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Linear Regression with Censoring

C. SRINIVASAN AND MAI ZHOU

Koul, Susarla and Van Ryzin (1981, Ann. Statist. 9, 1276-1288) proposed a
generalization of the ordinary least squares estimator in linear models with
censored data. This paper uses counting processes and martingale techniques to
provide a proof of the asymptotic normality of the estimator. A detailed analysis of
the asymptotic variance is presented. € 1994 Academic Press, Inc.

1. INTRODUCTION

Suppose patients’ survival times, or their logarithms, Y;, under study,
are random variables that are independent of each other and follow the
linear model

Y=o+ fX,+e, i=1,2 .,n, (1.1)

where the X/s are observable covariates and ¢, are iid random variables
with zero mean and finite variance ¢ The parameters (z, ) are to be
estimated. We, however, observe only the censored data (Z,, J,, X;) with
Z,=min{Y,, C;}, 6,=1I,,. ¢, where C/s are censoring times, iid random
variables that are independent of ¢’s. Let P(Y,<t)=F,(tr) and
P(C;<t)y=G(1).

Koul, Susarla, and Van Ryzin (hereafter abbreviated KSV) (1981)
suggested the following estimate («, ) based on the censored data
(Z;,0:, X)), i=1,2,..,n,

n 5.2, .2 8.7,
d= am‘—‘—l:;—l 7, < ’ ﬁ= bni__fn—‘_'l 7 < My (12)
i; 1-G(z,) 7= ,; 1—G(z,) ="
where
XX P 1
b o=, 1 ¥, X=-5% X,
i :,:] (X,'—'X)Z, am n ne n igl i
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and G is a Kaplan—Meier product-limit type estimator of the distribution
G(2) of the C/s that are defined later. Here M, n=1, 2, ..., is a sequence
of truncation constants tending to infinity at certain rate. This estimator is
particularly easy to implement on a computer.

In their 1981 paper, KSV used a U-statistic representation to derive the
asymptotic distribution of the estimates by appealing to Hoeffding (1948).
Our approach uses the martingale structure of the counting processes
associated with the underlying problem and develops a martingale
representation for the estimator, modulo an error term which is o,(1). This
obviously has many strengths and advantages. The first is that the mar-
tingale representation is easily adaptable for a sequential analysis of the
model. The second concerns the truncation constants. As noted by Miller
and Halpern (1982) and Gill (1983), constants M, depend on the unknown
F.(t) and G(¢) in a complicated way, and therefore the choice of their
values requires further guidelines and experience. In our approach,
as opposed to theirs, the truncation sequence is simply taken to be the
observable T”=max{Z,} and, hence, there is really no truncation in (1.2).
In addition, our discussion on the asymptotic variance of (4, ﬁ) reveals that
the KSV formula (3.7) needs an extra » factor in the second term there.
Thus the second part of their (3.7) (negative part) cannot be neglected, and
therefore their asymptotic variance estimator needs to be adjusted.

Miller and Halpern (1982) also find that the KSV estimator performs
poorly compared to other estimators in the context of the Stanford Heart
Transplant Data. However, Fygenson and Zhou (1992, 1994) have
suggested some simple modifications to overcome this shortcoming and
showed that the modified KSV estimator performs equally well in these
situations. Our theoretical study of the asymptotic variance also indicates
that under certain scenarios the KSV (modified) can be quite good. It is
also known that in the special case of two samples, the KSV estimator is
identical to the Buckley and James (1979) estimator which is known to be
efficient under the normal errors. See Lai and Ying (1991).

Another, perhaps the most popular, approach to the regression problem
is the Cox model and partial likelihood analysis. Although the Cox model
has many nice features it cannot, unlike in a classical linear regression
model, adapt for unexplained heterogeneity. See Struthers and Kalbfleisch
(1986) for details. The KSV linear regression method that we study in this
paper can easily handle heterogeneity, in the sense that the ¢s need not be
iid but only independent and satisfy certain moment conditions.

Section 2 below contains additional notation as well as some counting
process results that are useful later. Section3 contains the asymptotic
normality theorem with proof, but the more technical treatment of the
high-order terms is deferred to Section 5 so that one can better concentrate
on the martingale representation part of the proof. Extension to multiple
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regression is straightforward. Also, the method can be readily extended to
handle the heteroscedastic case. In Section 4 we take a closer look at the
asymptotic variance derived in Section 3 and point out a correction to a
formula in KSV and discuss some consequences of that.

