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We consider the problem of estimating jump points in smooth curves. Observa-
tions (Xi, Yi) i=1, ..., n from a random design regression function are given. We
focus essentially on the basic situation where a unique change point is present in the
regression function. Based on local linear regression, a jump estimate process
tQ ĉ(t) is constructed. Our main result is the convergence to a compound Poisson
process with drift, of a local dilated-rescaled version of ĉ(t), under a positivity
condition regarding the asymmetric kernel involved. This result enables us to prove
that our estimate of the jump location converges with exact rate n−1 without any
particular assumption regarding the bandwidth hn. Other consequences such as
asymptotic normality are investigated and some proposals are provided for an
extension of this work to more general situations. Finally we present Monte-Carlo
simulations which give evidence for good numerical performance of our procedure.
© 2001 Elsevier Science (USA)
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1. INTRODUCTION

In this paper we are interested in change point problems in regression
estimation. In recent years a number of authors were concerned with these
problems in a nonparametric setting. Fields of applications include econo-
metrics, biostatistics, reliability, and signal processing. To give only one
example, in theoretical economics it is well known that when shocks are
produced by sudden decisions of government, variables such as investment,
wages, consumption, and prices may exhibit abrupt changes. Statistical
inference for change point problems in such contexts are readily of interest.
Change point inference procedures are also involved on a more theoretical
ground as they are related to edge effects. Usually, estimating a regression
function without corrections in the neighborhood of the boundaries of the
interval result in an increased bias. Note that the same remark holds when
we estimate a discontinuous function by a continuous estimate. A reason-
able strategy for dealing with edge effects is to consider the frontiers of the
interval as discontinuity points.



A great deal of literature focuses on the parametric problem. References
can be founded in the monograph edited by Müller et al. [28]. In this
paper, our setting is a nonparametric one. We observe independent and
identically distributed (Xi, Yi), i=1, ..., n such that

Yi=m(Xi)+s(Xi) Ei, i=1, ..., n,

where Ei are i.i.d. variables, independent of the Xi with means zero and
variances unity. The regression function m( · ) is smooth but for some
points where jumps in the function itself or in one of its derivatives are
allowed.

Several smoothing approaches were proposed for dealing with disconti-
nuities in this framework. First a semi-parametric method is based on
writing the regression function in the following form

m(x)=m0(x)+C
q

i=1
ci pyi (x)

with m0 a smooth function and pyi (x)=p
(ki)
yi
(x)=(x−yi)

ki
+ is an order-ki

discontinuity function. Then, to create inference about the function m0 and
parameters (yi, ci), i=1, ..., q spline methods (Girard [16], Laurent and
Utreras [27], Shiau [35]) have been used as well as kernel methods
(Eubank and Speckman [10], Antoniadis and Grégoire [1] in the context
of hazard rate functions). Another strategy (Gijbels et al. [21, 22]) is a two-
step procedure: first the observations are smoothed as if the function m
were a continuous one, getting in this way a pilot estimate m̂ and searching
for points maximizing the slope of m̂. The second step consists of a
refinement of the localization by a method based on differences between
left and right averaging. Finally, the most popular approach is probably
the one based on differences between left and right estimates. At any point
y, the right limit m+(y) is estimated using observations located at the right
of point y, and similarly m−(y) is estimated using data located at the left.
Accordingly, an estimate for a possible jump c(y)=m+(y)−m−(y) follows.
Papers of Müller [32], Loader [26], and Wu and Chu [39], to cite only a
few, resort to this latter approach. Müller uses kernel smoothing with left
kernel K+ with support in [−1, 0] and K− defined by K−(x)=K+(−x).
The achieved convergence rate for the estimate of a change point is n−(1+e)

for some e > 0. Wu and Chu give improvements with modified kernels and
using two different bandwidths for estimating location and size parameters.

Our paper is in line with this approach of left and right smoothing. But
we appeal to linear local regression instead of kernel smoothing. An essen-
tial motivation for focusing on this method is the absence of the edge
effects observed with other methods such as the kernel one. In contrast
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with kernel method, the rate of convergence for the bias is the same near
the boundaries as inside the interval. Thus, at least to the extent that we are
concerned with asymptotic properties, linear local regression is likely to
provide better results for change point inference than other smoothing
methods. Note that in his paper, Loader takes advantage of the same idea
but in an essentially different setting. Loader uses a fixed regular design
and supposes that the noise is gaussian with constant variance, while in
contrast we work in an unconstrained setting. More precisely we use
a random design; no particular assumption is imposed on the noise
distribution and the variance is allowed to depend on the location.

Several problems are of interest when abrupt changes are possibly
present in data: detection of (tests for) discontinuities, estimation for the
number of jumps, estimation of the locations and sizes of jumps, and
reconstruction of the function. In this paper we are concerned with the
estimation of the locations and sizes of jumps. This problem is well iden-
tified in the literature (see Müller [32], Loader [26], Wu and Chu [39],
Wang [37], to cite only a few). We focus on the case where one jump is
known to be present in the function. The method can be extended to the
case of more than one jump. Also, although it would require some sub-
stantial work, we think it is possible to carry over the method to the case
where the change point is a derivative (see Section 4 for proposals
concerning both sorts of extension).

Our estimator ŷ is defined as a point where ĉ( · )=m̂+( · )−m̂−( · ) is
maximum (for the sake of simplicity we assume in this Introduction that
c(y) > 0). Here m̂+(t) and m̂−(t) are the estimates of the left and right limits
of m( · ) at point t, obtained by linear local regression with a positive kernel
K+( · ) supported on [−1, 0] and K− defined by K−(x)=K+(−x). A basic
assumption is that K+(0) > 0. This makes the samples of the process ĉ(t)
discontinuous, but we show that it allows us to estimate the jump location
y with rate n−1, while using a kernel such that K+(0)=K+(−1)=0 would
result only in a rate n−1+d for some d > 0 (see [10, 32, 26, 39]). Further-
more the rate n−1 is achieved for any rate of convergence of the bandwidth
hn such that nhn Q., without any other restriction. Our conclusion agrees
with the result given by Loader in his particular setting. The basic tool for
deriving our results is the deviation process Zn(z)=a(n, hn)(ĉ(y+(hn/
(b(n, hn))) z)− ĉ(y)). Our location estimate ŷ can be seen to satisfy ŷ=
arg sup Zn(z) when z lies in [−M, M] forM large enough. We prove that,
when the rescaling and dilating parameters a(n, hn) and b(n, hn) are chosen
in a convenient way, the process Zn(z) converges to a compound Poisson
process with an additional drift, which implies that ŷ is also consistent.

