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Abstract

In the paper we prove rates of strong convergence of M-estimators for the parameters in a
general nonlinear autoregressive model. In the proofs we utilize a variational principle from
stochastic optimization theory which was proved by Shapiro (Ann. Oper. Res. 30 (1991) 169).
The application of the general theory is illustrated in the case of continuous threshold models.
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1. Introduction

The goal of this paper is to prove rates of strong convergence of M-estimators in
stationary autoregressive models with an autoregression function which is not
necessarily smooth but Lipschitz-continuous. Here we treat least squares estimators
as well as robust estimators (M-estimators). We endeavour after giving statements
with mild assumptions which are easy to verify and allow an immediate application.

Section 2 contains the main results of the paper which are proved in Section 4.
Assuming the differentiability of the autoregression function with respect to the
parameters (except for a set of measure zero which may depend on the parameters),
we prove that the rate of strong convergence of the estimator coincides with that of
the law of the iterated logarithm. Moreover, we obtain the convergence rate

O((In n/n)]/ 2) of the estimator if the autoregression function is assumed to satisfy
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only a Lipschitz-condition. The author is not aware of literature in which these
properties are proved in connection with autoregressive models. In the proofs of our
results, we employ a variational principle from stochastic optimization theory which
was proved by Shapiro [31]. We claim that our approach may be applied to other
problems of estimation theory.

The classical theory of least squares estimators and maximum-likelihood
estimators of nonlinear smooth autoregressive models is presented in [10,15]. In
the situation of linear autoregressive models, Koul and Zhu [17] obtained results
which are similar to ours. These authors also established Bahadur—Kiefer
representation for M-estimators. Asymptotic normality of M-estimators in auto-
regressive models was studied by Bustos [3] in the linear case, and by Koul [16] in the
nonlinear case. Lai [18] derived a central limit theorem for least squares estimators in
regression models (including autoregressive models) where the residuals form a
martingale difference. Asymptotic normality and consistency of least squares
estimators in ARMA-models was proved in [11], see also [8]. Tjestheim [33]
considered a general type estimator (including the M-estimator) in nonlinear time
series models and showed asymptotic normality of it. In their monograph P6tscher
and Prucha [27] proved consistency and asymptotic normality of estimators for
parameters of time series models in a general framework.

Section 3 illustrates how to apply the main results of Section 2 to continuous
threshold models having relevance in applications. We extend the results of
Petruccelli [24] and show that least squares estimators have the strong convergence
rate of the law of the iterated logarithm.

It should be mentioned that a lot of authors examined nonparametric estimators
in autoregressive models, cf. [9,20,23]. Moreover, there is an extensive literature
about the performance of least squares estimators in nonlinear regression models.
We refer to earlier papers by Jennrich [14], Malinvaud [22] and Wu [37] as well as to
the more recent paper by Richardson and Bhattacharyya [29] and the monograph by
Prakasa Rao [28]. Concerning M-estimators, some references are the classical
monograph by Huber [12] and the paper by Yohai and Maronna [38]. More recent
accounts are due to Liese and Vajda [21], Arcones [2] and Van de Geer [36].

2. Main results

In this paper we consider the nonlinear autoregressive model. More precisely, let
{Xi},_1 ... be astrictly stationary sequence of random variables fulfilling

Xt+l:g<le>-"7Xt*p+1|90)+8f+1 (l:p7p+1’)7 (21)

where {&},_,,,.»  is a sequence of independent random variables which are
independent of X, ..., X, (cf. for example [35, Chapter 3]). 0pe @ =R’ is the vector
of the true parameters of the model. Let ® be a bounded and closed set where 0y is
an inner point of @. Assume that g: R’ x ® —» R is a measurable function such that
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0+ g(x|0) is continuous for m-almost all x, where = is the distribution of X, =
(Xiy ooy Xepin) |

In this section the asymptotic performance of M-estimators 0, of the parameters
in model (2.1) is studied. Let us define the estimator 0, as a global minimizer:

n—1

0, € argmm Z p(Xi1 — g(X,]0)). (2.2)
0O =p

The continuity assumption on g ensures the existence of 0, with probability 1. Least
squares estimators 0, represent a special case of 0,:

n—1
0, € arg min Z (Xip1 — g( X, 0))% (2.3)

