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Abstract

In the paper we prove rates of strong convergence of M-estimators for the parameters in a

general nonlinear autoregressive model. In the proofs we utilize a variational principle from

stochastic optimization theory which was proved by Shapiro (Ann. Oper. Res. 30 (1991) 169).

The application of the general theory is illustrated in the case of continuous threshold models.
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1. Introduction

The goal of this paper is to prove rates of strong convergence of M-estimators in
stationary autoregressive models with an autoregression function which is not
necessarily smooth but Lipschitz-continuous. Here we treat least squares estimators
as well as robust estimators (M-estimators). We endeavour after giving statements
with mild assumptions which are easy to verify and allow an immediate application.
Section 2 contains the main results of the paper which are proved in Section 4.

Assuming the differentiability of the autoregression function with respect to the
parameters (except for a set of measure zero which may depend on the parameters),
we prove that the rate of strong convergence of the estimator coincides with that of
the law of the iterated logarithm. Moreover, we obtain the convergence rate

Oððln n=nÞ1=2Þ of the estimator if the autoregression function is assumed to satisfy
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only a Lipschitz-condition. The author is not aware of literature in which these
properties are proved in connection with autoregressive models. In the proofs of our
results, we employ a variational principle from stochastic optimization theory which
was proved by Shapiro [31]. We claim that our approach may be applied to other
problems of estimation theory.
The classical theory of least squares estimators and maximum-likelihood

estimators of nonlinear smooth autoregressive models is presented in [10,15]. In
the situation of linear autoregressive models, Koul and Zhu [17] obtained results
which are similar to ours. These authors also established Bahadur–Kiefer
representation for M-estimators. Asymptotic normality of M-estimators in auto-
regressive models was studied by Bustos [3] in the linear case, and by Koul [16] in the
nonlinear case. Lai [18] derived a central limit theorem for least squares estimators in
regression models (including autoregressive models) where the residuals form a
martingale difference. Asymptotic normality and consistency of least squares
estimators in ARMA-models was proved in [11], see also [8]. Tj^stheim [33]
considered a general type estimator (including the M-estimator) in nonlinear time
series models and showed asymptotic normality of it. In their monograph Pötscher
and Prucha [27] proved consistency and asymptotic normality of estimators for
parameters of time series models in a general framework.
Section 3 illustrates how to apply the main results of Section 2 to continuous

threshold models having relevance in applications. We extend the results of
Petruccelli [24] and show that least squares estimators have the strong convergence
rate of the law of the iterated logarithm.
It should be mentioned that a lot of authors examined nonparametric estimators

in autoregressive models, cf. [9,20,23]. Moreover, there is an extensive literature
about the performance of least squares estimators in nonlinear regression models.
We refer to earlier papers by Jennrich [14], Malinvaud [22] and Wu [37] as well as to
the more recent paper by Richardson and Bhattacharyya [29] and the monograph by
Prakasa Rao [28]. Concerning M-estimators, some references are the classical
monograph by Huber [12] and the paper by Yohai and Maronna [38]. More recent
accounts are due to Liese and Vajda [21], Arcones [2] and Van de Geer [36].

2. Main results

In this paper we consider the nonlinear autoregressive model. More precisely, let
fXtgt¼1;2;y be a strictly stationary sequence of random variables fulfilling

Xtþ1 ¼ gðXt;y;Xt�pþ1 j y0Þ þ etþ1 ðt ¼ p; p þ 1;yÞ; ð2:1Þ

where fetgt¼pþ1;pþ2;y is a sequence of independent random variables which are

independent of X1;y;Xp (cf. for example [35, Chapter 3]). y0AYCRq is the vector

of the true parameters of the model. Let Y be a bounded and closed set where y0 is
an inner point of Y: Assume that g :Rp 	Y-R is a measurable function such that
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y/gðx j yÞ is continuous for p-almost all x; where p is the distribution of X̃t :¼
ðXt;y;Xt�pþ1Þ?:

In this section the asymptotic performance of M-estimators #yn of the parameters

in model (2.1) is studied. Let us define the estimator #yn as a global minimizer:

#ynA arg min
yAY

Xn�1
t¼p

rðXtþ1 � gðX̃t j yÞÞ: ð2:2Þ

The continuity assumption on g ensures the existence of #yn with probability 1. Least

squares estimators $yn represent a special case of #yn:

$ynA arg min
yAY

Xn�1
t¼p

ðXtþ1 � gðX̃t j yÞÞ2: ð2:3Þ

We assume that r is a real function which satisfies a nonuniform Lipschitz-condition

jrðxÞ � rðyÞjpLrðjxjt þ jyjt þ 1Þjx � yj 8x; yAR ð2:4Þ

with some tX0: This Lipschitz condition is fulfilled in the case rðxÞ ¼ x2 ðt ¼ 1Þ as
well as in the case rðxÞ ¼ jxjp; 1ppo2 ðt ¼ p � 1Þ: Let

FðyÞ ¼ ErðXtþ1 � gðX̃t j yÞÞ:

For proving convergence rates, we need a theorem about consistency.

Theorem 2.1. Suppose that fXtg is ergodic,

E sup
yAY

jgðX̃t j yÞjtþ1oþN; Ejetjtþ1oþN ð2:5Þ

and

FðyÞ4Fðy0Þ for all yAY; yay0: ð2:6Þ

Then limn-N
#yn ¼ y0 a.s.

This theorem follows immediately from the uniform strong law of large numbers
given in Lemma A2(b) of Pötscher and Prucha [26], and from Lemma 3.1 (including
remarks on p. 16) of the monograph by Pötscher and Prucha [27]. Obviously,

Eðrðet þ aÞÞ4Eðrðetþ1ÞÞ a:s: for all aa0 ð2:7Þ

and

PfgðX̃t j y0Þ � gðX̃t j yÞa0g40 for all yAY; yay0 ð2:8Þ

imply condition (2.6).

Note that fX̃tg is a homogeneous Markov chain, the so-called associated Markov

chain. We suppose that the density of X̃t exists and use the following assumptions:
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Condition L. Inequality (2.4) and

jgðx j y1Þ � gðx j y2ÞjpLgðjjxjjz þ 1Þjjy1 � y2jj 8xARp; y1; y2AY;

EjetjgoþN; EjjX̃tjjgoþN with zA½0; 1�; g42ðtþ 1Þ and Lg40:

Condition L0. (i) Condition L is satisfied and
(ii) r0 exists on R;

jr0ðx1Þ � r0ðx2ÞjpLr0 ðjx1jx þ jx2jx þ 1Þjx1 � x2j 8x1; x2AR:

(iii) gðx j yÞ is differentiable w.r.t. y for all yAY and all xARp
\A; A :¼

fxARp: (j : z?j x ¼ hjðy0Þg where z1;y; zJARp
\f0g are some vectors and

h1;y; hJ :Y-R some functions such that jhjðy1Þ � hjðy2ÞjpLhjjy1 � y2jj 8y1;
y2AY; j ¼ 1;y; J:
(iv) There is a real number sAð0; 1� such that

@

@yi

gðx j y1Þ �
@

@yi

gðx j y2Þ
����

����pLg0 ðjjxjjz þ 1Þjjy1 � y2jjs ð2:9Þ

(z as in condition L) for all xARp
\A and all y1; y2AY with

z?j xahjðy1 þ cðy2 � y1ÞÞ 8j;cA½0; 1�:
(v) Moreover, EjetjgoþN; EjjX̃tjjgoþN with g42ðxþ 2Þ; xA½0; 1�:

Lh;Lg0 ;Lr040 are constants.

Condition A. There is a neighbourhood V of y0 such that

FðyÞXFðy0Þ þ ajjy� y0jj2 8yAV ; ð2:10Þ

where a40 is a constant.

Condition (2.9) is fulfilled if for each xARp; there exist second-order partial

derivatives of gðx j :Þ on the set fy: z?j xahjðyÞ 8jg and the absolute values of these

derivatives are bounded by const � ðjjxjjz þ 1Þ: Condition A is very similar to the
second-order growth condition (Assumption A) of Shapiro [31]. If F is differentiable
and strongly convex in a convex neighbourhood of y0; and if Y is convex, then (2.10)
is satisfied [32, p. 102]. Furthermore, we have the following lemma which contains
sufficient conditions for A:

Lemma 2.1. For almost all xARp (w.r.t. Lebesgue-measure), let the gradient vector

rgðx j yÞ of g w.r.t. y exist for y in a neighbourhood of y0 and be continuous at y0:
Suppose that the second-order partial derivatives of F exist in a neighbourhood of y0
and are continuous at y0: Assume that (2.8), condition L and

Pfv?rgðX̃t j y0Þa0g40 for any vARq; va0 ð2:11Þ

are fulfilled, and one of the following assumptions is satisfied:

(i) either Eet ¼ 0 and rðxÞ ¼ x2 or
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(ii) med et ¼ 0; rðxÞ ¼ jxj and et has a bounded density h on R with hð0Þ40 or

(iii) (2.7) is fulfilled, r has a second derivative on R and Er00ðetÞ40:
Then condition A and (2.6) hold true.