The structure of the paper is as follows. Notation, recalls for local linear
regression, and definitions of right and left estimates are given in Section 2.
We define in Section 3 our procedure for estimating y and provide our
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main results together with numerical experiments. Section 4 is devoted to
numerical experiments and to provide some proposals for possible exten-
sions of our results. Section 5 contains the proof of our central theorem; we
show that the deviation process Zn(z) is asymptotically equivalent to a
process Mn(z) which converges to a compound Poisson process and derive
from this the central result of the paper.

2. THE MODEL AND SOME PRELIMINARIES

This section introduces the model and notations and presents the
assumptions we will deal with in the remainder of the paper.

Let (X1, Y1), ..., (Xn, Yn) be a set of independent and identically distrib-
uted vectors. Assume Xi to be on the interval [0, 1] and that

Yi=m(Xi)+s(Xi) ei, (1)

where the function m( · ) is smooth except for y; that is

m(x)=m0(x)+cI[y, 1](x),

where c > 0, m0( · ) is smooth (more precisely see A2 below), and I[a, b](x)
=1 when x ¥ [a, b] and 0 otherwise. The ei are independent and identically
distributed random variables with zero mean and unit variance and are
independent of the Xi’s.

The functions m( · ) and s( · ) are unknown. A flexible estimation method
does not make any assumption on the forms of these functions. These
forms should be determined completely by the data. In other words, a
nonparametric approach is preferable.

We need the following conditions

(A1) The marginal density f of covariate X is continuous and
bounded away from zero.

(A2) The function m0(x) has both continuous second derivatives. It
follows that the regression function m( · ) and its first and second derivatives
have left and right limits at y.

(A3) The conditional variance s2(x)=Var(Y | X=x) is continuous.
(A4) The jump point y of the regression function is supposed to be

in the interval (0, 1).

Assumptions (A1) and (A3) are in fact unnecessary and could be relaxed.
Our results are stated under (A1) and (A3) only for the sake of the
proofs’ simplicity. Modifications to take into account a possible jump in
f( · ) and/or in s( · ) are rather straightforward.
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In the following, for n=0, 1, 2, we always denote m (n)− (y)=limt q y m (n)(t),
m (n)+ (y)=limt s y m (n)(t), and c (n)(y)=m(n)+ (y)−m

(n)
− (y).

c(y)=m+(y)−m−(y) is the jump size at the change point y of the
regression function. In this paper we study the case c(y) > 0. The case
c(y) < 0 can be treated analogously. Instead of looking for the maximum of
some quantity, we look for its minimum. So all the results of this paper can
be proved in the case where the jump size c(y) is nonpositive.

The local linear regression is known to share the simplicity and consis-
tency of the kernel estimators as Nadaraya–Watson or Gasser–Müller
estimators but overcomes the main problems of those estimators. Espe-
cially, the local linear estimator avoids boundary effects, at least when
convergence rates are concerned. The local linear estimator is based on
local least squares fitting using kernel weights and can be written as a
weighted sum of the response Yi,

m̂(x)=
;n
i=1 wi(x) Yi
;n
i=1 wi(x)

, (2)

where

wi(x)=K 1
x−Xi
hn
2 (S2(x)−(x−Xi) S1(x)), i=1, ..., n, (3)

Sl(x)=C
n

i=1
(x−Xi) l K 1

x−Xi
hn
2 l=0, 1, 2. (4)

For further motivation and study of the local linear estimator, see Fan
and Gijbels [12], Ruppert and Wand [33], Stone [36], and Cleveland [6].
In those aforementioned papers, authors showed that the local linear
estimator has attractive mathematical properties. Particularly, this estimator
is known to have an optimal rate of convergence; see Stone [36]. The
asymptotic bias at boundary points is shown to be of the same order of
magnitude as that of the interior points, whereas the Nadaraya–Watson
and Gasser–Müller estimators both have an asymptotic bias on the order
of O(hn) instead of O(h2n) at boundary points. The fact that the estimator
has no boundary effects is a very appealing property when we deal with the
localization of change points, since those points can be assimilated to
boundary points. Fan [11] shows that local linear estimator has an
important asymptotic minimax property.

Let K+( · ) be a continuous kernel function with support in [−1, 0] and
K−(x)=K+(−x). We will use the following notationK+l=>0−1 xlK+(x) dx,B+=
(K+2 )

2−K+3 K
+
1 , L

+
l =>0−1 x lK2+(x) dx, andV+=>0−1 (K+2 −xK+1 )2 K2+(x) dx.
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Analogous formulas for K−i , B− , L
−
l , and V− follow under changing from

‘‘+’’ to ‘‘− ’’.
We impose a kind of normalization to K+( · ) and K−( · ):

|K2K0−(K1)2|=1. (5)

In fact if K( · ) is any kernel function, K( · )/`|K2K0−(K1)2| satisfies the
constraint (5). For instance, in the experiment shown later on, we use the
kernel given by K+(x)=12`5/19 (1−x2) 1[−1, 0](x).

We define right-sided and left-sided regression estimates for m(t) by
using K+ and K− , respectively, instead of K in (3). Thus m̂+(t) and m̂−(t)
are estimators of m+(t) and m−(t), respectively, and ĉ(t)=m̂+(t)−m̂−(t)
estimates c(t).

Statements in the following will often make use of kernelM+ defined as

M+(x)=(K
+
2 −xK

+
1 ) K+(x).

The similar definition for M− implies that M−(x)=M+(−x) and we set
M(x)=M+(x)−M−(x). The kernel M+ is called the equivalent kernel. It
was first introduced by Lejeune [25].M+ andM− arise in a natural way in
our developments. In the Monte-Carlo simulations we report later on, we
use the normalized kernel defined by

K+(x)=12`5/19 (1−x2) I[−1, 0](x),

for which the equivalent kernelM+ is given by

M+(x)=
4
19 (24+45x)(1−x

2) I[−1, 0](x).

3. THE MAIN RESULTS

As was said in the Introduction, our procedure is based on the behaviour
of the jump estimate process tQ ĉ(t)=m̂+(t)−m̂−(t). It is very natural to
define the estimate of y as a value of t that maximizes ĉ(t) over
o=[hn, 1−hn]:

ŷ=inf{t ¥ o; ĉ(t)=sup
x ¥ o
ĉ(x)}. (6)

We exclude right and left edges of the interval since 0 and 1 are themselves
discontinuous points. To investigate the asymptotic behaviour of ŷ we use a
rescaled-dilated version of the process ĉ(t) around y:

Zn(z)=a(n, hn) 1 ĉ 1y+
hn

b(n, hn)
z2− ĉ(y)2 , z ¥ [−M, M].
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ForM large enough, we readily have ŷ=y+(hn/(b(n, hn)) ẑ, with

ẑ=arg sup
z ¥ [−M, M]

Zn(z).