0e® I=p
We assume that p is a real function which satisfies a nonuniform Lipschitz-condition
Ip(x) = pOISLy(Ix" + [+ Dlx =y ¥x,yeR (2.4)

with some t>0. This Lipschitz condition is fulfilled in the case p(x) = x* (1 = 1) as
well as in the case p(x) = |x|/, 1<p<2 (t=p—1). Let

?(0) = Ep(X;y1 — Q(A;t 10)).

For proving convergence rates, we need a theorem about consistency.

Theorem 2.1. Suppose that {X,} is ergodic,

Esup lg(X,|0) "' < + o0, FEle|™' <+ o (2.5)
0e®
and
D(0)>D(0y) for all 0e@,0+£0. (2.6)

Then lim,,_, o, é,, =0y a.s.

This theorem follows immediately from the uniform strong law of large numbers
given in Lemma A2(b) of Potscher and Prucha [26], and from Lemma 3.1 (including
remarks on p. 16) of the monograph by Poétscher and Prucha [27]. Obviously,

E(p(e; +a))>E(p(e1)) a.s. for all a#0 (2.7)
and

P{g(X,|00) — g(X,|0)#0}>0 for all 0€®,0+0, (2.8)

imply condition (2.6).
Note that {X,} is a homogeneous Markov chain, the so-called associated Markov
chain. We suppose that the density of X, exists and use the following assumptions:
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Condition . Inequality (2.4) and
l9(x [01) — g(x | 02)| < Ly(|[x|" + 1)[|01 — 0a]| VxeRP, 01,0,€0,

Ele|' < + oo, E||X]|"< + oo with {€[0,1], 7>2(t + 1) and L,>0.

Condition #’. (i) Condition ¢ is satisfied and
(ii) p’ exists on R,

/(1) = P/ )l S Ly (beal* + 2l + Dlxi = x| Vv, xaeR.

(i) g(x|0) is differentiable w.r.t. 6 for all fe® and all xeR"\A, 4 =
{xeRP: Jj:z x=hi(0o)} where zi,...,z;eR\{0} are some vectors and
hi,...,hj:©—R some functions such that |h;(0) — h;j(02)|<Ly||0) — 05| VO,
026@, ]: 1, ...,J.

(iv) There is a real number se (0, 1] such that

0 0

il 0)) — —

591 00) = -0
(¢ as in condition %) for all xeRN\A4 and all 0,0,e® with
z x#hi(0y + (02 — 01)) V), €0, 1.

(v) Moreover, Fle|'< + oo, F||X/|'< + o0 with y>2(&+2), é€l0,1].
Ly, Ly, Ly >0 are constants.

x| 02)| <Ly (|[x]I" + 1)][01 = 621" (2.9)

Condition .«7. There is a neighbourhood V' of 6, such that
B(0) =D (0o) +o||0 — 00> VOV, (2.10)

where o >0 is a constant.

Condition (2.9) is fulfilled if for each xeR’, there exist second-order partial
derivatives of g(x|.) on the set {0: z;' x#/;(0) Vj} and the absolute values of these

derivatives are bounded by const - (||x||* + 1). Condition .o/ is very similar to the
second-order growth condition (Assumption A) of Shapiro [31]. If @ is differentiable
and strongly convex in a convex neighbourhood of 0y, and if © is convex, then (2.10)
is satisfied [32, p. 102]. Furthermore, we have the following lemma which contains
sufficient conditions for .o7.

Lemma 2.1. For almost all xe R’ (w.r.t. Lebesgue-measure), let the gradient vector
Vg(x10) of g w.r.t. 0 exist for 0 in a neighbourhood of 0y and be continuous at 0.
Suppose that the second-order partial derivatives of & exist in a neighbourhood of 0,
and are continuous at 6y. Assume that (2.8), condition ¥ and

P{v"Vg(X,|00)#0}>0 for any veRY v#£0 (2.11)

are fulfilled, and one of the following assumptions is satisfied:
(i) either Ee, = 0 and p(x) = x* or
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(i) med &, = 0, p(x) = |x| and & has a bounded density h on R with h(0)>0 or
(iii) (2.7) is fulfilled, p has a second derivative on R and Ep” (&) > 0.
Then condition </ and (2.6) hold true.