Next the main results are provided. For the definition of geometric ergodicity, we
refer to Tj^stheim [34].

Theorem 2.2. Assume that conditions A; L and (2.6) are satisfied. Suppose that fX̃tg
is geometrically ergodic. Then

jj#yn � y0jj ¼ O

ffiffiffiffiffiffiffiffi
ln n

n

r !
a:s:

Theorem 2.3. Suppose that the assumptions of Theorem 2.2 and condition L0 are

satisfied. Let the density of X̃t be bounded. Then

jj#yn � y0jjpC0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln lnðnÞ

n

r
a:s: for nXn0ðoÞ

with a constant C040:

In these two theorems (2.6) and condition A represent the global and the local
assumptions about minimizing properties of F; respectively. Theorem 2.3 states that

the estimator #yn of (2.2) tends to the true parameter vector y0 at the rate
corresponding to the law of the iterated logarithm. Here we do not assume the
existence of second-order derivatives of g:

Sufficient conditions for geometric ergodicity of fX̃tg can be found in papers by
Tj^stheim [34], by Ango Nze [1] and by Masry and Tj^stheim [23]. Remember that
stationary geometrically ergodic Markov chains are absolutely regular with b-mixing
coefficients which decay to zero exponentially fast. This fact is utilized in the proofs
in order to obtain an inequality of Bernstein type.

3. Threshold models

Let fekg be a sequence of i.i.d. random variables with Eek ¼ 0: In this section the
continuous SETAR(p; l; dÞ-model

Xt ¼
a0 þ

Pp
i¼1 aiXt�i þ et if Xt�dAR1;

a0 þ
Pp

i¼1 aiXt�i þ
Pj

k¼2 bkðXt�d � rk�1Þ þ et if Xt�dARj; j ¼ 2;y; l

(
ð3:1Þ

ðt ¼ p; p þ 1;yÞ is considered where r1or2o?orl�1 are the thresholds,
and R1;y;Rl are the regions of the different process regimes. These regions
are defined by r0 ¼ �N;Ri ¼ ðri�1; ri� for iol; Rl ¼ ðrl�1;NÞ: The parameter

vector of the model is given by y0 ¼ ða0;y; ap; b2;y; bl ; r1;y; rl�1Þ?AYCRq;
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y ¼ ð %a0;y; %rl�1Þ?AY; q ¼ p þ 2l � 1: Therefore

gðy j yÞ ¼ %a0 þ
Xp

i¼1
%aiyi þ

Xl

k¼2

%bkðyd � %rk�1Þ1ðyd4%rk�1Þ ðyAYÞ;

where 1ðy4aÞ ¼ 1 if y4a; 1ðy4aÞ ¼ 0 otherwise. Model (3.1) is a special case of
SETAR-models described in [35]. In contrast to Chan [4], the delay parameter d is
fixed and not a component of y:
The aim of this section is to give the convergence rate of least squares estimators $yn

defined in (2.3). Asymptotic normality of maximum likelihood estimators in a special
threshold model is shown in [13]. Chan [4] proved that the least squares estimator for
the threshold in a discontinuous threshold model has a faster convergence rate than
the usual one. The paper by Pham et al. [25] deals with strong convergence of least
squares estimators in threshold models including the case of a nonergodic time series.
A further approach to overcome the difficulties arising from nondifferentiability of g

at some points in threshold models is described in the paper by Chan and Tong [6]
where smooth threshold models (STAR-models) are considered.
We assume that fXtg is stationary and geometrically ergodic. In the case p ¼ 1; the

paper by Chan et al. [5] contains sufficient conditions for geometric ergodicity. The
following condition is used in the result of this section.