This idea is quite similar in spirit to the one used by Eddy [9] to estimate
the mode of a distribution.

We list here assumptions needed in the remainder of the paper:

H1. K+(0) > 0 and K+(−1)=0.
H2. 0 < limnQ.

a(n, hn)
b(n, hn)

=L4 <..
H3. 0 < limnQ.

a(n, hn)
nhn
=L5 <..

For asymptotic results, throughout the rest of the paper we always assume
that hn Q 0 and nhn Q.. We always suppose also that assumption H1 is
satisfied. Note that in fact the assumption K+(−1)=0 is unnecessary. This
condition is only set for the sake of simplicity. Using a positive value for
K+(−1) would lead to similar results with more tedious calculations.
Moreover we also denote the following: (1) l1=2L5M+(0), (2) l2=(L4/L5)
fX(y), (3) l3=L4M+(0) fX(y)=l1l2/2.

The key result for our approach is given now.

Theorem 3.1. Assume that hn Q 0, nhn Q., and conditions H1–H3 are
satisfied. Then we have

Zn SZ, on D[−M, M], (7)

where

Z(z)=−
l3

fX(y)
c(y) |z|+

l1

fX(y)
N(z), (8)

withN(z) defined by

N(z)=˛ C
N+z

i=1
(−c(y)−2s(y) e+i ) if z \ 0,

C
N−z

i=1
(−c(y)+2s(y) e−i ) if z < 0.

(9)

The sequences (e+i ) and (e
−
i ) are independent and built with i.i.d. variables

distributed as the model error variable e. N+z and N
−
z are independent
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homogeneous Poisson processes with l2 as parameter and are independent of
the sequences (e+i ) and (e

−
i ).

Thus the limit process is a bilateral compound Poisson process with an
additional drift. It is interesting to notice that the process is asymmetric.
One can think it rather surprising. In fact this asymmetric feature is due to
the jump sign c(y) > 0. The alternative assumption c(y) < 0 would have
changed the sign before 2s(y) e+i in both cases z \ 0 and z < 0.

To get an insight into the behaviour of the process Zn(z), we performed
simulations for the model defined by the regression function

m(x)=4 sin(5x)+3x+I[0.7, 1](x)

with random design points uniformly distributed on [0, 1] and gaussian
noise with standard deviation s=0.5. We have done 20 simulations, each
with n=1000 observations: the curves at left in Fig. 1 are the samples of
zQZn(z) locally around y=0.7. The right part shows the mean of the 20
samples. The bandwidth is hn=0.06,M=10, and the zoom parameters are
set to a(n, hn)=b(n, hn)=nhn, so that (hn/b(n, hn)) z lies in [−0.01, 0.01].
This experimentation provides an interesting light on the theorem. The
jumps and linear drift between jumps are clearly shown and the empirical
mean given is coherent with what is obtained from (8), namely E(Z(z))=
−3fX(y) l3c(y) |z|.

To prove Theorem 3.1, we show the same result for Mn(z) which is
asymptotically equivalent to Zn(z). The proof is rather technical and
lengthy. So we postpone it to Section 5. It relies on the fact that we can
write Mn(z) as the sum of the terms of a row in a triangular array.

This representation allows us to use standard arguments for convergence
to infinitely divisible distributions.

FIG. 1. Twenty samples of the process Zn and their average.
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Corollary 3.1. Assume that H1 is satisfied and that hn Q 0, nhn Q.,
b(n, hn)Q., and limnQ. b(n, hn)/(nhn)=L with L <.. Then

b(n, hn)
hn

(ŷ−y)0D T, (10)

whereT is a R-valued variable defined as

T=arg sup
z

3 − l3

fX(y)
c(y) |z|+

l1

fX(y)
N(z)4 . (11)

Proof of Corollary 3.1. In order for Theorem 3.1 to apply, it is enough
to set a(n, hn)=b(n, hn). Then conditions H2 and H3 are satisfied. Hence
we get the convergence of Zn to Z on D([−M, M]). By use of Whitt’s
result [38] the convergence can be extended to D(R). So we have

sup
z

Zn(z)0
D sup

z
Z(z) and arg sup

z
Zn(z)0

D arg sup
z

Z(z).

Denote by ẑ(n) the point where the process Zn reaches its maximum. By
construction, we have

ŷ=y+
hn

b(n, hn)
ẑ(n). (12)

We deduce that

b(n, hn)
hn

(ŷ−y)0D ẑ=arg sup
z

3 − l3

fX(y)
c(y) |z|+

l1

fX(y)
N(z)4 .

For the proof to be complete, it remains to show that a.s. the values of
T are finite. This is stated by the following lemma.

Lemma 3.1. The process (Z(z)) satisfies:

(a) P[supz ¥ R Z(z) <.]=1.
(b) P[arg supz ¥ R Z(z) <.]=1.

Proof of Lemma 3.1.

(a) Since supz ¥ R Z(z)=max(supz [ 0 Z(z), supz \ 0 Z(z)), we can
concentrate on the domain z \ 0.

For any z \ 0, we have

Z(z)=−
l3

fX(y)
c(y) z+

l1

fX(y)
C
N
+
z

i=1
(−c(y)−2s(y) e+i ).
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Hence, we get

sup
z \ 0

Z(z)=
l1

fX(y)
sup
z \ 0

3 −l2
2
z− C

N
+
z

i=1

11+2s(y)
c(y)

e+i 24 . (13)

Denote by T+1 , T
+
2 , ... the dates of occurrence of the Poisson process

N+
z , T

+
0=0, and E+i =T

+
i+1−T

+
i .

From (13), we see that Z(z) is decreasing between consecutive points of
the process Z(z). Consequently the supremum of Z(z) is reached at the
left edge of a segment [Ti, Ti+1). Hence

sup
z \ 0

Z(z)=sup
j \ 0
{Z(T+j )},

=
l1

fX(y)
sup
j \ 0

3 C
j

i=0
G+i 4 ,

where G+0=0, and for i \ 1, G+i =−(l2/2) E
+
i −(1+(2s(y)/c(y)) e

+
i ).

Consider the random walk (W+
j ) defined by W+

j=; j
i=0 G

+
i . Since

EG+i =−3, it turns out that supi W
+
i is a.s. finite.

(b) Let T=arg supz ¥ R+
Z(z), where R+=R+ 2 {+.}. We have

P[T=+.]=P[-u \ 0; sup
z ¥ [0, u]

Z(z) [ sup
z > u

Z(z)],

=P[-u \ 0; sup
z ¥ [0, u]

Z(z)−Z(u) [ sup
z > u

Z(z)−Z(u)],

=P[-u \ 0; sup
z ¥ [0, u]

−Z1(z) [ sup
z > 0

Z2(z)],

=P[− inf
z \ 0

Z1(z) [ sup
z > 0

Z2(z)],

where Z1(z) and Z2(z) are two independent copies of Z(z).