Next the main results are provided. For the definition of geometric ergodicity, we
refer to Tjestheim [34].

Theorem 2.2. Assume that conditions </, & and (2.6) are satisfied. Suppose that {X,}
is geometrically ergodic. Then

0, — 0| = O ln_n a.s.
n

Theorem 2.3. Suppose that the assumptions of Theorem 2.2 and condition &' are
satisfied. Let the density of X; be bounded. Then

110, — 0ol| < Co

Inl
1 Z(n) a.s. for n=zny()

with a constant Cy>0.

In these two theorems (2.6) and condition .o/ represent the global and the local
assumptions about minimizing properties of @, respectively. Theorem 2.3 states that
the estimator 0, of (2.2) tends to the true parameter vector 60, at the rate
corresponding to the law of the iterated logarithm. Here we do not assume the
existence of second-order derivatives of g.

Sufficient conditions for geometric ergodicity of {X;} can be found in papers by
Tjestheim [34], by Ango Nze [1] and by Masry and Tjestheim [23]. Remember that
stationary geometrically ergodic Markov chains are absolutely regular with f-mixing
coefficients which decay to zero exponentially fast. This fact is utilized in the proofs
in order to obtain an inequality of Bernstein type.

3. Threshold models

Let {e} be a sequence of i.i.d. random variables with Ee; = 0. In this section the
continuous SETAR(p, /, d)-model

{ ao+ 30 aiXii+e if X, 4R,
L

- | | (1)
a0+ >0 ailXemi+ Y, bi(Xicg — 1) + & if XiygeR;, j=2,...,1

(t=p,p+1,...) is considered where ri<r<---<r_; are the thresholds,
and Ry, ...,R; are the regions of the different process regimes. These regions
are defined by rg = —oo, R; = (ri—1,ri] for i<l, Ry = (rj_1,0). The parameter
vector of the model is given by 60y = (ao,...7a,,,bg,...,bhrl,...7;’1,1)Te@c|]%‘17
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0= (ay,...,7i-1) €O, q=p+2I— 1. Therefore

)4 /
g0 =ao+ > ayi+ Y blva—F1)lpa>F1) (0€6),
i=1 k=2

where 1(y>a) =1 if y>a, 1(y>a) =0 otherwise. Model (3.1) is a special case of
SETAR-models described in [35]. In contrast to Chan [4], the delay parameter d is
fixed and not a component of 6.

The aim of this section is to give the convergence rate of least squares estimators d,
defined in (2.3). Asymptotic normality of maximum likelihood estimators in a special
threshold model is shown in [13]. Chan [4] proved that the least squares estimator for
the threshold in a discontinuous threshold model has a faster convergence rate than
the usual one. The paper by Pham et al. [25] deals with strong convergence of least
squares estimators in threshold models including the case of a nonergodic time series.
A further approach to overcome the difficulties arising from nondifferentiability of g
at some points in threshold models is described in the paper by Chan and Tong [6]
where smooth threshold models (STAR-models) are considered.

We assume that {X;} is stationary and geometrically ergodic. In the case p = 1, the
paper by Chan et al. [5] contains sufficient conditions for geometric ergodicity. The
following condition is used in the result of this section.

Condition 7. Suppose that ¢ has the density /4 and the density f of X; is continuous
and has a support including the interval [Fmin — %, max + 7], 7>0 where ryi, =
min{7;: 0€ O}, rmax = max{f_;: 0 @}. There is some &¢>0 such that /x_; <7y — ¢
for all 0e® and k =2, ...,1.

Note that under Condition &, Condition %' is satisfied for least squares
estimators where

Bi(0) = 0,14, 2z =(0,...,14,0,...,0) " eR? (j=1,..,01-1),
A= {yeRl: 3j: yq = r;},
VQ(y|0) :(Lylv '~'ayﬁ7(yd _fl)l(yd>71)a "'7(yd _71—1)1(yd>71—1)7

— byl (pg>F1), ..., —bl(pa>F_1)) " for y¢ A.