Condition T. Suppose that et has the density h and the density f of Xt is continuous
and has a support including the interval ½rmin � Z; rmax þ Z�; Z40 where rmin ¼
minf%r1: yAYg; rmax ¼ maxf%rl�1: yAYg: There is some e40 such that %rk�1p%rk � e
for all yAY and k ¼ 2;y; l:

Note that under Condition T; Condition L0 is satisfied for least squares
estimators where

hjðyÞ ¼ ypþlþj; zj ¼ ð0;y; 1d ; 0;y; 0Þ?ARp ðj ¼ 1;y; l � 1Þ;

A ¼ fyARp: (j: yd ¼ rjg;

rgðy j yÞ ¼ ð1; y1;y; yp; ðyd � %r1Þ1ðyd4%r1Þ;y; ðyd � %rl�1Þ1ðyd4%rl�1Þ;

� %b21ðyd4%r1Þ;y;� %bl1ðyd4%rl�1ÞÞ? for yeA:

Hence (2.8) and (2.11) are fulfilled. Now we are in a position to formulate the result
of this section. The following statement is a direct consequence of Lemma 2.1 and
Theorem 2.3.

Corollary 3.1. Assume that Condition T is satisfied and EjetjgoN; EjjX̃tjjgoN with

g44: Then

jj$yn � y0jjpC1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln lnðnÞ

n

r
a:s: for nX %n1ðoÞ

with a constant C140:
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In the case of continuous threshold models, this statement extends Theorem 1 of
Chan [4]. Considering the smooth version of SETAR models (STAR-models), the
law of the iterated logarithm and a statement on asymptotic normality is given in [6].
The convergence rate for M-estimators can be derived in a similar way.

4. Proofs

Throughout this section we assume that the time series fXtg follows model (2.1),

is stationary and geometrically ergodic. Suppose that the density of X̃t exists.

Moreover, let epþ1; epþ2;y be i.i.d. random variables not depending on X̃p: We

denote the Hessian matrix of F at y by HðyÞ:

Proof of Lemma 2.1. (a) Assertion: Hðy0Þ is positive definite. Obviously,
rFðy0Þ ¼ 0:

Case (i): Note that

rFðyÞ ¼ �2EðgðX̃t j y0Þ � gðX̃t j yÞÞrgðX̃t j yÞ:

By means of the Lipschitz-condition on g and the dominated convergence theorem,
we obtain

@2

@yj@yk

Fðy0Þ ¼ � 2 lim
Z-0

Z�1EðgðX̃t j y0Þ � gðX̃t j *ykÞÞ
@

@yj

gðX̃t j *ykÞ

¼ 2E
@

@yk

gðX̃t j y0Þ
@

@yj

gðX̃t j y0Þ ðj; k ¼ 1;y; qÞ

with *yk ¼ ðy01;y; y0k þ Z;y; y0qÞ?; y0 ¼ ðy01;y; y0qÞ?: Consequently, by (2.11),

Hðy0Þ ¼ 2ErgðX̃t j y0ÞrgðX̃t j y0Þ?

is positive definite.
Case (ii): Here we obtain

rFðyÞ ¼ � Eðsgnðetþ1 þ gðX̃t j y0Þ � gðX̃t j yÞÞrgðX̃t j yÞÞ

¼ Eðð�1þ 2FeðgðX̃t j yÞ � gðX̃t j y0ÞÞÞrgðX̃t j yÞÞ;

where Fe is the distribution function of et: Since medðetÞ ¼ 0; Feð0Þ ¼ 0:5; we have

@2

@yj@yk

Fðy0Þ ¼ lim
Z-0

Z�1E ð�1þ 2FeðgðX̃t j *ykÞ � gðX̃t j y0ÞÞÞ
@

@yj

gðX̃t j *ykÞ
	 


¼ 2hð0ÞE @

@yk

gðX̃t j y0Þ
@

@yj

gðX̃t j y0Þ ðj; k ¼ 1;y; qÞ

with *yk as above. This implies assertion (a).
Case (iii): We deduce

rFðyÞ ¼ �Er0ðetþ1 þ gðX̃t j y0Þ � gðX̃t j yÞÞrgðX̃t j yÞ:
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Since Er0ðetÞ ¼ 0; we have

@2

@yj@yk

Fðy0Þ ¼ � lim
Z-0

Z�1E r0ðetþ1 þ gðX̃t j y0Þ � gðX̃t j *ykÞÞ
@

@yj

gðX̃t j *ykÞ
	 


¼ � lim
Z-0

Z�1Eðr0ðetþ1 þ gðX̃t j y0Þ � gðX̃t j *ykÞÞ � r0ðetþ1ÞÞ

	 @

@yj

gðX̃t j *ykÞ

¼ Er00ðetþ1ÞE
@

@yk

gðX̃t j y0Þ
@

@yj

gðX̃t j y0Þ ðj; k ¼ 1;y; qÞ

with *yk as above. This proves assertion (a).
(b) Proof of condition A: An application of Taylor’s formula leads to