Now (see, e.g., Feller [14, Chap. XII]), Z1(z)Q −. as zQ+.. Hence
infz \ 0 Z1(z)=−.. It turns out from (a) that

P[T=+.]=P[sup
z > 0

Z2(z) \+.]=0. L (14)

An important by-product of Corollary 3.1 is obtained when plugging
b(n, hn)=nhn in Corollary 3.1. It says that the rate n−1 can be achieved for
any sequence of bandwidths hn such that nhn Q..
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Theorem 3.2. Assume that H1 is satisfied and that hn Q 0, nhn Q.;
then

n(ŷ−y)=OP(1).

We now derive asymptotic normality for ŷ and c(ŷ).

Corollary 3.2. Assume that hn Q 0, nhn Q., and nh
5
n Q 0. Assume

also that E(|e|2+d) <. for some d > 0 and condition H1 is satisfied. Then

`nhn (ĉ(ŷ)− c(y))0
D

N 10, 2s
2(y)
fX(y)

V2+2 .

Proof of Corollary 3.2. We have

`nhn (ĉ(ŷ)− c(y))=`nhn (ĉ(ŷ)− ĉ(y))+`nhn (ĉ(y)− c(y)),

=
`nhn
a(n, hn)

Zn(ẑ(n))+`nhn (ĉ(y)− c(y)).

Hence, choosing the dilating parameter a(n, hn) in such a way that
`nhn/a(n, hn)Q 0, we get

`nhn (ĉ(ŷ)− c(y))=oP(1)+`nhn (ĉ(y)− c(y))0
D

N 10, 2s
2(y)
fX(y)

V2+2 ,

where the normality follows from standard arguments concerning the usual
smooth case. L

When using consistent estimators for fX(y) and s2(y), we obtain the
following corollary

Corollary 3.3. Let f̂X( · ) and ŝ2( · ) be consistent estimators of f( · )
and s2( · ) such as supt ¥ (0, 1) |f̂X(t)−fX(t)|=op(1) and supt ¥ (0, 1) |ŝ2(t)−
s2(t)|=op(1).
The estimator f̂X( · ) is supposed to be nonnegative. Under the same
assumptions as in Corollary 3.2 we have

`nhn
`f̂X(ŷ) (ĉ(ŷ)− c(y))

(2ŝ2(ŷ))1/2
0
L

N(0, V+).

Note that, for instance, estimation of the density fX( · ) can be done by
the usual kernel method, and for the variance function s2( · ) the estimators
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proposed by Müller and Stadmüller [30] are convenient. Notice also that
the convergence conditions laid down on f̂X( · ) and s2( · ) above could be
weakened by making use of the high rate of convergence of ŷ.

4. SIMULATIONS: EXTENSIONS AND RELATED ISSUES

Simulations. Tables I and II provide results of simulations performed
for the following example:

m(x)=4 sin(5x)+3x+I[0.7, 1](x).

Samples of 200 points (xi, yi) were generated for Table I, while we used
500 points for Table II. In both cases, for the estimation of MSE the
experiment is replicated 200 times, thus leading to 200 observations of ŷ
and ĉ(ŷ). In both cases the design points are random and uniformly dis-
tributed on [0, 1], and the standard error for the noise e is s=0.5. In
Tables I and II, B2 stands for the squared bias and V for the variance.
Notice that, as expected, ŷ has a better convergence rate than ĉ(ŷ). Mean
squared error is dominated by the variance part. Comparisons of results
given in Tables I and II seem to indicate a rate as fast as n−2 for the con-
vergence of ŷŒ MSE. It appears that for most hn-values this rate is almost
the same. Figure 2 shows two histograms for the 200 values of ŷn we
obtained in the case of experiments with 200 points (xi, yi). Note that these
distributions were obtained for bandwidths 0.15 and 0.17 and look

TABLE I

n=200

ŷ ĉ(ŷ)

hn B2 V B2 V

0.07 0.0283 0.0528 0.3496 0.3468
0.09 0.0167 0.0435 0.1018 0.1389
0.11 0.0076 0.0329 0.0342 0.0670
0.13 0.0040 0.0287 0.0144 0.0538
0.15 0.0021 0.0223 0.0041 0.0461
0.17 0.0015 0.0223 0.0004 0.0413
0.19 0.0018 0.0249 0.0003 0.0364
0.21 0.0033 0.0294 0.0291 0.0311
0.23 0.0066 0.0337 0.0063 0.0266
0.25 0.0174 0.0389 0.0077 0.0222
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TABLE II

n=500

ŷ ĉ(ŷ)

hn B2 V B2 V

0.07 0.0011 0.0150 0.0033 0.0439
0.09 0.0002 0.0053 0.0003 0.0392
0.11 0.0001 0.0037 0.0000 0.0338
0.13 0.0000 0.0020 0.0008 0.0312
0.15 0.0000 0.0013 0.0029 0.0279
0.17 0.0000 0.0011 0.0070 0.0249
0.19 0.0000 0.0012 0.0143 0.0221
0.21 0.0001 0.0030 0.0259 0.0193
0.23 0.0009 0.0078 0.0402 0.0160
0.25 0.0066 0.0142 0.0489 0.0127

somewhat similar. The histograms for h=0.13 and 0.19 are also not very
different from those we show.

Extensions and related issues. The method developed in this paper
could be generalized in a fairly natural way to nth derivatives of regression
functions. This can be done by using local polynomial regression rather
than L.L.R. More precisely we could adjust locally a polynomial with
degree q \ n by minimizing

C [Yi−(a0+a1(x−Xi)+· · ·+aq(x−Xi)q)]2 K((x−Xi)/h).

FIG. 2. Histograms for values of the estimate ŷn with bandwidths 0.15 (left) and 0.17
(right).
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Let (â0, ..., âq) be the minimizer; then n!ân is a natural estimate of the deriv-
ative m (n)( · ). Thus we can mimic the method developed for the regression
function, that is estimate the jump c (n)(x)=m(n)+ (x)−m

(n)
− (x) by ĉ (n)(x)=

n! (ân,+(x)− ân, −(x)). We can then define the dilated-rescaled version of the
process ĉ (n)(t),

Z (n)
n (z)=a(n, hn) 1 ĉ (n) 1y+

hn
b(n, hn)

z2− ĉ (n)(y)2 ,

and proceed along the lines of this paper. We think that with ad hoc modi-
fications our arguments will work and we conjecture that the rate n−1/(1+2n)

will be achieved for the location estimate. However, although the principle
is clear, the proof requires tedious developments and is very complicated.
This could be the subject of another work.