Hence (2.8) and (2.11) are fulfilled. Now we are in a position to formulate the result
of this section. The following statement is a direct consequence of Lemma 2.1 and
Theorem 2.3.

Corollary 3.1. Assume that Condition 7 is satisfied and E|e,|’ < oo, [E||X;|| < oo with
y>4. Then

116, — 6ol| < Cy

In In(n) lz(n) a.s. for n=i; ()

with a constant C;>0.
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In the case of continuous threshold models, this statement extends Theorem 1 of
Chan [4]. Considering the smooth version of SETAR models (STAR-models), the
law of the iterated logarithm and a statement on asymptotic normality is given in [0].
The convergence rate for M-estimators can be derived in a similar way.

4. Proofs

Throughout this section we assume that the time series {X;} follows model (2.1),
is stationary and geometrically ergodic. Suppose that the density of X, exists.
Moreover, let &,11,8p12, ... be i.i.d. random variables not depending on Yp. We
denote the Hessian matrix of @ at 6 by H(0).

Proof of Lemma 2.1. (a) Assertion: H(fy) is positive definite. Obviously,
V& (6y) =0.
Case (1): Note that

V(0) = —2E(g(X: | 00) — g(X: | 0)Vg(X, | 0).

By means of the Lipschitz-condition on g and the dominated convergence theorem,
we obtain

0 s I B
o .o a . ,

with 6, = (6ot ..., Oox + 1, ...,Goq)T,Go = (0o1, ...,GOq)T. Consequently, by (2.11),
H(6y) = 2EVg(X, | 00)Vg(X, | 0p) "

is positive definite.
Case (i1): Here we obtain

Vo(0) = — E(sgn(e +g(Xi | 0) — 9(X; ] 0))Vg(X: | 0))
=E((~1 +2F,(9(X; | 0) — (X[ 00)))Vg(X: | 0)),

where F, is the distribution function of ¢,. Since med(g,) =0, F,(0) = 0.5, we have

o? o - N o L~
5 00) = lim (<1 + 26008180 =981 00) 050180
i o .
_2h(0)[E8_0kg(X’|00)8_0jg(X’|90) Uk=1,..,9)

with 0 as above. This implies assertion (a).
Case (iii): We deduce

Vo(0) = —Ep'(er1 + 9(1‘71 | 00) — g(ft | ()))Vg(f, 10).
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Since Ep’(¢;) = 0, we have

0 . V.
g 200 = — im (o4 98 | 0) — o8, 180, 80))
= - ’%12"(1) n [E(P/(Swrl + {](Yz | 0o) — g(Y, | ék)) - P/(81+1>)
9 .~
X 8_9./'9()(1 | Ok)

. P .
=Ep"(er41)E Xi[60) 57 90, g(X:1600) (k=1,...q)

3—0]{ g( ]
with 0 as above. This proves assertion (a).
(b) Proof of condition .o/: An application of Taylor’s formula leads to
@(0) = D(0o) + (0 — 00)" H(6%)(0 — o),
0 = 0o + (0 —0p), O<y<l.

We choose the neighborhood V' < @ of 0y such that H(0) is positive definite for e V',
and «>0 is a lower bound for the smallest eigenvalues of H(0) for 0 V. This is
possible since the elements of H are continuous at 6y. Consequently,

(0 — 60)" H(6%)(0 — 00) >0r||6 — 6o,
This completes the proof. [

We suppose that conditions .o/, % and (2.6) are satisfied. Define

n—1

B(0) =Y oK~ (X, 10)) (026)

such that
(0) = Eb,(0) = Ep(X,1 — g(X|0) (0€O).

F, denotes the empirical distribution function of the sample (XPH,/\;},),
(Xpi2, Xpi1)s ooy (Xu, Xuo1). Let F be the distribution function of (Xiy1, X)),
and

6(0) = ®,(0) — (0) = /Rw p(x —g(»10)) d(Fu(x,y) = F(x,)).
Now we provide a variational principle which was proved by Shapiro.