FðyÞ ¼ Fðy0Þ þ ðy� y0ÞT
HðynÞðy� y0Þ;

yn ¼ y0 þ cðy� y0Þ; 0oco1:

We choose the neighborhood VCY of y0 such that HðyÞ is positive definite for yAV ;
and a40 is a lower bound for the smallest eigenvalues of HðyÞ for yAV : This is
possible since the elements of H are continuous at y0: Consequently,

ðy� y0ÞT
HðynÞðy� y0ÞXajjy� y0jj2:

This completes the proof. &

We suppose that conditions A; L and (2.6) are satisfied. Define

FnðyÞ :¼
1

n � p

Xn�1
t¼p

rðXtþ1 � gðX̃t j yÞÞ ðyAYÞ

such that

FðyÞ ¼ EFnðyÞ ¼ ErðXtþ1 � gðX̃t j yÞÞ ðyAYÞ:

Fn denotes the empirical distribution function of the sample ðXpþ1; X̃pÞ;
ðXpþ2; X̃pþ1Þ;y; ðXn; X̃n�1Þ: Let F be the distribution function of ðXiþ1; X̃iÞ;
and

dðyÞ ¼ FnðyÞ � FðyÞ ¼
Z
Rpþ1

rðx � gðy j yÞÞ dðFnðx; yÞ � Fðx; yÞÞ:

Now we provide a variational principle which was proved by Shapiro.

Theorem 4.1 (Shapiro [31, Lemma 4.1]). Assume that #ynAV and condition A is

satisfied. Then

jj#yn � y0jjp
1

a
sup

jdðyÞ � dðy0Þj
jjy� y0jj

: yAY-V ; yay0

� 

:
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This theorem is the crucial statement for the following proofs. Our next task is to
prove the following lemma:

Lemma 4.1.

sup
yAŨ

jdðyÞ � dðy0Þj
jjy� y0jj

¼ Oðn�1=2 ffiffiffiffiffiffiffiffi
ln n

p
Þ a:s:;

where Ũ :¼ fyAY: jjy� y0jjXn�1g:

Let fakg be the a-mixing coefficients of the sequence fX̆t; t ¼ p þ 1; p þ 2;yg
where X̆t :¼ ðXt;Xt�1;y;Xt�pÞ?: Note that geometric ergodicity of fX̃kg implies

ak ¼ OðrkÞ; rAð0; 1Þ (see [7, pp. 88,89]). For the proof of Lemma 4.1, we need an
inequality of Bernstein-type and some further lemmas.

Proposition 4.2. Let fZigi¼1;2;y be a stationary a-mixing sequence of real

r.v. with mixing coefficients faZ
j g: Assume that EZ1 ¼ 0; EjZ1j*goþN andP

N

i¼1 ðaZ
i Þ

1�2=*goN for some *g42: Then, for n;NAN; 0oNpn=2; for S; e40;

P
Xn

i¼1
Zi

�����
�����I max

i¼1;y;n
jZijpS

	 

4e

( )

p4 exp �e2

16
2ndN þ 1

3
eSN

	 
�1
þ
Xn

i¼1
PfjZij4Sg

( )
þ 32

S

e
naZ

N

and dN ¼ ðEjZ1j*gÞ2=*gð1þ 20
P

N

i¼1 ðaZ
i Þ

1�2=*gÞ:

Proof. The proposition follows immediately from Proposition 5.1 of Liebscher [20]
and Lemma 2.2 of Liebscher [19]. &

Lemma 4.2. For each n and yA %VCY; let WnpðyÞ;Wn;pþ1ðyÞ;y be a stationary a-
mixing sequence of random variables with mixing coefficients which are bounded by the

coefficients fakg of fX̆tg: Moreover, let EWntðyÞ ¼ 0 for all yA %V; t ¼ p; p þ 1;y