Note that our procedure makes sense when a change point actually
exists, that is there is a y with c(y) ] 0. When there is no change point, our
procedure still provides an estimate ŷ, but ĉ(ŷ) is not significant and ŷ has
no convergence property. In fact, when the existence of a jump is ques-
tionable, we have first to apply a detection or test procedure. A fairly
natural test can be based on Corollary (4.2) or (4.3). See also [19] for two
procedures for testing for a jump at y or in a neighborhood of y. A global
test for the existence of a jump in [0, 1] can be based on the asymptotic
distribution, under the null hypothesis, of the sup of the process tQ ĉ(t)
with an accurate normalization (see [24]). See also [29] for a related work
when the design is an equally spaced fixed one and the noise variance is
constant.

We can also be concerned with the case where there are p > 1 change
points. When p is known, we only have to look for the locations (ŷ1, ..., ŷp)
of the p highest values of ĉ(t). The first one is searched for in
A1=[h, 1−h], the second one in A2=A1 0[ŷ1−h, ŷ1+h], and so on. Note
that, for n large enough, since hn/b(n, hn)=o(1),Zn(z) involves only
observations in a neighborhood of y. This implies that asymptotically the
processes Z (i)

n (zi)=a(n, hn)(ĉ(yi+(hn/(b(n, hn))) zi)− ĉ(yi)) will be inde-
pendent and that the results of the previous section apply to each discon-
tinuity.

When the number p is unknown, the key point is to have an a.s.
consistent estimate of p. If we have such an estimate, say p̂n, then there
exists a.s. an n0 for which p̂n=p, n \ n0. Thus we are led to the case ‘‘p
known.’’ To get such an estimate p̂n, we adapt a procedure initially
proposed by Yin [42]. See Wu and Chu [39] and Qiu [34] for this type of
approach in the setting of an equally spaced fixed design.
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To estimate the number p, we write the interval [0, 1] as a set of
elementary intervals whose lengths are approximately 1/2hn, namely
[0, 1]=1 [gj, gj+1) with

G=5 1
2hn
6+1, gj=

j
G
, j=1, 2, ..., G−1,

where [x] is the largest integer less than or equal to x.
Let S0 > 0 be a threshold value such that |c(yi)| > S0, i=1, ..., p. The set
J is defined by

J={gj, j=1, ..., G−2, ||ĉ( · )||[gj, gj+1) > S0}, (15)

where ||h( · )||A=supt ¥ A |h(t)|. Now we define

C={C={gj}j=r, ..., r+k | gj ¥ J, j=r, ..., r+k, gr−1 ¨ J and gr+k+1 ¨ J}.

Clearly C defines a set of areas Êi, each of which is obtained by putting
together elementary contiguous intervals where |ĉ( · )| exceeds the threshold
value:

Êi=5min Ci , max Ci+
1
G
6 , Ci ¥ C.

Finally our estimates for p and yi are given by

p̂=#C,

and

ŷ=arg max
t ¥ Êi

|ĉ(t)|, i=1, ..., p̂

We denote Dn=1p
i=1 [yi−hn, yi+hn] (discontinuity set) and list below

the assumptions needed to get a.s. consistency of p̂.

K1. K+( · ) is a continuous function on [−1, 0].
M1. There exists s > 2 such that E |e1 | s <..
M2. fX( · ) is continuous and strictly positive on [0, 1].
M3. The function m( · ) is continuous and bounded on each interval

[yi, yi+1), i=1, ..., p.

We then have the following results.

Theorem 4.1. Suppose that K1, M1–M3 hold true. Suppose that the
bandwidth hn satisfies nbhn Q. for some 0 < b < 1−s−1 and that l > 0
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exists such that ;n hln <.. Suppose also that S0 <mini=1, ..., p |c(yi)|. We
then have

(a) ||ĉ( · )||Dn=o(1), a.s.
(b) inf1 [ i [ p lim infn ||ĉ( · )||] yi −hn, yi+hn[ > S0, a.s.

As a consequence of the above result we get the a.s. consistency of p̂ and
ŷi, i=1, ..., p.

Theorem 4.2. Under the assumptions of Theorem 4.1 we have

(a) p̂Q p, a.s.
(b) -1 [ i [ p, ŷi Q yi, a.s.

Thus, under the assumptions K1, M1–M3, and with S0 <mini=1, ..., p
|c(yi)| we are ensured that a.s. there exists an n0 such that p̂n=p, n \ n0 .
See [24] or [20] for details and proofs of the above results, which will appear
elsewhere.

Bandwidth selection. A relevant point of practical importance is how to
choose the bandwidth. The issue is crucial as the result is highly dependent
on an accurate smoothing parameter. As far as we know, few authors have
tackled this matter.

To start with, we suggest a naive way to proceed, which can be seen as a
rough approach. Usually, near the optimal bandwidth the estimates and
the error are fairly stable. This is the case for the simulations we show
below and generally for other experiments we have not reported here. So a
sensible strategy could be to carry out the estimation procedures with an
extended grid of hn values. A relative stability for the estimates can be
interpreted as the fact that the bandwidth used is a reasonable one.

A strategy more satisfactory from a theoretical point of view could be
based on the accuracy of the estimation of the regression function m( · ) on
the whole interval [0, 1]. We suppose that we have selected an error
measure (ISE, MISE, ASE, MASE, etc.) for the accuracy of any estimate
m̂( · ) on [0, 1] and that an estimate I of this measure, e.g., based on cross-
validation or bootstrap, is available. For each value h of a grid M, we
compute an estimate ŷ(h), derive m̂h the resulting estimate for m on [0, ŷ)
and [ŷ, 1], and finally get the estimate I(h) of the error measure. Then we
chose ĥ as the bandwidth minimizing I(h) when h runs over M. Basically
the idea is that an accurate estimate of y is necessary to get an accurate
estimate of m on the whole interval [0, 1]. The estimate ŷ is likely to be
close to y when m̂ is close to m on [0, 1]. This procedure has been
suggested by several authors in the past ten years. To the best of our
knowledge only Wu and Chu [40] provide a precise implementation of the
procedure and present theoretical results. In their work, they use the kernel
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method and are concerned with the case where the number of discontinuities
is unknown. Although we cannot provide precise theoretical arguments, we
think it likely that the method will work in our setting of L.L.R. smoothing
with random design. As a last point, note that in this outline, since we are
using L.L.R. we do not take care of boundary effects at points 0 and 1.
Nevertheless, to improve the procedure we could also generate pseudo-data
as suggested by Wu and Chu [41] and Hall and Wehrly [23].

