |0.28n] suggested by Wu [54, Section 4] in the context of the delete-h jackknife for the
mean following an analysis based on Edgeworth expansions. The latter value was observed to give close to the lowest
empirical MSEs across all our experiments in the i.i.d. setting (see the supplementary material for more details), which is
why we chose to report results for this setting for b in all subsequent experiments in the i.i.d. case. Note that choosing
b proportional to n in such a way is completely compatible with the theoretical results stated in Theorems 1(i), 2(i)
and 3(i). Finally, it is important to mention that similar simulations (partly reported in the supplement) were carried
using uncorrected subsample replicates and confirm that, overall, the finite population correction seems beneficial also
in the context under consideration.

Comparison with the empirical bootstrap and multiplier bootstrap approximations. In a second step, we carried out the same
experiment using the classical empirical bootstrap and the multiplier bootstrap. The former consisted, for each generated
sample X, from C, of generating M = 1000 resamples (by sampling with replacement from X, ) and computing (f;n in(12)
from each resample; the resulting M = 1000 resample replicates of C, were used to estimate the covariance of C, at the
points in P. For n = 100, C a bivariate Clayton copula and t = 0.33, the averages of these estimates are given in the third
horizontal block of Table 1, while the corresponding empirical MSEs are given in the second horizontal block of Table 2.
The multiplier bootstrap [see, e.g., 38,43] was implemented as in [6] and the corresponding results are reported in the
last horizontal blocks of Tables 1 and 2 for n = 100, C a bivariate Clayton copula and 7 = 0.33. Note that these two tables
are directly comparable with the similar tables reported in [6]. For all C and , the average of the 10 empirical MSEs is
plotted against the sample size n in Fig. 1.

As one can see from Table 2 and Fig. 1, the finite-sample performance of the subsampling approximation appears
comparable to the one of the multiplier bootstrap and is substantially better than the one of the empirical bootstrap.

Similar simulations were also carried out for the b out of n bootstrap (see the supplementary material) which
generalizes the empirical bootstrap. The smallest empirical MSEs, obtained when b is “small” compared to n, were still
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Table 2

For n = 100, C a bivariate Clayton copula and © = 0.33, empirical MSEs (x10%) of estimators of the
covariance of C, at the points P = {(i/3,j/3) : i,j = 1, 2} based on subsampling (sub), the empirical
bootstrap (boot) and the multiplier bootstrap (mult).

(1/3,1/3) (1/3, 2/3) (2/3, 13) (2/3, 2/3)
(1/3, 1/3) 0.9006 0.3521 0.3389 0.1907
G (1/3, 2/3) 0.8323 0.1147 0.1785
10.28n) (2/3, 1/3) 0.8250 0.1680
(2/3, 2/3) 0.7330
(1/3, 1/3) 2.2250 0.6925 0.6632 0.3199
oot (1/3, 2/3) 22307 0.1995 0.3687
n (2/3, 1/3) 2.3528 0.3640
(2/3, 2/3) 3.5708
(1/3, 1/3) 0.6331 0.4966 0.4547 0.3144
gt (1/3, 2/3) 0.9287 0.1811 0.2648
n (2/3, 1/3) 0.9084 0.2502
(2/3, 2/3) 0.4086
Clayton copula, tau = 0.33 Clayton copula, tau = 0.66 Gumbel-Hougaard copula, tau = 0.33 Gumbel-Hougaard copula, tau = 0.66
10.0 - 10.0 ey 10.0 ~
g “‘~\ ’?T ~~“~\ ?. RN — sub
10 Ry P 10 = o] N o - boot
£ = £ Shesp, = ‘~\\ = mult
o 25 50 100 200 400 o 25 50 100 200 400 o 25 50 100 200 400

Fig. 1. Averages of the empirical MSEs (x10%) of covariance estimators at the points P = {(i/3,j/3) : i,j = 1,2} based on subsampling (sub), the
empirical bootstrap (boot) and the multiplier bootstrap (mult) against the sample size n, for C a bivariate Clayton or Gumbel-Hougaard copula and
T € {0.33,0.66}.

higher, overall, than the corresponding empirical MSEs obtained using subsampling or the multiplier bootstrap. The latter
should not come as a surprise, since, as already mentioned in the introduction, the b out of n bootstrap forms subsamples
with ties, making it a biased resampling technique in the rank-based context under consideration.

Estimation of quantiles of Kolmogorov-Smirnov and Cramér-von Mises functionals. Following again [6], we focused next on
subsampling, empirical bootstrap and multiplier bootstrap approximations of high quantiles of

KS(i)= sup L) and  CuM(f,) = / {fy () du (49)
[0,114

ue(0,1]4

for f, = C,. From a practical perspective, the supremum and the integral in (49) were approximated by a maximum
and a mean, respectively, using a uniform grid on (0, 1)¢ of size 92 when d = 2 and 4* when d = 4. For every d, C, T
and n, the 90% and 95%-quantiles of KS(C,) and CvM(C,) were first estimated precisely from 100,000 samples X,. For
n € {100, 200}, C a bivariate Clayton copula and t = 0.33, these are given in the first lines of each horizontal block of
Table 3. Then, for each n, 1000 samples X, were generated and, for each X, one estimate of each quantile was computed
from M = 1000 subsampling, empirical bootstrap and multiplier bootstrap replicates of the considered functional. These
estimations were also carried out using centered replicates of Cp. In the case of subsampling, this consists of using, for
anyu e [0,1¢and me {1,..., M},
1M
epmnlu) — v > ey, (50)
m=1
instead of (@g’?”](u). The centered versions of the empirical bootstrap and multiplier bootstrap replicates are defined
analogously. The rationale behind centering is that the replicates, whatever their type, converge weakly to copies of the
centered Gaussian process C¢ in (19). As the use of centered replicates always led to better finite-sample performance,
it was adopted in all subsequent experiments. Notice that the use of centering is irrelevant in the previous covariance
estimation experiment given the formula of the empirical covariance.