Assume that there is a stationary sequence of random variables W̃p; W̃pþ1;y (not

depending on n) with EjW̃tj%goþN for some %g42;

sup
yA %V

jWntðyÞjpW̃t ð4:1Þ

and

sup
yA %V

ðEjWntðyÞj%gÞ1=%g ¼ OðVnÞ: ð4:2Þ

Then

max
k¼1;y;n

j %WnðukÞj ¼ Oðn�1=2Vn

ffiffiffiffiffiffiffiffiffiffiffi
lnðnÞ

p
Þ a:s:
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with %WnðxÞ ¼ ðn � pÞ�1
Pn�1

t¼p WntðxÞ; u1;y; unA %V provided that n ¼ nðnÞpconst �
n %q with some %qX3 and VnXðlnðnÞÞ�1:

Proof. By (4.1), a standard argument leads to

max
t¼p;y;n�1

sup
yA %V

jWntðyÞjpn1=%gðln nÞ1=%gþk for all nXn0ðoÞ ð4:3Þ

with some k40: Let an :¼ n�1=2Vn

ffiffiffiffiffiffiffiffi
ln n

p
; Ank ¼ fo: maxt¼p;y;n�1 jWntðukÞjp

n1=%gðln nÞ1=%gþkg and In ¼ Ið
Tn

k¼1 AnkÞ: Note that

max
k¼1;y;n

Xn�1
t¼p

PfjWntðukÞj4n1=%gðln nÞ1=%gþkgpn�1ðln nÞ�1�%gk
Xn�1
t¼p

EjW̃tj%g ¼ oð1Þ:

An application of Proposition 4.2 and (4.2) leads to

P max
k¼1;y;n

j %WnðukÞjIn4ean

� 


p
Xn
k¼1

Pfj %WnðukÞjIðAnkÞ4eang

pC2n expf�C3e2a2nðn�1V 2
n þ eanNn�1þ1=%gðln nÞ1=%gþkÞ�1g þ n

N
aN

� �
pC4ðn %q exp f�C5e2a2nðn�1V 2

n þ eann�1þ1=%gðln nÞ1þ1=%gþkÞ�1g þ n1� %qÞ

for any e40 where N :¼ J2 %qjln rj�1 ln nn: C2 to C5 are positive constants not
depending on n or e: Consequently, the series

XN
n¼1

P max
k¼1;y;n

j %WnðukÞj � In4ean

� 


converges for large e40: An application of the Borel–Cantelli lemma and (4.3) leads
to Lemma 4.2. &

Since Ũ is a compact set, then, for any n; Ũ can be covered with q-dimensional

closed cubes Ũ1;y; Ũn having the properties:

jjy1 � y2jjpn�3; jjy1 � y0jjX
1

2n
8y1; y2AUi; i ¼ 1;y; n;

npconst n3q; Ũi-Ũa| ði ¼ 1;y; nÞ:

We denote Ũi-Ũ by Ui ði ¼ 1;y; nÞ: Let ui be any point of Ui; i ¼ 1;y; n: We
obtain

sup
yAŨ

jdðyÞ � dðy0Þj
jjy� y0jj

¼ sup
yAŨ

j %ZnðyÞj;
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where

%ZnðyÞ ¼ ðn � pÞ�1
Xn�1
t¼p

ðZtðyÞ � EZtðyÞÞ;

ZtðyÞ ¼ jjy� y0jj�1ðrðXtþ1 � gðX̃t j yÞÞ � rðXtþ1 � gðX̃t j y0ÞÞÞ:
Thus

sup
yAUk

j %ZnðyÞjp sup
yAUk

ðn � pÞ�1
Xn�1
t¼p

ðZtðyÞ � ZtðukÞÞ
�����

�����þ sup
yAUk

jEZtðyÞ � EZtðukÞj

þ j %ZnðukÞj ðk ¼ 1;y; nÞ: ð4:4Þ

Lemma 4.3.

max
k¼1;y;n

j %ZnðukÞj ¼ Oðn�1=2 ffiffiffiffiffiffiffiffi
ln n

p
Þ a:s:

Proof. Obviously,

jZtðyÞjpLrð2jetþ1jt þ jgðX̃t j y0Þ � gðX̃t j yÞjt þ 1Þ

	 jjy� y0jj�1jgðX̃t j yÞ � gðX̃t j y0Þj

pLrð2jetþ1jt þ Lt
gðjjX̃tjjz þ 1Þt sup

yAU

jjy� y0jjt þ 1Þ � LgðjjX̃tjjz þ 1Þ

pC6ðjetþ1jtþ1 þ jjX̃tjjzðtþ1Þ þ 1Þ ðyAŨÞ

with an appropriate constant C640: Let m42 such that mðtþ 1Þog and WntðyÞ ¼
ZtðyÞ: Then (4.1) and (4.2) with %g ¼ m are satisfied. Now apply Lemma 4.2 to get
Lemma 4.3. &