Finally we briefly describe the bootstrap method proposed by I. Gijbels
and A. C. Goderniaux [15]. Once again we consider the case where it is
known that m is regular except for one jump located at y. The method is
designed for the two-step estimate defined in [21, 22]; nevertheless we
think that it can be adapted to our setting. Given observations (Xi, Yi),
i=1, ..., n, where 0 [X1 [X2 [ · · · [Xi [Xi+1 [ · · · [Xn [ 1, let i0 be
defined by Xi0 [ y < Xi0+1 and î0(h) the estimate of i0 using bandwidth
h, ŷ=(Xı̂0+Xı̂0+1)/2. Then the unknown function m is estimated on both
the intervals [0, ŷ) and [ŷ, 1] using an independent data driven procedure.
Next the authors get residuals ê=Yi−m̂(Xi), i=1, ..., n, which they
center: ẽi=êi− ē, ē=(1/n); êi. The next step consists in bootstrapping
the centered residuals to get bootstrapped observations Yg

i from which an
îg0 is derived. Repeating this step a large number of times will provide an
estimate of P(î0=i0). The bandwidth ĥ is chosen as the one which gives the
best value for this estimate. The authors provide extensive simulations
which show the procedure works quite well. L

5. PROOF OF THEOREM 3.1

We first give some auxiliary lemma that will prove to be useful through
the rest of the section. The arguments for the proof of this lemma can be
seen as extensions of those leading to the asymptotic expansions of Sl(x)
and ;n

i=1 wi(x). Recall [13] that

Sl(x)=nh
l+1
n f(x)(Kl+oP(1)), (16)

C
n

i=1
wi(x)=n2h

4
nf
2(x)(K2K0−(K1)2)(1+oP(1)), (17)

where the functions oP(1) can be defined in a way independent from x.
Denote

D+l (x)=C
n

i=1
(x−Xi) l K+ 1

x−Xi
hn
2 (yi−m+(y)).
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Lemma 5.1.

(a) Assume that hn Q 0 and nhn Q.; then

D+l (y)=O(nh l+2n )+OP (`nh
2l+1
n ).

(b) Assume that hn Q 0, nhn Q., and hn/b(n, hn)Q 0 is satisfied;
then

S+l (y+hn y)=nh
l+1
n fX(y)(K

+
l +op(1)),

C
n

i=1
w+i (y+hn y)=n

2h4nf
2
X(y)(1+op(1)),

where y=z/b(n, hn).
(c) Under H1 and the conditions given in (b)

S+l (y+hn y)−S
+
l (y)=O 1 nh

l+1
n

b(n, hn)
2+OP 1= nh

2l+1
n

b(n, hn)
2 .

Proof of Lemma 5.1. We only sketch the proof. For more precise
arguments see [18].

Writing down E[D+l (y)] and Var[D+l (y)] we easily get (a). The proof of
(b) follows from a fairly straightforward modification of the one of (16)
and (17). The proof of (c) makes use of the following asymptotic
behaviours:

(1) >−1−1−y (x+y) l K+(x+y) fX(y−hnx) dx=O(1/b2(n, hn)),
(2) >0−y x lK+(x) fX(y−hnx) dx=O(1/b(n, hn)),
(3) >−y−1 [(x+y)lK+(x+y)−xlK+(x)] fX(y−hnx) dx=O(1/b(n, hn)).

L

5.1. An Approximation Result for the Deviation Process

Recall that Zn(z), the rescaled-dilated version of our process ĉ(t) around
y, is defined by:

Zn(z)=a(n, hn) 1 ĉ 1y+
hn

b(n, hn)
z2− ĉ(y)2 , z ¥ [−M, M].

The aim of this section is to show that Zn(z) is asymptotically equivalent to
the sum of the row in a triangular array.

CHANGE POINT ESTIMATION 73



Theorem 5.1. Under the conditions H1, H2, and H3, and with hn Q 0,
nhn Q.

Zn(z)=
(1+oP(1))
fX(y)

(M+
n (z)−M

−
n (z))+oP(1),

=
(1+oP(1))
fX(y)

Mn(z)+oP(1),

whereMn(z)=M+
n (z)−M

−
n (z) and

M ±
n (z)=

a(n, hn)
nhn

C
n

i=1

1M±
1y+hnz/b(n, hn)−Xi

hn
2−M±
1y−Xi
hn
22

× (Yi−m± (y)).

We prove later on in this section that Mn(z) converges to a compound
Poisson process with drift, and of course the same result holds true
for Zn(z).

We first give a basic decomposition for Zn(z) from which the asymptotic
equivalence of Zn(z) and Mn(z) will be derived.

We have

Zn(z)=Z+
n (z)−Z

−
n (z),

where

Z+
n (z)=a(n, hn)(m̂+(y+hnz/b(n, hn))−m̂+(y))

and Z−
n is defined analogously using m̂− .

For convenience, throughout the remainder of the paper we set
y=z/b(n, hn).

Z+
n (z)=a(n, hn) 5

;n
i=1 w

+
i (y+hn y) yi

;n
i=1 w

+
i (y+hn y)

−
;n
i=1 w

+
i (y) yi

;n
i=1 w

+
i (y)
6 ,

=a(n, hn)
;n
i=1 (w

+
i (y+hn y)−w

+
i (y))(yi−m+(y))

;n
i=1 w

+
i (y+hn y)

−a(n, hn) 1
;n
i=1 w

+
i (y)(yi−m+(y))

;n
i=1 w

+
i (y)
2

×1;
n
i=1 w

+
i (y+hn y)−w

+
i (y)

;n
i=1 w

+
i (y+hn y)

2 ,

=An−Bn×Cn (say). (18)
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Now we have

w+i (y+hn y)−w
+
i (y)=[S

+
2 (y+hn y)−S

+
2 (y)] K+1

y−Xi
hn
2

−[S+1 (y+hn y)−S
+
1 (y)](y−Xi) K+ 1

y−Xi
hn
2

+S+2 (y+hn y) 5K+ 1
y+hn y−Xi

hn
2−K+ 1

y−Xi
hn
26

−S+1 (y+hn y) 5(y+hn y−Xi) K+ 1
y+hn y−Xi

hn
2

−(y−Xi) K+1
y−Xi
hn
26 .

and consequently, the numerators of An and Cn can be written as follows:

C
n

i=1
w+i (y+hn y)−w

+
i (y)

=[S+0 (y+hn y)−S
+
2 (y)] S

+
0 (y)−[S

+
1 (y+hn y)−S

+
1 (y)] S

+
1 (y)

+[S+2 (y+hn y)−S
+
0 (y)] S

+
2 (y+hy)−[S

+
1 (y+hn y)−S

+
1 (y)]

×S+1 (y+hn y), (19)

and

C
n

i=1
(w+i (y+hn y)−w

+
i (y))(yi−m+(y))

=[S+2 (y+hn y)−S
+
2 (y)] D

+
0 (y)−[S

+
1 (y+hn y)−S

+
1 (y)] D

+
1 (y)

+[D+0 (y+hn y)−D
+
0 (y)] S

+
2 (y+hn y)

−[D+1 (y+hn y)−D
+
1 (y)] S

+
1 (y+hn y), (20)

Thus, An, Bn, and Cn are written using the quantities S+l (y+hn y),
S+l (y+hn y)−S

+
l (y), and D+l (y) for which we gave asymptotic behaviour in

Lemma 5.1.
The following lemma gives the behaviours of An, Bn, and Cn defined

in (18).