2. NOTATION AND COUNTING PROCESSES

We now introduce some additional notation and establish some needed
facts. For i=1, 2, .., n, let

1-H()=P(Z,>1t)=[1-F()][1-G(1)],
where F,(t) and G(t) are as defined in Section 1. In addition, set

-

I-H{(t)=15..; R ()= i [1—H.()] and T"=max{Z,}.

! (2.1)
Also, let
dF(s) dG(s)
A%(t) = — A= _—
'() J5[7w,l]1—Fi(s~) (“) J‘[gx‘,]l—G(S*)
and
dH . (s)
AF ()= —_—,
) ftaoo,:l L—Hi(s—)
It is well known that the three processes
M:D(t)=[{z,su<s.=x]_""‘ I[z,;.q‘“?“ﬁ
Mf(z):lleg,‘é,:m—f\ Ty iy dA(5)
and (2.2)

2
M.f(’)::][z,@] JL ‘1[2,25] dA; (s)

are all square integrable martingales on [ — o0, + oo ] with respect to the
filtration

Fi=0{Zid7,<y Ol (7, | Sk <},
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and their predictable variations are, respectively,

MPYN=[ Ty, dAP(),

MOW=]" Iy, da)
and (2.3)
(MF >(”=ft,‘ iz dA (1)

Furthermore,
(MP, MEy=0. (2.4)

See, e.g., Gill (1980) for a proof of these facts.
It is not hard to see that A, (1)= A2(r)+ A(¢), and as a consequence
we have

M (D)=M2(1)+ MC(1) (2.5)

Furthermore, define

M=y M{(1) (2.6)

The Kaplan-Meier estimator of G(¢) is then given by

s _ANZ(s)
G(t)=GC (1)=1 E[(1 R*(s))’ (2.7)

where N2 (s)=% 1, .50y a0d AN (s)=N(s+)—NZ(s—). And we
have the following representations:

G(T"A)=G(T" A1) _G)—G(1)

1—-G(T" Aty 1—G()
o 1=Gs=) {gi a0y s
I TG0 Ry M
for te]—o0, T"], (2.8)
H(t) H,(1) ‘
T Lol- 4M ()

for t such that 1 — H,(¢)>0. (2.9)

Therefore, these two processes (2.8) and (2.9) are local martingales in their
domains.
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3. ASYMPTOTIC NORMALITY

Throughout the rest of this paper, we take the definition of the estimator
(4, #) in (1.2) with M, =T" apd G(-) to be the left continuous version of
the Kaplan-Meier estimator G, (--) in (2.8); i.e

0, Z; - 0,7,
=Y @y ——F— Iz B=Lbu———F—Iz<rm (1)
X -Gz, &< ) 1 _Cuz,_) &=

We drop the subscript k in G, in the subsequent formulae.

It is perhaps worth noting that KSV (1981) used a variation of G in their
proof for technical reasons, but this does not alter the limiting behavior of the
estimator. On the other hand, the Kaplan-Meier estimator is probably more
convenient in practice as it is most widely available on computing packages.
Note, also, that the restriction [Z,< T"] is in fact an empty requirement.

We begin by rewriting the estimator (3.1). Note

VAR the ¢
=j; 1 dI[Z,s:.5.=1]

1-G(Z,—) G(t—)
Y&l t
j—ocl—G‘(T"/\t—)

Al (z,<6=17- (3.2)

The integrals are Lebesgue-Steiltjes integrals. Note we can and did stop
above integral at T" since Z, < T" Vi
Using (3.2), the KSV estimator (3.1) can be written as
©l— G(T" AL—)

i=Ya ,,,J.
ﬁ=me.J. " d (33)

—x 1 =G(T" A t—)

[Zi<t 6,=17>

[(Zi<1.8,=1]"

The centering quantities for (3.3) are

T" ™

AT =Y ay| tdF(), BTN =T bu[ tdF0)
Therefore, we can write

™ tdlrz <, 5=
—a(T") = (G —a) T")—Zamf (%—tdFi(t)

dIZ<1 =1
f— BT = (B—AT) =T b | (f_G—[(-—T—A—t%) tdF.vU))

(34)
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More generally, we define two processes (d — a)(z) and (B—B)(t) for any
constant 7 to be the same expression in the right-hand side of (3.4) except
that T is replaced by 7.