Lemma 4.4.

max
k¼1;y;n

sup
yAUk

n�1
Xn�1
t¼p

ðZtðyÞ � ZtðukÞÞ
�����

����� ¼ Oðn�1Þ a:s:

and

max
k¼1;y;n

sup
yAUk

jEZtðyÞ � EZtðukÞj ¼ Oðn�1Þ:

Proof. By the strong law of large numbers, we obtain the first part of the lemma as
follows:

max
k¼1;y;n

sup
yAUk

n�1
Xn�1
t¼p

ðZtðyÞ � ZtðukÞÞ
�����

�����
pn�1 max

k¼1;y;n
sup
yAUk

Xn�1
t¼p

jjy� y0jj�1jrðXtþ1 � gðX̃t j yÞÞ � rðXtþ1 � gðX̃t j ukÞÞj
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þ n�1 max
k¼1;y;n

sup
yAUk

Xn�1
t¼p

ðjrðXtþ1 � gðX̃t j ukÞÞ � rðXtþ1 � gðX̃t j y0ÞÞj

	 jjjy� y0jj�1 � jjuk � y0jj�1jÞ

pconst	 sup
yAUk

jjuk � yjj
Xn�1
t¼p

ðjetþ1jtþ1 þ jjX̃tjjzðtþ1Þ þ 1Þ ¼ Oðn�1Þ a:s:

Analogously, one proves the second part of the lemma. &

Proof of Lemma 4.1. Lemma 4.1 is a consequence of Lemmas 4.3, 4.4 and (4.4). &

Proof of Theorem 2.2. In view of Theorem 2.1, the assumptions of Theorem 2.2

imply #yn-y0 a.s. as n-N such that #ynAV for nXn1ðoÞ: Without loss of generality,

let jj#yn � y0jjXn�1: Now Theorem 2.2 is a consequence of Lemma 4.1 and Theorem
4.1. &

Now we turn to prove Theorem 2.3. We assume that, in addition, condition L0 is
satisfied.

Lemma 4.5. We have

sup
yA %Un

jdðyÞ � dðy0Þj
jjy� y0jj

pC7

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ln n

n

r
a:s: for nXn2ðoÞ

with %Un ¼ Ũ-fy: jjy� y0jjpn�1=2 ln ng and a constant C740:

Proof. Define An ¼ fy: minj¼1;y;J jjz?j y � hjðy0ÞjjXð1þ LhÞn�1=2 lnðnÞg: Let yAAn:

Hence gðy j :Þ is differentiable in %Un and

@

@yj

gðy j yÞ � @

@yj

gðy j y0Þ
����

����pLg0 ðjjyjjz þ 1Þjjy� y0jjs

for yA %Un since jjz?j y � hjðyÞjjXjjz?j y � hjðy0Þjj � Lhjjy� y0jjXn�1=2 lnðnÞ for yA %Un:

Observe that

sup
yA %Un

jdðyÞ � dðy0Þj
jjy� y0jj

p sup
yA %Un

Z
R	An

Z 1

0

r0ðx � gðy j ytÞÞrgðy j ytÞ dt dðFnðx; yÞ � Fðx; yÞÞ
����

����
����

����þ Bn

p
Z
Rpþ1

r0ðx � gðy j y0ÞÞrgðy j y0Þ dðFnðx; yÞ � Fðx; yÞÞ
����

����
����

����
þ B̆nOðn�s=2 lnðnÞÞ þ Bn þ %Bn a:s:; ð4:5Þ
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where yt ¼ y0 þ tðy� y0Þ for tA½0; 1�;

Bn :¼ sup
yA %Un

Z
R	Ac

n

ðrðx � gðy j yÞÞ � rðx � gðy j y0ÞÞÞ
�����

	 jjy� y0jj�1 dðFnðx; yÞ � Fðx; yÞÞ
���;