For each quantile and each type of approximation, the means of the 1000 estimates are reported in Table 3, while the
corresponding MSEs are given in Table 4. These two tables are again directly comparable with a similar table reported
in [6]. For d = 4, C a Gumbel-Hougaard copula and 7 = 0.66, for instance, the empirical MSEs of the quantile estimators
are plotted against the sample size n in Fig. 2. Graphs for other d, C and 7 are not qualitatively different.

As one can see from Table 4 and Fig. 2, the quantile approximations based on subsampling are always better in terms of

MSE than those based on the empirical bootstrap. They are similar (resp. slightly worse) than those based on the multiplier
bootstrap for the Cramér-von Mises (resp. Kolmogorov-Smirnov) functional.
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Table 3

First line of each horizontal block: (accurately estimated) 90% and 95%-quantiles of KS(@,,) and CvM(@n)
for C a bivariate Clayton copula and 7 = 0.33. Remaining lines of each horizontal block: averages of 1000
estimates of the same quantiles based on subsampling (sub), empirical bootstrap (boot) and multiplier
bootstrap (mult) approximations of C,.

fa 90%(KS) 95%(KS) 90%(CvM) 95%(CvM)
(oM 0.5664 0.6437 0.0464 0.0580

n =100 @ﬁ’,‘_’zs" y 0.6209 0.6798 0.0465 0.0573
(ﬁﬁ"“f 0.6880 0.7526 0.0613 0.0743
@nm”“ 0.5964 0.6561 0.0478 0.0591
(oM 0.5770 0.6368 0.0463 0.0576

n =200 @ﬁ’,‘_’zsu y 0.6148 0.6744 0.0490 0.0605
(ﬁﬁ"“f 0.6549 0.7172 0.0555 0.0676
@n"’”“ 0.5982 0.6576 0.0476 0.0590

Table 4

For C a bivariate Clayton copula and t = 0.33, empirical MSEs (x 10*) of estimators of the 90% and 95%-
quantiles of KS(C,) and CvM(C,) basAed on subsampling (sub), empirical bootstrap (boot) and multiplier
bootstrap (mult) approximations of C,.

fn 90%(KS) 95%(KS) 90%(CuM) 95%(CvM)
(S 34.7486 19.9671 0.2659 0.4342

n =100 @oot 151.8726 124.1483 25361 3.1865
Ciate 13.8527 8.5551 0.3347 0.5792
(o5 17.1279 17.9681 0.2344 0.3720

n =200 @boot 63.5901 68.6258 1.0172 1.3002
Gt 7.3044 8.4616 0.1850 0.3308

50 100 200 400
n n

~
Sy
~
~
v
S S
S~ ~.
~
25 50 100 200 400
n

Fig. 2. Empirical MSEs (x10*) of estimators of the 90% anfl 95%-quantiles of KS((f?n) and CvM((ﬁn) based on subsampling (sub), empirical bootstrap
(boot) and multiplier bootstrap (mult) approximations of C, against the sample size n, for d = 4, C a Gumbel-Hougaard copula and 7 = 0.66.

Clayton copula, tau = 0.33 Clayton copula, tau = 0.66 Gumbel-Hougaard copula, tau = 0.33 Gumbel-Hougaard copula, tau = 0.66

== standard

Fig. 3. Averages of the empirical MSEs (x 10%) of subsampling-based estimators of the covariances of C,, C# and cf at the points P = {(i/3,j/3) :
i,j =1, 2} against the sample size n for C a Clayton or Gumbel-Hougaard copula and 7 € {0.33, 0.66}.

An inspection of the more comprehensive simulation results presented in the supplementary material reveals that the
subsampling approximations of the high quantiles of the Kolmogorov-Smirnov functional generally improve if b is chosen
smaller than [0.28n]. For b = |0.1n] for instance, the approximations based on subsampling turn out to be comparable,
overall, to those obtained using the multiplier bootstrap.

Subsampling approximations of the smooth empirical copula processes. To investigate the finite-sample performance of
subsampling approximations of C¥ in (13) and (C/rf in (14), we considered the same setting as in the first experiment.
The goal was thus to estimate the covariances of C¥# and (Cf at the points in P. Because these empirical copula processes
should be closer and closer to C,, in (11) as n increases and given the high evaluation cost of the empirical beta copula C,f
defined in (9), the experiment was restricted to n € {25, 50, 100}. For all bivariate C and z, the average of the 10 MSEs
. . . P A m B

is plotted against the sample size n in Fig. 3 for each of the three target processes C,, C}; and Cj,. As one can see, as n

increases, the three mean MSEs decrease and become closer and closer, as expected.
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Fig. 4. Empirical MSEs (x10*) of subsampling-based estimators of the 90% and 95%-quantiles of KS(C,) and CvM(C,) against b, for C a bivariate
Gumbel-Hougaard copula, 7 = 0.33, n € {50, 100, 200} and B € {0, 0.33, 0.66}.

5.2. Subsampling for time series

To investigate the finite-sample performance of subsampling for approximating the studied empirical copula pro-
cesses in a time series context, we considered a simple autoregressive model. Samples X, were generated as follows:
Given a random sample U;, i € {—100,...,0,...,n}, from a d-dimensional copula C, we formed the sample ¢ =
(@~ Y(Up), ..., @ Y(Uy)), where @ is the d.f. of the standard normal distribution, and set X_j990 = €_100. Next, given
an autoregressive coefficient 8 € [0, 1), we computed recursively

X,‘j:ﬂx,',l_j—FE,'j, ie{-99,...,0,...,n},je{1,...,d},

and returned X1, ..., X,.