Remark. The centering quantities are not exactly equal to « and f but
are truncated at 7" In general, some extra conditions are needed before
one can center the estimator by the exact value o, . See also Remark 4.4
of KSV (1981).

Now we are ready to formulate the main theorem. For simplicity of
presentation, we assume a random design in the censored linear model; ie.,
X, in (1.1} are iid. The definitions and the proofs of this paper should then
be understood to be conditional on X,. The case of a fixed design can be
treated similarly. Whatever the type of design one chooses to work with,
we need one of the following conditions.

D1. For the random design, 0 < Var(X)=0? and EX* < co.

D2. For the fixed design, for sufficiently large n, 0<K, <
(I/m) Xi_ (X~ X)), (I/m) L X} < Ky < oo

i=1

Since we are working with the random design, we assume Condition D1
throughout the rest of the paper. Before we state the main theorem, we
pause here to observe that Condition DI implies, among other things, that
max, ., nb%,—0 ae. and max, o, ,nb) X7 —0 ae. (see, e.g, Problem 8
of Chow and Teicher (1987, Sect. 5.2)).

In addition to the design conditions, we need the following regularity
conditions to handle the tail of the remainder terms in martingale
representation.

Towards this, let

' dG
0=}, T F 6P

where F=1im, ,  (1/n)Y F,. The conditions are

R1. For some >0,
oo 2
supj [2 bn,tf,.(z)] dC(1) < . (3.5)
R2. For some 1t >0,
Efw |B(C(1)) h(1)] di < oo, (3.6)

where A(t)=1im ¥ b,,tf;(2).
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R3.

L , [[*sdF(s)]?
A T G

R4. For any >0, f.(¢t)/(1—H,(1)) is of bounded variation on
[—1, 1] uniformly in i=1,2,....

RS. Forany 1>0

,,,1 dt<C<oo (3.8)

A few comments are in order regarding Conditions R1-R5 before we
proceed with the statement of the theorem. Condition R1 is equivalent to
requiring that the variance of jf“ Y b, 1f:(1) dB(C(2)) be finite uniformly in
n. Here the time changed Brownian motion B(C(?)) appears naturally as
the limit of the Kaplan-Meier process. A condition of this type also
appears in Gill (1983). A sufficient condition for R1 is that X be bounded
and for some C>0 and ¢>0,

(1)
P A-PH-6)"

where f is the density of F. The condition R4 is seen to hold if either (i)
the hazard function is of bounded variation on R' or (ii) the covariate X
is bounded with probability one. The tail conditions R2, R3, and RS will
hold if for all i=1, 2, ...,

<C,

—G(t)> K(1 — F))* for K>0,0<f8<1, (3.9)
and uniformly in {

© t dF, 1
J‘ —;(tl<oo— with oz=—-+—B.

. (1-F) 2 (310)

The condition R3 will hold if, in addition to Assumption 2 of Theorem 3.1,
1*2(1 — F,(1))/(1 —G(t)) = 0 as t — 0. Since

zuxsﬂWsr L —F)+ |7 (1—F)ds7?
X T PR S ey ey
5, 1— , [ (U—F)ds]?1—F
<27 anml +ZZ nb?, (] ) -
,1—F, [ F,
<K nbl—d+ K Y b =
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[t is clear that the above will — 0 as ¢— o¢ if the said condition holds.
Roughly speaking, these conditions require two properties: that F, have
reasonably small tails and G have a suitably heavier tail compared to F..
For example, if | —F,(t)=e *' and 1 —G(t)=e " with i,< M <n then
these conditions hold.

THEOREM 3.1. In the censored linear model (1.1), the KSV estimator
(3.1) is asymptotically normally distributed, ie.,

(g (ozen)

1. the variance-covariance matrix Y. (t) (see definition below) is
well-defined and finite for 1€ [0, + o] and ¥ (1) —5 ¥ (),

2. supo.,Ele,—tle,>t] < o,
3. the tail conditions R1-RS given above hold.

provided

The varignce—covariance matrix 3 (1) = (V (1)) is

, . “ s dF,(s)\2
Vu(r)zllngb;".Jm(l_t(;(t)_ji:Hi((rY))> [1—G(1)] dF.(1)