Lemma 5.2. Suppose that hn Q 0, nhn Q., and hn/b(n, hn)Q 0 when
nQ., and H1 is satisfied; then

(a)

;n
i=1 w

+
i (y)(yi−m+(y))

;n
i=1 w

+
i (y)

=OP 1h2n+
1

`nhn
2 .
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(b)

;n
i=1 w

+
i (y+hn y)−w

+
i (y)

;n
i=1 w

+
i (y+hn y)

=OP 1
1

b(n, hn)
+

1

`nhnb(n, hn)
2 .

(c)

a(n, hn)
;n
i=1 (w

+
i (y+hn y)−w

+
i (y))(yi−m+(y))

;n
i=1 w

+
i (y+hn y)

=
1+oP(1)
fX(y)

M+
n (z)+OP 15

a(n, hn)
b(n, hn)

+
a(n, hn)

`nhnb(n, hn)
65hn+

1

`nhn
62 ,

with M+
n (z)=

a(n, hn)
nhn

;n
i=1 (M+ (

y+hn y−Xi
hn
)−M+ (

y−Xi
hn
))(Yi−m+(y)) and we

use y for the rescaled z variable; i.e., y=z/b(n, hn).

Proof of Lemma 5.2. Assertion (a) follows from standard arguments
similar to those needed for the proof of the standard result giving the
asymptotic behaviour of the RLL estimate conditional MSE in the smooth
case. Part (b) follows from (19) and the second assertion in (b) of
Lemma 5.1. The proof of part (c) needs to notice the following equality

[D+0 (y+hn y)−D
+
0 (y)] K

+
2 −
1
hn
[D+1 (y+hn y)−D

+
1 (y)] K

+
1=M+

n (z).

See [18] for more details. L

5.2. Proof of Theorem 3.1
We first show that Mn(z) converges weakly to a bilateral compound

Poisson process. To do that, we proceed as follows: (1) we prove the
2-dimensional convergence of the process Mn(z); (2) we show that the
sequence of processes (Mn(z)) is tight. To prove the 2-dimensional
convergence, according to the Cramer–Wold device, we need to show that
for any (a, b) and for each pair (z1, z2) ¥ [−M, M]×[−M, M], aMn(z1)+
bMn(z2) have an asymptotic distribution.

As a preliminary remark, observe that Mn(z) is the cumulative sum of
the terms of the same row of a triangular array. Indeed

Mn(z)=M+
n (z)−M

−
n (z),

where

M ±
n (z)=

a(n, hn)
nhn

C
n

i=1

1M±
1y+hn y−Xi

hn
2−M±
1y−Xi
hn
22 (Yi−m± (y))

=C
n

i=1
M ±
i (z). (21)
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Consequently

Mn(z)=C
n

i=1
(M+

i (z)−M
−
i (z))=C

n

i=1
Mi(z), (22)

aMn(z1)+bMn(z2)=C
n

i=1
(aMi(z1)+bMi(z2)), (23)

where we have denoted Mi(z)=M
+
i (z)−M

−
i (z). In fact the variables

Mi(z), M
+
i (z), and M−

i (z) depend on n, but to simplify notation we omit
the index n. Let

Tni=aMi(z1)+bMi(z2).

The proof of the convergence of ;n
i=1 T

n
i relies upon the result of conver-

gence of Gnedenko [17] to infinitely divisible distributions which we recall
below:

Theorem 5.2 (Gnedenko [17]). Let Cn(u)=;n
i=1 >u−. x2 dF̃ni(x) where

F̃ni( · ) is the cdf of T̃
n
i=T

n
i −E(T

n
i ). Assume that the array (T

n
i ) satisfies the

following condition:

-E > 0, sup
1 [ i [ n

P(|T̃ni | > E)Q 0 (nQ.).

In order that the distribution laws of the sums ;n
i=1 T̃

n
i converge to a limit,

and the variance of these sums converges to the variance of the limit law, it is
necessary and sufficient that there exists a nondecreasing function C( · ) such
that Cn(u) converges weakly to C(u). The logarithm of the characteristic
function of the limit law, f( · ), is given by Kolmogorov’s formula

log f(t)=itc+F (exp(itu)−1−itu)
1
u2
C(du),

where c is chosen according to the formula

c−E 1 C
n

i=1
Tni 2=o(1).

Let us introduce the following notation:

(1) g± (x, z)=M± (x+y)−M± (x)=M± (x+
z

b(n, hn)
)−M± (x),

(2) g ±1 (x, z)=g± (x, z)(m(y−xhn) −m± (y)), g1(x, z)=g
+
1 (x, z)

−g−1 (x, z),
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(3) g ±2 (x, z)=g± (x, z)(m(y−xhn)−m± (y)+s(y−xhn) e), g2(x, z)
=g+2 (x, z)−g

−
2 (x, z),

(4) An=;n
i=1 E[T

n
i ],

(5) Cn(u)=;n
i=1 E [(T

n
i −E(T

n
i ))

2 I{Tni −E(T
n
i ) [ u}
],

where IA( · ) is the indicator function of the set A.
Elementary calculations provide

An=a(n, hn) F (ag1(x, z1)+bg1(x, z2)) fX(y−xhn) dx,

Cn(u)=
a(n, hn)
nhn

F E 51ag2(x, z1)+bg2(x, z2)−
hn

a(n, hn)
An 2

2

× I{(a(n, hn))/(nhn)(ag2(x, z1)+bg2(x, z2))−1/n An [ u}6 fX(y−xhn) dx.

Under the conditions H1–H3 and hn Q 0, we can show:

(a) If x < −y < 0 or x < 0 < −y or −y < 0 < x or 0 < −y < x,
(1) g1(x, z) fX(y−xhn)=O ( hn

b(n, hn)
),

(2) g2(x, z)−
hn

a(n, hn)
An=OP (

1
b(n, hn)

).
(b) If −y < x < 0 or 0 < x < −y,
(1) g1(x, z) fX(y−xhn)=−c(y) fX(y) M+(0)+o(1),
(2) g2(x, z) −

hn
a(n, hn)

An=(−c(y) − 2 sign(z) s(y) e) M+(0)
+oP(1).