Recall that, given such stretches X, from stationary time series and a subsample size b < n, subsamples XL'"J,
m e {1,...,Npn}, Noy = n — b+ 1, are restricted to consecutive observations to preserve serial dependence: they
are of the form Xy, ..., Xmip-1.

Our experiments consisted of investigating the influence of the subsample size b on the empirical MSEs of subsampling
estimators of the 90% and 95%-quantiles of KS(C,) and CvM(C,). Fig. 4 displays such empirical MSEs against b for C a
bivariate Gumbel-Hougaard copula, T = 0.33, 8 € {0, 0.33, 0.66} and n € {50, 100, 200}. An inspection of the y-axes of
the graphs reveals that the MSEs increase with g for b and n fixed, thereby empirically confirming that the stronger the
serial dependence in the observations, the harder the estimation of the quantiles. In a related way, focusing on the curves
for n = 200, one can further notice that they are overall u-shaped and that their minima appear to shift to the right as g
increases, thereby empirically confirming the fact that, for fixed n, the “optimal” b is expected to increase as the strength
of the serial dependence increases.

As the setting 8 = 0 amounts to generating i.i.d. samples X, we finally aimed at empirically verifying that the
aforementioned MSEs should be larger, overall, than if subsamples were formed by simply sampling without replacement
from &, as in the case of i.i.d. observations. This is confirmed by Fig. 5 which reports the empirical MSEs against n, for C
a bivariate Gumbel-Hougaard copula, t = 0.33 and b € {3, 7, 11, 15, 19, 23, 27}. The solid lines give the empirical MSEs
obtained when the subsampling is not restricted to consecutive observations. The results are not qualitatively different
for other bivariate C and r.

6. Concluding remarks

Relying on key results of Prastgaard and Wellner [37] in the i.i.d. case and Politis et al. [36] in the time series case
(under short range dependence), the asymptotic validity of subsampling was shown for various (weighted, smooth)
empirical copula processes under minimalistic conditions. The results for the weighted empirical checkerboard and beta
copula processes build up on the seminal work of Berghaus et al. [ 1] and Berghaus and Segers [2], and seem to constitute
first asymptotic validity results for bootstrapping these processes.

From a practical perspective, based on our numerous Monte Carlo experiments, we recommend to always use centered
corrected subsample replicates as in (50), and, in the i.i.d. case, to consider the value |0.28n] as a starting choice for
the subsample size b, as suggested by Wu [54, Section 4] in the case of the delete-h jackknife for the mean. We were
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MSE(KS99)
MSE(CvM95)
@

Fig. 5. Empirical MSEs (x10*) of subsampling-based estimators of the 90% and 95%-quantiles of KS(C,) and CvM(C,) against n, for C a bivariate
Gumbel-Hougaard copula, 7 = 0.33, 8 = 0 and b € {3,7,11, 15,19, 23, 27}. The solid lines give the empirical MSEs obtained in the case of
subsampling for i.i.d. observations.

actually rather surprised not to find any mention of this proposal in the literature as it appears to be a rather natural
initial choice when subsampling statistics or empirical processes converging weakly to Gaussian limits. Specifically, in
our Monte Carlo experiments, the setting b = |0.28n] frequently lead to the best estimations of high quantiles of
Cramér-von Mises functionals of the (standard) empirical copula process, while the setting b = |0.1n] was found
to be better for Kolmogorov-Smirnov functionals. Overall, with b € {|0.1n], [0.28n]}, we observed the subsampling
approximation of the (standard) empirical copula process to behave substantially better than its empirical bootstrap
approximation, and to be roughly equivalent to its multiplier bootstrap approximation. As a consequence, subsampling
appears as a natural, easier-to-implement alternative to the multiplier bootstrap in copula inference procedures in the
i.i.d. case. Furthermore, as subsamples do not contain ties, it is of particular interest when dealing with statistics that
can be expressed as functionals of (weighted) smooth empirical copula processes, given that the computation of such
statistics is not fully meaningful in the presence of ties.

In the time series case, the choice of b remains an open problem in the subsampling literature. Several practical
solutions, of a more or less heuristic nature, are discussed in [35, Chapter 9] and [26], and could be adapted to the
copula inference setting under consideration. Once an efficient rule is found, it will be of practical interest to compare
the resulting subsampling approximation of the empirical copula process C, in (11) with its dependent multiplier
approximation as proposed in [7].
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Appendix A. Proofs

Lemma 1. Assume that Condition 1 holds. Then, almost surely,

A d

sup |CiH(u) — Co(u)| < .

uel0, 114 n
Proof of Lemma 1. Let H, (u) = min{max{nu —r + 1,0}, 1}, u € [0, 1], r € {1, ..., n}. By the triangle inequality, we

have that, almost surely,

sup |c,f<u)—én<u)|s—21"[ sup |1(Rjn/n < uj) — H gy, ()]

ue[0,1]4 o1 j=1 u;€(0, 1]
= - ZZ sup [1(Rjn/n < uj) — Hn,R,-jyn(uj)|
LIJG[O 1]
d
= 722 sup [1(i/n < u) — Hp (u)| Z sup [1(i/n <u)—H,;(u)|<-. O
=i uel0,1] i uelo.1] n
Proof of Theorem 1. Recall that G, is the empirical d.f. of the unobservable sample Uy, ..., U, obtained from &,
by (15). For m € {1,..., Ny}, let ul[,m] be the subsample of Uy, ..., U, of size b obtained from X[[,m] by the same
marginal probability integral transformations. Furthermore, let G, ..., G, denote the univariate margins of G,. It is

well-known [see, e.g., 44] that the empirical copula of &, can then be equivalently written as

Ca(u) = Gu{Gyy (1), - .., Gylua)}, w0, 11,
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where G;j( v) =inf{u € [0, 1] : Gyj(u) > v}, v € [0,1],j € {1,...,d}. Form e {1,..., Np,}, let G,[,’"] be the empirical d.f. of

ul™ and let

™) = GG (wy), ..., G (wg)),  we [0, 11°,

be the empirical copula of x!™. Furthermore, recall the definition of G\ in (38) and that Condition 2 is assumed to hold.