. © (Xb, (s dF(s)
+llmnz'[./m < Z [1 —Hj(f)]
bm’[f‘SdFi(s) z

Vi (t)=same as Vy, except b,;b,, are now a,, and a,, (3.12)

. ' t
Via(t)=Vyu(t)=limn ) a,b, - (1 —-G(1)

I SG’F,-(S)>2
- [1-G F,
) - G01dE®
Y, [isdF,(s)
+lim n <_._¢r__f__
ZI O i = apj; b Z[I_Hj(t)]
_Cni : s dFl(s)
1 _Hi(t)
Proof. We start with expression (3.4) and write the detailed proof only

for (ﬁ—ﬁ)(T"), since the proof for (4 —a)(7") is very similar. To this end,
we first derive a martingale representation for (§ — §).

) [1—F,(1)]dG(z). (3.13)
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Adding and subtracting the following term to (3.4),

™ iz dF(¢)
e 1 =G(T" A=) = Fi(1)

b |

and regrouping terms, we have

™ t

(ﬁ—ﬁ)(T")=meLm

dF (1)
X(dl[zls,‘(;‘=1]_1[2,>1]I_Fi(t)>
T"l
o\l —=G(T"At—) 1 =F;(1)
_Zb JT" _ﬁﬂﬂﬂ__
™ 7%]-—6‘(71"/\”—)
+3f G ~1)aro)
o \1=G(T" A t—=) 1=F(1)

(3.14)

by (2.1) and (2.2).
Now let us work on the second integrand of (3.14). The bracket can be
rewritten as

( 1-A 1 _1)
1—G(T A t—) 1 =Fi(#)

_1=G(I" A1) 1-A,(1)

— —1. (3.15)
1—G(T" A t—) [1=F, ()1 [1—=G(T" A t—)]
Since
1— H,(1) =1+H,-(t)—f1,-(t)
N-FOI-G(T"rt—)] 1—H(t) ’
and

1—G(T"At—)_1+G(T"At—)—G(T"/\t—)
1-G(T" A 1—) 1-G(T" A 1—) ’
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it is not hard to see that after some algebraic manipulations,

Hi(t)—f;’,-(t)+G(T" At=)—G(T"At—)

(3.15) = -
1 —H,(1) 1—G(T" A t—)
Hi(z)—ﬁ{(t).é(T” At—=)Y=G(T" A 1—)
1—H,(1) 1—G(T" A t—)

CH)=A.)  G=G  H(1)—- A,
S "mw T1-¢ 1-H
_G(T"At—)—G(T"Az-)

1—G(T" A t—)
GA(T"AI—)—G(T"At—)'GA(T"At—)—G(T”/\t—)
1—G(T"At—) 1—G(T"At—)

CH(O)=-H() G(T"At=)—G(T"r1—)
=TI H.0) G ntD) + &) +n(2) (3.16)

(say). Now plug this back into (3.14) to obtain

] o A S
B—B(T )‘zb""fﬁwl_é(T"/\ t—)
™ H,-(t)—ﬁi(t)
+aniJr\ﬁ (—l-—w—l‘l—-—,(l)—"
G(T" A t=)=G(T" n1-)
1-G(T" A t—)

dM (1)

)zdF,.(t)

#X b [ (G0 1 dE 1) (317)

Integrating by parts on the middle term above, we have

+3 b (f; Urw de,.(s)] dﬁl(_’_l%{z%(’_)

R C(T" A t—)=G(T" A t—)
+f xU SdF"(S)]d 1—G(T" A 1—) )

.
+Xbu | (E )1 dF()

CCHAT) =BT G(T"—)—G(T"—)
’Z""‘h"m[ ZH(T) T 1-G(T ) ]
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where h,(1)= [ s dF,(s). We also let

H(T")—H(T") G(T"—)-G(T"-)
1—H,(T") 1-GA(T"—)

(ani(T?) =

Using the representations (2.8) and (2.9), we have

™ t

F=BT=Ybu ] e M)
™ -1
+Y bm-jw hi(t)l—(;?)(,—)de*(’)
™ 1—G(t—) Itr+(y>01

+Y b | hO e el aM )

+ Y bu [ (D + (D) 1 dF () = T bk (T7) (")

Recalling the definition of M and M [, we can rewrite this as

. ™ t hi(t) ) o
_ TY=5 b . — dM
(B—pyT") =X H.J%<1_G(T"At_) ) LU
™ —hi(t)