%Bn :¼
Z
R	Ac

n

r0ðx � gðy j y0ÞÞrgðy j y0Þ dðFnðx; yÞ � Fðx; yÞÞ
�����

�����
�����

�����;
B̆n :¼ sup

yA %Un

Z
R	An

ðr0ðx � gðy j yÞÞrgðy j yÞ � r0ðx � gðy j y0ÞÞrgðy j y0ÞÞ
����
����

	 jjy� y0jj�s dðFnðx; yÞ � Fðx; yÞÞjj; Ac
n ¼ Rp

\An:

For y with z?j y ¼ hjðy0Þ for some j; we put rgðy j y0Þ ¼ 0: Rio’s [30] law of the

iterated logarithm (Theorem 2 and comments at p. 1191) yieldsZ
r0ðx � gðy j y0ÞÞ

@

@yj

gðy j y0Þ dðFnðx; yÞ � Fðx; yÞÞ
����

����pC8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ln n

n

r
a:s: ð4:6Þ

for j ¼ 1;y; q; nXn2ðoÞ with a constant C840: Obviously, PfX̃tAAc
ng ¼ Oðn� %kÞ

with some %k40: Let g1; g2 such that 2og1og2; g2ðtþ 1Þog: We deduce

sup
yA %Un

EjIðX̃tAAc
nÞðrðXtþ1 � gðX̃t j yÞÞ � rðXtþ1 � gðX̃t j y0ÞÞÞjjy� y0jj�1jg1

pEjIðX̃tAAc
nÞðC1ðjetþ1jtþ1 þ jjX̃tjjzðtþ1Þ þ 1ÞÞjg1

pC
g1
1 ðEðjetþ1jtþ1 þ jjX̃tjjzðtþ1Þ þ 1Þg2Þg1=g2ðPfX̃tAAc

ngÞ
1�g1=g2

¼ Oðn� %kð1�g1=g2ÞÞ:

Using Lemma 4.2, we obtain

Bn ¼ oðn�1=2Þ and %Bn ¼ oðn�1=2Þ: ð4:7Þ

Applying Lemma 4.2, one proves that

sup
yA %Un

Z
R	An

Djðx; y; yÞjjy� y0jj�s dðFnðx; yÞ � Fðx; yÞÞ
����

���� ¼ oðn�1=2Þ a:s: ð4:8Þ

for j ¼ 1;y; q where

Djðx; y; yÞ ¼ r0ðx � gðy j yÞÞ @

@yj

gðy j yÞ � r0ðx � gðy j yÞÞ @

@yj

gðy j yÞ:

Eqs. (4.5)–(4.8) imply the lemma. &

Proof of Theorem 2.3. Theorem 2.2 states that jj#yn � y0jj ¼ Oðn�1=2 ffiffiffiffiffiffiffiffiffiffiffi
lnðnÞ

p
Þ a.s.

Hence jj#yn � y0jjpn�1=2 lnðnÞ and #ynAV for nXn3ðoÞ: Lemma 4.5 and Theorem 4.1
imply Theorem 2.3. &

E. Liebscher / Journal of Multivariate Analysis 84 (2003) 247–261 259



Acknowledgments

The author is grateful to the referee for valuable suggestions.

References

[1] P. Ango Nze, Criteria of ergodicity for some models with a markovian representation (in French), C.

R. Acad. Sci. Paris Sér. I t. 315 (1992) 1301–1304.

[2] M.A. Arcones, Some strong limit theorems for M-estimators, Stochastic Process. Appl. 53 (1994)

241–268.

[3] O.H. Bustos, General M-estimates for contaminated pth-order autoregressive processes: consistency

and asymptotic normality. Robustness in autoregressive processes, Z. Wahrsch. Verw. Gebiete 59

(1982) 491–504.

[4] K.S. Chan, Consistency and limiting distribution of the least squares estimator of a threshold

autoregressive model, Ann. Statist. 21 (1993) 520–533.

[5] K.S. Chan, J.D. Petruccelli, H. Tong, S.W. Woolford, A multiple threshold AR(1) model, J. Appl.

Probab. 22 (1985) 267–279.

[6] K.S. Chan, H. Tong, On estimating thresholds in autoregressive models, J. Time Ser. Anal. 7 (1986)

179–190.

[7] P. Doukhan, Mixing: Properties and Examples, Lecture Notes in Statistics, Vol. 85, Springer, Berlin,

1994.

[8] C. Francq, J.-M. Zakoı̈an, Estimating linear representations of nonlinear processes, J. Statist. Plann.

Inference 68 (1998) 145–165.
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