Proof of (27): From Theorem 2.2 and Example 3.6 in [37] [see also 52, Example 3.6.14], we have that, informally,
“(1 - b/n)‘1/2GE]‘"] converges weakly to G¢ in £%°([0, 1]%) conditionally on X, in probability”; as mentioned earlier,
see, e.g., Section 2.2.3 in [30] for a precise definition of that mode of convergence. From Lemma 3.1 in [8], the latter is
equivalent to

(Gn, (1= b/m) ™Gy, (1= b/m) 2G> ~ (G, G, G, (51)

in (£°([0, 119)}3, where G\ and G!? are independent copies of Gc.
Let D C £%([0, 1]9) be the set of all d.f.s H on [0, 1] whose univariate margins H;,j e {1,...,d}, satisfy H;(0) = 0.
Then, let @ be the map from D to £°°([0, 1]%) defined by

®(H)u) = H{H; (w), ..., Hy (ua)}, w0, 1], (52)
where H (v) = inf{u € [0, 1] : Hj(u) > v}, v € [0, 1],j € {1, ..., d}. Since Condition 3 is assumed to hold, we have, from
Theorem 2.4 of [9], that & is Hadamard-differentiable at C tangentially to Cy given in (17) with derivative

d
o) =fw) -y G,  welo. 1), feex(o. 119, (53)
j=1

Notice that & is actually continuous on the whole of £°°([0, 1]9) since 0 < Cj(u) <1,uel0,119je(1,...,d). Starting
from (51) and using the continuous mapping theorem, we obtain that

/ ’ [I1,n] ’ [12,n] ’ ’ /
(@e(Ca). @1 = b/my 26, (1 = b/m) 26, - (DGe), DUCH), PUGEY) = (Ce, T, ),

in {£>°([0, 119)}3. To prove (27), it thus remains to show that

sup | Colur) — BL(Cy)(w)| = 0, (54)
uelo,114

sup [(1 - b/n)~ 2t ) — o (1 — b/n)yPGim a5 0, me(1,2). (55)
uel0,1]

Starting from Condition 2 and applying the delta method [see 52, Theorem 3.9.4] with the map & in (52), we obtain that

sup [Vn{®(Gy)(u) — D(C)u)} — DG ()| 2o, (56)
ue(0,1]4

which is exactly (54). Since @/ is linear, by the triangle inequality, (55) is proven if

sup [Vb{O(GE™ ) — d(C)u)} — &L (VBGE™™ — C))w)l > 0, m e (1,2}, (57)
uel0,1]4
sup [vb{®(G,)(u) — D(C)u)} — &L (VB(G, — C))(u)| = 0. (58)
uelo,114

The convergence in (58) then immediately follows from (56). To show (57), we start from (51) and use the continuous
mapping theorem to obtain that

Vh(Gimal Gimrl 4 /b/nGy - VT —a G + Ja Ge (59)

in £%°([0, 119), for m € {1, 2}. Note in passing that \/E(Gl[)l’"‘”] — () and Gy = V/b(G, — C) are equal in distribution and so
are their weak limits: the limiting process /1 — « G[Cm] + /& Gc is a tight, centered Gaussian process concentrated on
Co in (17) whose covariance can be verified to be the same as the one of G¢. The weak convergence in (59) can thus be
combined with the delta method based on the map @ in (52) to obtain (57), which completes the proof of (i).

Proof of (31): We thus assume the s.m. setting and that b/n — 0. In essence, the asymptotic validity of the subsampling
methodology in this case is merely a consequence of Theorem 3.1 in [36]. The proof below uses Theorem 4.1 in [36] instead
(a corollary of the aforementioned theorem), which will eventually allow us to conveniently apply Lemma 2.2 in [8] to
state the asymptotic validity under the form of a joint weak convergence with two subsample replicates.

Let D([0, 1]%) be the space of cadlag functions on [0, 1]¢ equipped with the Skorohod metric ds that makes (D([0, 11¢),
ds) separable and complete [see, e.g., 4, Chapter 3 for the case d = 1]. Since ds is a weaker metric than the uniform
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metric, by the continuous mapping theorem, Condition 2 implies that G, converges weakly to G¢ in D([0, 1]¢) as well.
Recall next that weak convergence in separable metric spaces can be metrized using the bounded Lipschitz metric; see,
e.g., Dudley [15, Theorem 11.3.3], Diimbgen and Del Conte-Zerial [16, Section 2] or Biicher and Kojadinovic [8, Lemma
2.4]. The bounded Lipschitz metric dg between probability measures P, Q on D([0, 1]¢) equipped with the Borel sigma
field is defined by

dg(P.Q)=  sup | [fdP— [fdQ],
feBLy(D([0,119)
where BL;(D([0, 1]%)) denotes the set of functions h : D([0, 1]Y) — [—1, 1] such that |h(x) — h(y)] < ds(x,y) for
all x,y e D([0, 1]%). Hence, denoting by P®" and P®c the probability measures of G, and G¢, respectively, the weak
convergence of G, to G¢ in D([0, 1]%) can be equivalently expressed as

dg (P, P6c) — 0. (60)

[Np,nl

Let Pl‘ff;"n = N;,n ZZ” 8 5«; im be the empirical measure of the Nj, subsample replicates G“J ..., G,y of G,.