+zb,,,~f% T (o MW

" I—G(t—)l[k*(1)>0] c
+j_x[zi:b,,ih,-(z)] e B0 d;M,(s)

[ @) 1) =T b (T (T

™ t h.’(t) ) D
=Y, . - dM;
b> LX,<1—G(T"/\t—) L—H(1) "

T I—G(l")][R'm>0]
+ZJ ([;bnjhj(’)jl 1—G(1) R (1)

i=1" 7%

. bm'hi(t)
1—H.(1)

=¥ buh AT [,(T")] (3.18)

)M+ [ o)t ek

This is the required martingale representation for (f— B)NT"). The first
two terms above are clearly martingales. We show in Section S that

SN b [T () +n(n) tdF (1) =0,(1) and /n X b, h(T") {, (T") =
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0,(1). In the following discussions we focus on the martingale part
M, = first two terms in (3.18).

To show that the martingales converge weakly, we need to check that (i)
their predictable variation converges in probability and (ii) the Lindberg
condition holds (see, e.g., Anderson and Borgan, 1985). The predictable
variation process for the martingale \/;M,, in (3.18) evaluated up to =,
after some calculation, is

: { h(1) )2 dF(1)
MS= b2_ — Zizt
n< n> I’lZ m‘[m(l—GA(T”/\f_) I_H,(t) [4‘/]1_1::’(1)

"o 1=G(t =) Iigiirs01
+".~§,Jx([zb'"'"’m] 1-G(r) R*(1)
_ bnihi([) )2 dG(’)

l—Hi(t) [le,]"l—_—G(—t). (319)

Appealing to Lemma 5.1 of Zhou (1992) and noticing that 1 —G is
uniformly consistent on [ —oc, ], it is not hard to see that the above two
terms both converge in probability, and the limit is

V/x('f)= V(1)

T * t h(t) 2
—tmny b [ (1 e —H,m) [1— G(r)] dF (1)
. T 1
+imnY | ([Z ”"""-"”} - GOIS L= F0]
bnihi(t) 2
—-1——1177)) [1—F.(1)]dG(1). (3.20)

To check the Lindberg condition, we need to verify

qu( Jntb, _ﬁh,-(z>bm-)2, LU N

1=G(T" at~) 1—Hir) ) "7V 7291 -F)

(3.21)

and

: I—G(t—)ﬁl[k+(:)>0]
ZL% ([Z b,,jhj(r)] 1—G(1) R (1)

b () dG(1) .,
) sl T =0 (322)

for any &> 0. Here the * stands for the quantity in the parentheses.
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The square term inside (3.21) is bounded by

2nb, a s 2mpt, O

"[1—G(T" A t—)]? "[1—H ()]

When ¢ is restricted to [ —1, 1], 1*[1 — G(T" A t—)] % is bounded except

for a set A4 (not depending on /) with probability less than any given 4.

Therefore, aside from A, the first term above goes to zero uniformly for all

i < n since max,(nb2,) — 0 as n — oo by our design. As for the second term,
first observe

(3.23)

h(1)

T @ B> 0=at Xt Eelle> (—a— pX)

Since E(e|e> u) is nonnegative and monotone in u, the above is
<o+ X+ Elg;|e;> |t] + [x+ BX.])
=a+ BX + 1] + |a+ BX| + E(e;— 1] — |a+ BX ] |e;> |t] + a + BX})
which in turn
L2le+ X+ + K

by Assumption 2; ie., sup E[¢;,—1|¢;>1] <oc. This implies, when ¢ is
restricted to [ —7, t],

N X000
mflx 2nb;, - H,(OT

Therefore (3.21), when restricted to [ -1, 7],

t ! h(ty \? dF (1)
max 2nb,2". ( — - : > I s>e 1 =t ~—l—_—’
i L 1—G(T" A t—) 1—Hr)) =1z p)

will converge to zero in probability since, aside from the set A of small
probability, every term in the sum will be zero when » is large because the
indicator 7, ,; will be zero.

To handle the lower tail of (3.21), we first replace the square term inside
(3.21) by its bound (3.23) and treat them as two integrals. Except the set
A, these integrals are bounded by

- dF (1)
2,2
Zj*manbm‘t I[7.>r]l F.(7)

, ()T dF,(1)
*If, 2""’[1 H{(n)* 2= F)
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Taking expectation, this is bounded by

<Zl<j:; mb2.12 dF (1)

ni

+y Kfﬂ 2062, (4 + BX,)? + 202 + 2K?) dF (1) < 0.