Therefore

An=−
a(n, hn)
b(n, hn)

c(y) fX(y) M+(0)(a |z1 |+b |z2 |)+o 1
a(n, hn)
b(n, hn)
2 .

We deduce

Lemma 5.3. Under the conditions H1–H3, hn Q 0 and nhn Q., we have

(a) An Q A=−L4c(y) fX(y) M+(0)(a |z1 |+b |z2 |),
(b) Cn(u)Q C(u),

where

(1) If 0[ z1 [ z2 then C(u)=4L4L5M
2
+(0) fX(y)[z1(a+b)

2 n+a+b(u)+
(z2−z1) b2n

+
b (u)],

(2) if z2 [ z1 [ 0 then C(u)=4L4L5M
2
+(0) fX(y)[−z1(a+b)

2 n−a+b(u)
+(z1−z2) b2n

−
b (u)],
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(3) if z1 [ 0 [ z2 then C(u)=4L4L5M
2
+(0) fX(y)[−z1a

2n−a (u)+
z2b2n

+
b (u)],

with

n ±a (u)=E[(−c(y) + 2s(y) e)
2 I{2L5aM+(0)(−c(y)+s(y) e) [ u}].

We also have

sup
1 [ i [ n

P[|aMi(z1)+bMi(z2)−E[aMi(z1)+bMi(z2)]| \ e]

=P[|aM1(z1)+bM1(z2)−E[aM1(z1)+bM1(z2)]| \ e],

[
E[aM1(z1)+bM1(z2)−E[aM1(z1)+bM1(z2)])2]

E2
,

[
cn(.)
nE2

Q 0 (nQ.).

Hence this yields:

Lemma 5.4. Under the conditions H1, H2, and H3 and for any E > 0, we
have

sup
1 [ i [ n

P[|aMi(z1)+bMi(z2)−E[aMi(z1)+bMi(z2)]| \ E]Q 0,

as nQ..

Denote t ±=−c(y) + 2s(y) e, and recall that l1=2L5M+(0), l2=
(L4/L5) fX(y), and l3=L4M+(0) fX(y)=l1l2/2.

We have

(a) If 0 [ z1 [ z2, then dC(u)/u2=l2[z1dFl1(a+b) t+(u)+(z2−z1)
dFl1bt+(u)].

(b) If z2 [ z1 [ 0, then dC(u)/u2=l2[z1dFl1(a+b) t − (u)+(z1−z2)
dFl1bt − (u)].

(c) If z1 [ 0 [ z2, then dC(u)/u2=l2[z1dFl1at − (u)+z2dFl1bt+(u)],
where FX( · ) is the cdf of X.

According to Gnedenko [17], Lemmas 5.3 and 5.4 prove that aMn(z1)+
bMn(z2) has an asymptotic distribution. The logarithm of the characteristic
function of the limit law is given by Kolmogorov’s formula of (see
Theorem 5.2) with constant equals to A and the function C(u) is defined as
in Lemma 5.3.
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Note f( · ) the characteristic function of the limit law and fX( · ) X ’s one.
From Lemma 5.3, it follows:

(a) If 0 [ z1 [ z2 , then f(t)=exp[− il3c(y)(a |z1 |+b |z2 |) t]×
exp[l2z1(fl1(a+b) t+(t)−1)]× exp[l2(z2−z1)(fl1bt+(t)−1)].

(b) If z2 [ z1 [ 0, then f(t)=exp[− il3c(y)(a |z1 |+b |z2 |) t]×
exp[−l2z1(fl1(a+b) t − (t)−1)]× exp[l2(z1−z2)(fl1bt − (t)−1)].

(c) If z1 [ 0 [ z2 , then f(t)=exp[− il3c(y)(a |z1 |+b |z2 |) t]×
exp[−l2z1(fl1at − (t)−1)]× exp[l2z2(fl1bt+(t)−1)].

Hence we have proved the finite-dimensional convergence, under the
conditions H1, H2, and H3, of the process Mn to the bilateral compound
Poisson process M defined as

M(z)=−l3c(y) |z|+l1N(z),

where

N(z)=˛
0 if z=0,

C
N+z

i=1
− c(y)−2s(y) e+i if z > 0,

C
N−z

i=1
− c(y)+2s(y) e−i if z < 0.

(24)

The sequences (e+i ) and (e−i ) are independent and built with i.i.d. variables
distributed as the model error variable e. N+z and N−z are independent
homogeneous Poisson processes with l2 as parameter and are independent
of the sequences (e+i ) and (e−i ).

We verify easily

(i) E[M(z)]=−3l3c(y) |z|,
(ii) Cov(M(z1),M(z2))=l

2
1l2(c

2(y)+s2(y))(min(|z1 |, |z2 |) I{z1z2 > 0}).

Since

Zn(z)=
1+oP(1)
fX(y)

Mn(z),

then

Zn(z)SZ(z)=−
l3

fX(y)
c(y) |z|+

l1

fX(y)
N(z).
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Lemma 5.5. Under the conditions H1, H2, and H3, the sequence of the
process (Mn) is tight.

Proof of Lemma 5.5. We only sketch the proof. The reader is refered to
[18] or [24] for more precise arguments. Under assumptions H1, H2, and
H3, the process Zn(z) is an element of D[−M,M]. To show that sequence
of the process (Mn(z)) is tight, it suffices (see Billingsley [3]) to check that
for any z1 [ z [ z2:

E[|Mn(z2)−Mn(z)| |Mn(z1)−Mn(z)|] [ l(z2−z1)2.

Basically, the result will follow from the three following inequalities.

E[|M ±
n (z2)−M

±
n (z)| |M

±
n (z1)−M

±
n (z)|]

[ nE[|M ±
1 (z2)−M

±
1 (z)| |M

±
1 (z1)−M

±
1 (z)|]

+n(n−1) E[|M ±
1 (z2)−M

±
1 (z)|]×E[|M

±
1 (z1)−M

±
1 (z)|].

E[|M ±
1 (z2)−M

±
1 (z)| |M

±
1 (z1)−M

±
1 (z)|] [ c2

a2(n, hn)
n2hnb2(n, hn)

|z2−z| |z1−z|,

E[|M ±
1 (z1)−M

±
1 (z)|] [ c3

a(n, hn)
nb(n, hn)

|z1−z|. L

Finally, by using the finite-dimensional convergence and the tightness of
the process Mn, we establish the weak convergence of the process Mn to a
limit process M.
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