Furthermore, let M € N and let I;,, ..., Iy, be independent random variables, independent of X;, and uniformly
distributed on the set {1,..., Ny}. Then, let PIS” = ﬁ Z%:] 1) limn] be the empirical measure of the M subsample
b

replicates G“1 ”], ey G,[,'M'”], and note that 1315” is a random probability measure on D([0, 1]%) [see, e.g., 16, Section 2].

Next, let f be a bounded and continuous function on D([0, 1]%). For any n € N and ¢ > 0, since G“‘ ”], . (GLIM‘”] are

conditionally independent given X, we have

Pr(‘/fdﬁ,ﬁ” —/fdpﬁ;n >

Np,n

8) =Pr Zf ”’""] Zf G[m] > ¢

( [ Zf [lm n] (GI[JIL”J)} > & | Xy]})

IE[Var{f(((}“l "J) X} _ K

- &M - M’
by Chebychev’s inequality and where K is a bound on f. As a consequence,
/fdﬁﬁ" —/fdP,‘S’;"n %o as nM— oo (61)

Since Condition 2 is assumed to hold, from Theorem 4.1 of [36], we have that dBL(PG” P®n) — 0, which, by the triangle
inequality and (60) implies that dBL( PGC) — 0. The latter convergence further 1mplles for instance, by Lemma 2.4

in [8], that [ f dP,(ff;“n — [fdP® — 0, Wthh, combined with (61), gives that [ f dP,S” — [ fdptc 2 0asn,M — 0. Since

. . . . . . . ~ P
f was arbitrary, using, for instance, Lemma 2.5 in [8], the previous convergence is equivalent to dBL(Pﬁ", PCc) = 0as
n, M — 0, which can be combined with (60) to obtain that

dg (P, PEy B0 as n, M — oo. (62)

By Lemma 2.2 in [8], the convergence in (62) is equivalent to the weak convergence of (G, G,[,“ ol G,lfz ”J) to (G, G[”, G[Z])

in {D([0, 119)}3, where G[C” and G[Cz] are independent copies of G¢. Since the sample paths of the weak limit are (uniformly)
continuous almost surely, the previous weak convergence occurs also in {£>°([0, 1]9)}3; see, e.g., Billingsley [4, Chapter 3]
for the case d = 1. The convergence in (31) then follows from the delta method based on the map @ as in the proof
of (27) but with b/n — « = 0.

Proof of (32): The result is a straightforward consequence of (20). Indeed, from the latter asymptotic equivalence, we
have that sup,¢jo 1¢ Vb|Cy(u) — Cy(u)| converges in probability to zero. Since (Cy, C) and (CIEI""”J, QEI’"'"]), m € {1, 2}, are
equal in distribution, we obtain that

sup Vbicm ) — ¢y B0, me 1,2}
uel0,1]4

The desired result then follows from (31), (20) and the previous display.

Proofs of (28) and (33): The results immediately follow from (6) using similar arguments.

Proofs of (29) and (34): The results are direct consequences of Lemma 1, again, using similar arguments.

Proofs of (30) and (35): We only prove (30), the proof of (35) being simpler. We combine (57) and (59) to obtain
that, for m € {1, 2}, f(C,EI’“ nl_ C) converges weakly in £°°([0, 1]¢) to a limit process whose trajectories are continuous,
almost surely. From (6), we immediately have that the same weak convergence occurs for the process f climnl _ ¢ ).
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Using the fact that («/E(Cf’“’”‘”] — ), V/B(Clmm — C)) and (v/b(C{ — C), v/b(Cy — C)) are equal in distribution, we obtain
from Corollary 3.7 in [45] that

V(P _ oy = b(E™ — C)+ op(1),  me{1,2). (63)
From (28), we can apply the same corollary to obtain that

CP = Cy + opi(1), (64)
which implies that

Vb(CP = C) = V/b(C, — C) + ope(1). (65)
Combining (63) and (65), we obtain that

cptimnl = ¢llmnl 4 o0 (1), mef1,2). (66)

The weak convergence in (30) is then an immediate consequence of (28), (64) and (66). O

Lemma 2. Assume that Conditions 3 and 5 hold and that b = b, — oc. Also, let I , and I, , be independent random variables,
independent of X, and uniformly distributed on the set {1, ..., Ny }. Then, under the i.i.d. setting with b/n — « € [0, 1), or
the s.m. setting and Condition 4 with b/n — 0, there holds, for any w € [0, 1/2),

(@e(Ca/8”. 2LVBG, ™ = C)/g”, dUVBG,™ = C))/g”)
— (Cc/g®, VT—aCl/g” + JaCc/g”, V1 —a CF/g” + o Gc/g”) (67)

in {£°°([0, 119)}3, where & is defined by (53), G, is defined by (16), g is defined by (36), and (C[C“ and (C[Cz] are independent
copies of C¢ in (19).