Therefore, as T — o0 the above terms go to zero.

The proof of (3.22) is similar, so it is not repeated here (cf. also Zhou
(1992, p. 11)). Therefore, the martingale part in (3.18), when evaluated at
17, Is asymptotically normally distributed.

Arguments similar to those in Section S (cf. (5.5), (5.8)) show that, Ve >0,
we can choose T > 0 such that the probability P(\/; IM,(T")— M, (1) >¢)
can be made arbitrarily small when n— oc. Thus the weak convergence
of \/;M,,(r) is still valid with t replaced by 7. Since T"-** oc, our
assumption Al and the fact that a normal random variable is continuous
in its variance imply that the limiting normal distribution for \/;M( T")
will have variance V,,(oc). |

Extension to multiple regression is straightforward. The least squares
estimate of the parameters for the multiple regression is given by

B=(X"X) ' XTY*

where Y*= (Y}, ., Y*)" with Y*=6,Z,/(1—G(Z,), X is the design
matrix, and we assume (X7X) ' exists for large n.

_ It is clear that the estimate g  1s also a weighted average of Y*. In fact,
B,=2%,u; Y where u; are the jth row, ith column element of the matrix
(X"X) ' X7, Hence the same technique used in proving Theorem 3.1 also
works here.

THEOREM 3.2. If, in the censored linear model with random design,

L. the variance—covariance matrix XZ(t) (see ({3.24)) below) is well-
defined and finite for 1€ [k, 0], and X(1) > X(w) as t -

2. supo., Ele,—tle;>t] < o0; and
3. RI-RS hold with ¢,=u,, j=1,2, .., p,

then we have

Jn(B—p*) -2 NO, Z(0))  as n— o,
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where B* = {B¥, ., B¥} with B*=3,u, [T, sdF,(s). And X(t)=(0,,(1))
with

. n T 1 T dF 2
ou(t)=limn 3 u,(,u,,.j_ [I*G(t)_JlliH.l((:))] (1= G(r)] dF.(1)

i=1

: — Ze; [T s dF;(s)
+limn li_i;____f__
igl J(fgo c',=l:k[,',u/,' 2(1 - Hj(t))
c,-j'fde,-(s)

- ](1 — F,) dG(1). (3.24)

Remark. All the preceding results will be valid, subject to mild condi-
tions, if the ¢, are independent but not identically distributed.

4. A DETAILED LOOK AT THE ASYMPTOTIC VARIANCE

The asymptotic variance we had obtained above, (3.11)-(3.13), can be
rewritten in a different and more interesting form as shown below in (4.1).
We use this new variance form in our subsequent discussions. By
developing the big square in the second term of (3.11), and sum termwise,
we find that the first and third terms combine to give

t h(1) \’ _dF(1)
(A =lmn Y b2 [ (1—-6(1) I—Hi(t)> RO )

bhi(t) dG(r)
hmnj Zl—H(tl—()

e (Sbh () dG
—hanmZJ[l-H,(t)]l—G

I oo t hi(t) ?
_hmnzbﬁij_w (1 G 1 —H,-(t)>
_dF,(1)

— Fi(1)

. h?
+11mnf Zb"'ﬁ_'lﬁgi)ﬁj? [1—F.(1)] dG

<[ =H()]T—F 5

(X b,h (1)) dG(1)
w2 [~ H(1)] 1—G(r)

—han. (4.1)

683/49/2-2
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The first two positive terms above are nothing but the limit of
Var(\/—Z b,:(0; Z;/(1 —G(Z,))), as the following lemma shows.

Note that the third term above is negative! Also note that
B=Yb,(5,Z,/(1—G(Z,))), which means we are actually doing better by
substituting G into ¥ 5,,(8,Z,/(1 —G(Z,))) in the sense that the resulting
estimator has a smaller asymptotic variance. Also, this third term is a little
different from Koul ez al’s (1981) formula (3.7), and in general it does not
vanish. The interesting consequences of this fact are discussed after proving
the lemma.