Proof of Lemma 2. We only provide the proof under the i.i.d. setting with b/n — « € [0, 1), the proof being simpler
when b/n — 0. Since the assumptions are a superset of those of Theorem 1(i), we can start from (51) and apply the
continuous mapping theorem to obtain that

(G, \/B( [I1,n] —0), \/B(G}JI“J w(((}c,m@m-i—\/&@c,m((}m-i-«/&(@c

in {£°°([0, 119)}3. Applying further the continuous mapping theorem with the linear map @( in (53), we obtain that
( (WG — ), oG — C))) e (Ce, VT—aCl 4 aCe, VT—aC? + a Cc) (68)

in {£°([0, l]d)}3. The convergence of the finite-dimensional distributions in (67) is then a consequence of (68) and the
continuous mapping theorem. To show (67), it remains to prove marginal asymptotic tightness since the latter implies
joint asymptotic tightness. From Theorem 2.2 in [1] (see also Lemma 4.9 in that reference and the discussion at the end
of the proof of Theorem 2 in [2]), we have that, under the considered assumptions,

D¢(Gn)/g” ~ ®c(Gc)/g” = Cc/g” (69)
in £°([0, 1]%). Using the fact that \/E(GE'"‘"] — C) and G, = +/b(G, — C) are equal in distribution, (69), implies that
DL(VB(Gy™" = C))/g” ~ PLGc)/g” = Cc/g”, (70)

in £%°([0, 1]%) for m € {1, 2}. Note in passing that, since, as already discussed in the proof of (27), v/1 — « G[Cm] + 4/ Ge
and G¢ are equal in distribution, @/ (/1 — a((}[cm] + /aGc) = /11— a(C[C'"] + /aCc and @[ (Gc) = Cc are also equal in
distribution. The weak convergences in (69) and (70) imply marginal asymptotic tightness of the process on the left-hand
side of (67) and thus the desired result. O

Proof of Theorem 2. The claims in (i) and (ii) are a consequence of Lemma 2 and the continuous mapping theorem. The
asymptotic equivalence in (41) follows from Theorem 2.2 in [1], as well as from the discussion at the end of the proof of
Theorem 2 in [2]. From the same result, using the fact that (\/E(Gl[f’"‘”] —0), \/E(fgl'”'”] —()) and (Gy = v/b(G, — C), C =
«/E(fb — C)) are equal in distribution for m € {1, 2}, we can also write

[Im,n] [Im,n]
sp VRGN —Cn)  deWBG™ — )|
uefo,1¢ {g(u)} {gu)}

g(u)=c/b

where @ is defined by (53). Combining the previous statement with (41) and using the triangle inequality, we obtain (42).
Similarly, the asymptotic equivalences in (39) and (40) are essentially a consequence of Lemma 4.7 in [1], the discussion
at the end of the proof of Theorem 2 in [2] and Section 6.5 in the same reference. O
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Lemma 3. Assume that Conditions 1, 3, 4 and 5 hold. Then, for any w € [0, 1/2),
Cr/g” = Cn/g” + 0p(1) ~ Cc/g”
in £°°([0, 11), where C¢, g and C, are defined by (16), (19) and (37), respectively.

Proof of Lemma 3. The proof closely follows the proof of Theorem 2 in [2]. Fix y € R such that 1/{2(1 —w)} <y < 1
and consider the abbreviation {g > n~7} = {u € [0, 119 : g(u) > n~7}, and similarly for {g < n~7}. Then, write

Ch/8” = Vigzn—1,Ch/8° + Vg1, Ch/8°.

Using the fact that Cf is a copula almost surely, we can proceed exactly as in the proof of Lemma 8 in [2] to show that,
almost surely,

sup | Cy(u)/g“(w)] = o(1).
uefo,114
gu)=n~V

Furthermore, from Lemma 1,

Co(w)  CHu) _ . # 12

- sup {g(w)}™ x v/n sup [Gy(u) — CHu)| < dn’*~ "2 = o(1),
weond [N {g@)e | = Lo w0 "
gu)=n"Y gu)>n—Y

almost surely. Combining the three previous displays, we obtain that
Ch/8” = Vigznr)Ca/g” + 0(1),
almost surely, which, from (41) and the fact that C, = €, under Condition 1, gives
Ch/g” = Vig=nr Ca/8” + 0(1).
From Lemma 4.10 in [1], the indicator function on the right-hand side can be omitted and the desired result follows from

Theorem 2.2 in the same reference. O

Proof of Theorem 3. We only prove (43) and (44), the proofs of the other claims being simpler. Let us start with (44).
From the last equation in the proof of Theorem 2 in [2], we have that, under the considered assumptions,

Cllg” = ®L(Gy)/g” + ope(1). (71)

Using the fact that (\/B(GE"‘ " 0), (et — C)) and (Gy = v/b(G, — C), C) = v/b(C} — C)) are equal in distribution
for m € {1, 2}, some thought reveals that (71) also implies that

Vh(Cy ' — €)/g” = dU(VB(G,™ — C)/g” +om(1),  me(1,2). (72)

Combining (71) and (72) with (67), we obtain that
Al Jli2.n]
(ch /g, Vb(c, " — cy/g”. V) — C)/g?)
- (Cc/g” V1 —aCl/g” + VaCc /g, VT —aCl/g” + JaCc/g®)

in {£°([0, 1]9)}3. The weak convergence in (44) is finally mostly a consequence of the continuous mapping theorem. For
the proof of (43), it suffices to start from Lemma 3 instead of (71). O
Proof of Corollary 1. We only prove (47) as the proof of (48) is similar. Let w € (0, 1/2) and let u,, be the map from
£°°([0, 119) to £°(Ag4_1) defined, for any f € £°([0, 1]9) and w € A4_4, by

d
Ho(f )W /f u*t ...,uwd){g(u“”,...,u‘“d)}‘”—u,

ulnu

where g is defined in (36). As observed in [2], since

d
/ {gu™, ..., u")}” - < 0
0 ulnu

the map w,, is continuous. Hence, from Theorem 3 and the continuous mapping theorem,

(10(CF/8°), 1Ty 18, mo(Cy 2" 18))

w (Ro(Cc/8”), 11T /82), 1u(CE /g?)) = (n(Cc), n(CEY), n(C), (73)

sup
weA 1
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in {£*°(Aq_1)}3, where, for any f € £°([0, 11%),

d
/ fu™,. de)uhlllu, we Ag_q.

Furthermore, it can be verified that

1o(Ch/g%) = n(Ch) = Vn{lnv(CY) — Inv(C)} = Vn(In A} — InA),

where v is defined in (46), and that, for any m € {1, ..., Ny},

1o(CyIM /g?) = n(CpI™) = (1 = b/n)™2V/b{Inv(C™) — Inv(CH)).

The desired result finally follows from (73) and the delta method [see 52, Theorem 3.9.4] by proceeding, for instance, as
in the proof of Theorem 1(i) for (27). O

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2019.05.007.

References

(1

(2]
(3]
(4]
(5]

(6]
(7]
(8]

[9]
(10]
[11]

[12]
[13]

[14]
[15]
[16]

[17]
(18]
[19]
[20]
[21]

[22]
(23]
[24]

[25]
(26]

[27]
(28]
[29]

(30]
(31]
(32]
(33]
(34]
(35]
(36]

(37]
(38]
(39]

B. Berghaus, A. Biicher, S. Volgushev, Weak convergence of the empirical copula process with respect to weighted metrics, Bernoulli 23 (2017)
743-772.

B. Berghaus, ]. Segers, Weak convergence of the weighted empirical beta copula process, ]. Multivariate Anal. 166 (2018) 266-281.

P. Bickel, F. Gotze, W. van Zwet, Resampling fewer than n observations: Gain, losses, and remedies for losses, Statist. Sinica 7 (1997) 1-31.
P. Billingsley, Convergence of Probability Measures, second ed., Wiley, New York, 1999.

A. Biicher, A note on weak convergence of the sequential multivariate empirical process under strong mixing, ]J. Theoret. Probab. 28 (2015)
1028-1037.

A. Biicher, H. Dette, A note on bootstrap approximations for the empirical copula process, Statist. Probab. Lett. 80 (2010) 1925-1932.

A. Biicher, 1. Kojadinovic, A dependent multiplier bootstrap for the sequential empirical copula process under strong mixing, Bernoulli 22 (2016).
A. Biicher, 1. Kojadinovic, A note on conditional versus joint unconditional weak convergence in bootstrap consistency results, J. Theoret. Probab.
(2018) (in press).

A. Biicher, S. Volgushev, Empirical and sequential empirical copula processes under serial dependence, J. Multivariate Anal. 119 (2013) 61-70.
P. Capéraa, A.-L. Fougeres, C. Genest, A nonparametric estimation procedure for bivariate extreme value copulas, Biometrika 84 (1997) 567-577.
H. Carley, M.D. Taylor, A new proof of Sklar’s Theorem, in: C.M. Cuadras, ]. Fortiana, J.A. Rodriguez-Lallena (Eds.), Distributions with Given
Marginals and Statistical Modelling, Kluwer Academic Publishers, Dordrecht, 2002, pp. 29-34.

A.C. Davison, D.V. Hinkley, Bootstrap Methods and their Application, Cambridge University Press, 1997.

P. Deheuvels, La fonction de dépendance empirique et ses propriétés: un test non paramétrique d’indépendance, in: Acad. Roy. Belg. Bull. Cl.
Sci. 5th Ser., Vol. 65, 1979, pp. 274-292.

P. Deheuvels, A non parametric test for independence, Publ. Inst. Stat. Univ. Paris 26 (1981) 29-50.

R.M. Dudley, Real Analysis and Probability, Cambridge University Press, Cambridge, 2002, Revised reprint of the 1989 original.

L. Diimbgen, P. Del Conte-Zerial, On low-dimensional projections of high-dimensional distributions, in: From Probability to Statistics and Back:
High-Dimensional Models and Processes, in: Institute of Mathematical Statistics (IMS) Collect., vol. 9, Institute of Mathematical Statistics,
Beachwood, OH, 2013, pp. 91-104.

B. Efron, Bootstrap methods: Another look at the jackknife, Ann. Statist. 7 (1979) 1-26.

J.-D. Fermanian, D. Radulovic, M. Wegkamp, Weak convergence of empirical copula processes, Bernoulli 10 (2004) 847-860.

P. Ganssler, W. Stute, Seminar on Empirical Processes, DMV Seminar 9, Birkhduser, Basel, 1987.

C. Genest, A.-C. Favre, Everything you always wanted to know about copula modeling but were afraid to ask, ]J. Hydrol. Eng. 12 (2007) 347-368.
C. Genest, K. Ghoudi, L.-P. Rivest, A semiparametric estimation procedure of dependence parameters in multivariate families of distributions,
Biometrika 82 (1995) 543-552.

C. Genest, J. NeSlehovd, A primer on copulas for count data, Astin Bull. 37 (2007) 475-515.

C. Genest, ]. NeSlehovd, B. Rémillard, On the empirical multilinear copula process for count data, Bernoulli 20 (2014) 1344-1371.

C. Genest, ].G. Neslehova, B. Rémillard, Asymptotic behavior of the empirical multilinear copula process under broad conditions, J. Multivariate
Anal. 20 (2017) 82-110.

C. Genest, ]. Segers, Rank-based inference for bivariate extreme-value copulas, Ann. Statist. 37 (2009) 2990-3022.

A. Gluhovsky, M. Zihlbauer, D. Politis, Subsampling confidence intervals for parameters of atmospheric time series: Bloc size choice and
calibration, J. Stat. Comput. Simul. 75 (2005) 381-389.