Remark. There is another way of writing the variances in (4.1) based
on the following identity. Recalling the definition of 4,(¢) and integrating
by parts we have

1 h(y (1= F()+§* (1 —F)ds
1-G(t1) 1—H,(1) 1-G(t) 1—H,(1)
[7 (1—F)ds
T I—H(1)

Plug this identity into (4.1) and note the negative sign disappears after the
square. Thus we have

(3.11)=1imn2b§,.j2(1:1—(1—;‘—_(3—) [1-H ()]1_61_11%+
Lema 4.1,
v ()= (e ) 0 -cwano
[ _w[l _”2(’()0]2 [1— F,}dG(1)

fﬁ (P () )[I—G(t)]a’F(t)

;1)
+f~acm[l*ﬂ] dG(t).

Proof. Similar to the proof of Theorem 3 1, we first derive a martingale
representation. Note first E(5,Z,/(1 — )= [~ tdF,(t) and therefore,

5,7, \ 5,2, = 2
Var<1_G(Zi))_E(l_G(Zi)—j_ntdF,.(z)). (4.2)
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On the other hand, note that §,2Z,/(1 _G(Zf))=jgfx (1 = G(1))
dl, ., 517, therefore

S, Z, .
e F,
1-G(Z) L%’d (1)
_J‘m t dI - dF 43
= 7‘30-1___6.(——1—) [ZISI,(S'=’]—J.,C,:I (). (4.3)
Adding and subtracting the term {* ., t/(1 = G(1)) I, o dF.()/(1 = F,(1))

in the above and regrouping, we have

.y dF (1)
=], 1—G(z)(d'[z"<"5'=”"fz'>” i —F,-(z)>

1[7,21] 1
+f (l—G(tl——F(t) )’dF"(’)

[ ! * () H(1)
“j,®1—G(z)dM'p(')+Lw H(1)

tdF,(1). (4.4)

Integrating the second term above by parts and recalling the fact
h(1)y={7 s dF,(s), we get

(= H,—H,(1)
= 1—G<;)dMD(')+J YT TEm
Therefore, by (2.9), we have
_ L [, o dM()
@)=[" gm0 m{T
> t () b [ dM (1)
‘Lm<1—0(z) l—H,.(t)) aM (1) f_mh"(’) 1—H,(1)

It is not hard to see that the above integral is a martingale evaluated at
t = oo. The predictable variation process of the martingale is now easy to
compute, and the expectation of the predictable variation process gives the
desired variance
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x t hi(1t) D
(4.2.):E<f m(l—G(r) ]_H(t))dM (1)
_r M (1) >
- H,(t)

el (! hit) dr,(1)
h {U,(l—G(t)_PH,-(t)) (291 — F,(r)

h2(1) dG
+LC[1 H(n)? =07 = G}

=" ! hi(t) \?
—Lx(l—G(t)_l_H‘,(,)) [1—-G]dF(1)

h? (1)
+j4 o - F4G

This completes the proof. §

To see that the negative term in the new variance form (4.2) is, in
general, nonzero, we rewrite it as

J<Z & ””) () s [i —H0] s

> [(£ouh0) 7252 [ (S0 doto)

The integrand is a continuous nonnegative function of ¢, and for 1= — co,
its [Xb,;h,(—)]*=[X b, (x+ pX;)]> = p?>0. Therefore, unless G(¢) is
completely flat at places where [ b,,]h(t)]2 >0, the term is positive.

The variance estimator proposed by Koul er al. [1981, (4.8)] only
estimates the first part of (4.1). In light of the discussion above, it needs to
include an extra negative term. We suggest the use of

= [ byh,(1)]* dN 7 (1)
R*()—1  R(1)

as an estimator of the negative term where

. ® S
NIO=YIzeis-0p and  h(n)=] sd(——L-—-[Zj])
t
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The fact that the negative term in (4.2) does not vanish in general
means that the asymptotic variance of /? is smaller than
lim n Var(}_ b,,(6,T,/(1 —G(T;))). The improvement comes from the fact
that we are estimating G rather than using the true G (assumed known),
a fact that is somewhat counterintuitive. To use a different estimator of G
to result in an even larger negative term in (4.2) is indeed possible. The
idea is to use a “local” estimator of G based only on part of the data. For
more details, see Fygenson and Zhou (1994).

5. HIGHER ORDER TERMS

In order to complete the proof of the main theorem (Theorem 3.1), we
need to show that the higher order terms are o,(1). We now proceed to
establish this.