G. Gudendorf, J. Segers, Nonparametric estimation of multivariate extreme-value copulas, J. Statist. Plann. Inference 143 (2012) 3073-3085.
M. Hofert, I. Kojadinovic, M. Maechler, J. Yan, Elements of Copula Modeling with R, Springer, 2018.

P. Janssen, J. Swanepoel, N. Veraverbeke, Large sample behavior of the Bernstein copula estimator, ]. Statist. Plann. Inference 142 (2012)
1189-1197.

M. Kosorok, Introduction to Empirical Processes and Semiparametric Inference, Springer, New York, 2008.

S. Lahiri, Effects of block lengths on the validity of block resampling methods, Probab. Theory Related Fields 121 (2001) 73-97.

AJ. McNeil, R. Frey, P. Embrechts, Quantitative Risk Management: Concepts, Techniques and Tools, second ed., Princeton University Press, 2015.
A. Patton, A review of copula models for economic time series, J. Multivariate Anal. 110 (2012) 4-18.

D. Politis, J. Romano, Large sample confidence regions based on subsamples under minimal assumptions, Ann. Statist. 22 (1994) 2031-2050.
D. Politis, J. Romano, M. Wolf, Subsampling, Probability and Its Applications, second ed., Springer, New York, 1999.

D. Politis, J. Romano, M. Wolf, Weak convergence of dependent empirical measures with application to subsampling in function spaces, ]J.
Statist. Plann. Inference 79 (1999) 179-190.

J. Praestgaard, J. Wellner, Exchangeably weighted bootstraps of the general empirical process, Ann. Probab. 21 (1993) 2053-2086.

B. Rémillard, O. Scaillet, Testing for equality between two copulas, ]. Multivariate Anal. 100 (2009) 377-386.

L. Riischendorf, Asymptotic distributions of multivariate rank order statistics, Ann. Statist. 4 (1976) 912-923.


https://doi.org/10.1016/j.jmva.2019.05.007
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb1
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb1
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb1
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb2
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb3
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb4
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb5
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb5
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb5
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb6
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb7
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb8
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb8
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb8
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb9
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb10
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb11
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb11
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb11
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb12
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb13
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb13
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb13
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb14
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb15
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb16
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb16
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb16
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb16
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb16
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb17
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb18
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb19
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb20
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb21
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb21
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb21
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb22
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb23
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb24
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb24
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb24
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb25
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb26
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb26
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb26
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb27
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb28
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb29
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb29
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb29
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb30
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb31
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb32
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb33
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb34
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb35
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb36
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb36
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb36
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb37
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb38
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb39

[40]
[41]
[42]

[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]

[54]

I Kojadinovic and K. Stemikovskaya / Journal of Multivariate Analysis 173 (2019) 704-723 723

L. Riischendorf, On the distributional transform, Sklar’s Theorem, and the empirical copula process, ]. Statist. Plann. Inference 139 (2009)
3921-3927.

G. Salvadori, C.D. Michele, N. Kottegoda, R. Rosso, Extremes in Nature: An Approach using Copulas, in: Water Science and Technology Library,
vol. 56, Springer, 2007.

A. Sancetta, S. Satchell, The Bernstein copula and its applications to modeling and approximations of multivariate distributions, Econometric
Theory 20 (2004) 535-562.

0. Scaillet, A Kolmogorov-Smirnov type test for positive quadrant dependence, Canad. ]. Statist. 33 (2005) 415-427.

J. Segers, Asymptotics of empirical copula processes under nonrestrictive smoothness assumptions, Bernoulli 18 (2012) 764-782.

J. Segers, M. Sibuya, H. Tsukahara, The empirical beta copula, J. Multivariate Anal. 155 (2017) 35-51.

J. Shao, D. Tu, The Jackknife and Bootstrap, second ed., in: Springer Series in Statistics, Springer, 1996.

J. Shao, C.FJ. Wu, A general theory for jackknife variance estimation, Ann. Statist. 17 (1989) 1176-1197.

A. Sklar, Fonctions de répartition a n dimensions et leurs marges, Publ. Inst. Stat. Univ. Paris 8 (1959) 229-231.

W. Stute, The oscillation behavior of empirical processes: The multivariate case, Ann. Probab. 12 (1984) 361-379.

J. Swanepoel, A note on proving that the (modified) bootstrap works, Commun. Stat. Theory Methods 15 (1986) 3193-3203.

H. Tsukahara, Semiparametric estimation in copula models, Canad. J. Statist. 33 (2005) 357-375.

A. van der Vaart, J. Wellner, Weak Convergence and Empirical Processes, second ed., Springer, New York, 2000.

A. van der Vaart, J. Wellner, Empirical processes indexed by estimated functions, in: Asymptotics: Particles, Processes and Inverse Problems,
Institute of Mathematical Statistics, 2007, pp. 234-252.

C.FJ. Wu, On the asymptotic properties of the jackknife histogram, Ann. Statist. 18 (1990) 1438-1452.


http://refhub.elsevier.com/S0047-259X(18)30618-3/sb40
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb40
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb40
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb41
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb41
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb41
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb42
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb42
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb42
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb43
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb44
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb45
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb46
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb47
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb48
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb49
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb50
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb51
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb52
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb53
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb53
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb53
http://refhub.elsevier.com/S0047-259X(18)30618-3/sb54

	Subsampling (weighted smooth) empirical copula processes
	Introduction
	Empirical copulas and empirical copula processes
	Subsampling empirical copula processes
	Subsampling weighted empirical copula processes
	Monte Carlo experiments
	Subsampling for i.i.d. observations
	Subsampling for time series

	Concluding remarks
	Acknowledgments
	Appendix A. Proofs
	Appendix B. Supplementary data
	References