Recall that these high-order terms are

™"

T b G nm)rdF ) and  /n Y b h(TL(TM].
o (5.1)

Let us first look at the integral term. Putting back what &,(r) and n(¢)
stand for and writing them as two separate integrals, we have

™ (H(t)—H,(t) G(T"At—)—G(T" A 1 —
\/;me'JLm( l(_)H.(t)().( IA—G()T"A(t—;\ )),dF'(t) (5:2)

[G(T" A t—)—G(T" A t—)]?
dF.(t). (53
NN TG T a T Ty - (5

It is easier to show that (5.3)=0,(1), so we first prove this. We accom-
plish this by breaking the integral into {* _ + (. In the interval [ — oo, 7],
we have

G(T" A t—)—G(T" Fw

sup
1—G(T" A t—)

1<

and

\/'_llG(T" ANt=)=G(T" A t_)‘_i, |B(C(t))]  in space D[ — o0, 7],

[—G(T" A t—)
where B(-) is a standard brownian motion. The proof of the first claim is

a simple application of the Lenglart inequality and the latter due to the
martingale central limit theorem.
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Theorem,
G(T" A t——)—G(T" 1—-)6—G ( )
d(¥ b,.F,
f \/— —G(T" A1) I—Gt 2 bufilt)
4 G(T"At=)—G(T"At—)

<"P(”L@ N S T ||z|z|bm|dF

<o, ()x0,()x [ T Ib,l lnl aF,

< Op(l)z ‘bnil E\ Yil’ (54)

and the sum in the last expression above is uniformly bounded by our
assumption of a random design,

2 lbul ENY) < ﬁ \/Z Var Y, + (EY,)?

\/ ne? nat? B’y X2 208 X,
SR L0 (X, —X) S (K- X

which is easily seen to be bounded in view of the design condition DI.
Therefore (5.4)=o0,(1) for any finite .

The upper tail of the integral, {7, has to be treated differently since
\/;(G(T" A=)=G(T"At=)1=G(T" n1-)) is no longer O,(1)
there, and |(G —G)/(1 — G)| is no longer o0,(1) though it remains O,(1)
(Zhou, 1991). This calls for

f

T

™ GT"At—=)—G(T" A t—)
v 1-G(T" A t—)

1y b, fi(1)| dt

—»j c(0) k(1) dt, (5.5)

which follows from R1 if we use an extension of Gill’s (1983) Theorem 2.1
(see Zhou, 1986). Finally, the tail is negligible for large 7 by Assumption
R2.

We now turn to (5.2). First treat the integral

t G(T"At—)—GT A=) —A,(1)
et A At ALY ]
J.,, l—G(T"/\t \/_Z ni '—H,-(l) tf,(t)dt (5.6)
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for arbitrary but fixed 7 > 0. It is easy to show

Sup\/—G(T"/\t—)— G(T"At—)

=0 (1
It <t I—G(T"/\t_) p( )
and
- i)
sluftzbni[}{i(t)—Hi(t)]I—:m_op(l)
provided
£fi)
P X b g, (o7

which follows from D1 and R3. It then is an easy exercise to show that
(5.3)=0,(1) by using Lemma 5.1 of Zhou (1992).
The lower tail can be handled separately. Note that

H(t) A1)

[ X

|t dF (1)

l

—1 1
< Tl a0

1 -1
=S b ) AR,

which is bounded as shown before. It implies that we can make the integral
. small by choosing a large .

el

Now let us look at the upper tail of (5.2). Since by Zhou (1991)

G(T"At—=)—G(T" At —
sup AL A=) ZGITAIT)_ g, (57)
e 1—G(T" A t—)

we have, for any >0,

S
m-" W D) (58)
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(1 )

<- E \vfzbml if (1)

j J <¢”me - VUO dr

H)

1= ) —H,
s s T

L~ WHUM
<E£ nY b (5.9)

and

,H,

T tfi (1)

Condition RS implies that (5.9) can be made arbitrarily small by choosing
a large 1.

We now turn to the last term in (5.1). This term, with {, (¢) plugged back
in, is

n Hf(T) (7") G(T") G(T")
\/—’;anihf(T) T" +\/7_l§:b,, I—G(T") . (510)

The second term in (5.10) will be o,(1) because of Assumption R2 and
Gill’s (1983) Theorem 2.1. As for the first term in (5.10), since 7" — oo as.,
it is 0,(1) by Assumption R3. This completes the treatment of the tails.
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