Theorem 4.1 (Shapiro [31, Lemma 4.1]). Assume that 0,€V and condition </ is
satisfied. Then

116, —00\|< su {W Ge@mV,H;éHo}.
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This theorem is the crucial statement for the following proofs. Our next task is to
prove the following lemma:

Lemma 4.1.
6(6) — ()]

sup —————2L— O(n""*VInn) a.s.,
oco 110 =00l

where U= {0€@: ||0 — 0p||=n""}.

Let {0y} be the a-mixing coefficients of the sequence {X,,t=p+1,p+2,...}
where X, = (X, X;_1, ...,X,,,,)T. Note that geometric ergodicity of {X;} implies
e = 0(p~), pe(0,1) (see [7, pp. 88,89]). For the proof of Lemma 4.1, we need an
inequality of Bernstein-type and some further lemmas.

Proposition 4.2. Let {Z;},_,, = be a stationary o-mixing sequence of real
r.o. with mixing coefficients {of}. Assume that EZ; =0, EZ | <+ o and
> (oc.Z)lfz/”’~'< oo for some §>2. Then, for n,NeN,0<N <n/2, for S,e>0,

]
n
Z Z I(Amax |Z,~|<S) >¢
P i=l,...,n

g

2 1 o S
<4exp{—f6 <2ndN +38SN) +Z [P’{|Z,~|>S}}+328nocﬁ
i=1

1

and dy = (E|Zi[)7(14+20 327, ()" 77).

Proof. The proposition follows immediately from Proposition 5.1 of Liebscher [20]
and Lemma 2.2 of Liebscher [19]. [

Lemma 4.2. For each n and 0 V<=0, let W,,(0), W, ,11(0), ... be a stationary o-
mixing sequence of random variables with mixing coefficients which are bounded by the
coefficients {ou} of {X;}. Moreover, let EW,,(0) =0 for all 0V, t=p,p+1, ...
Assume that there is a stationary sequence of random variables Wp, WPH, ... (not
depending on n) with E|W,|" < + oo for some 7> 2,

sup | W (0)| < W, (4.1)
OeV

and
sup (E[Wu(0)[)"/7 = O(V,). (4.2)
OeV

Then

max | W,(u)| = O(n~'?V,\/In(n)) a.s.

k=1,...v
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with Wy(x) = (n—p)~" ;:pl Wu(X), uy,...,u,eV provided that v = v(n)<const -

nd with some §=3 and V,>(In(n))"".

Proof. By (4.1), a standard argument leads to

max  sup | W (0)|<n'/7(Inn)"/"  for all n=ne(w) (4.3)
t=p,...,n—1 eV
with some x>0. Let a,=n""2V,VInn, Ay = {o: max, 1 |Wu )| <
n'/7(Inn)"/"*} and I, = I("—; A ). Note that
n_1 n—1

Jmax S P{Woulaa) [>T (Inm) Ty < (o) 7Y ET = o(1).

..... P p

An application of Proposition 4.2 and (4.2) leads to

[F"{krrfax | W, (wi) |1, >8an}

< ; P{] Wn(uk)|I(Ank) >eay, }

<Gy (exp{—C_gszaﬁ(n*l V2 + ga,Nn 7 (Inn) /7)1 4 % ocN>
< Cy(n? exp {—Cse@2 (0" V2 + eayn 17 (In n) 7)1y 41 o0)

for any >0 where N = [2g|lnp| ' Inn]. C, to Cs are positive constants not
depending on n or &. Consequently, the series

0
Z [P’{kmax [ W, (uy)| -I,,>sa,,}

[N

converges for large ¢>0. An application of the Borel-Cantelli lemma and (4.3) leads
to Lemma 4.2. [J

Since U is a compact set, then, for any n, U can be covered with ¢g-dimensional
closed cubes U, ..., U, having the properties:

1 .
||61 — 02H<n73, ||91 - 90”2% V0,0,eU;, i=1,...,v,
v<constn*!, UnU#0 (i=1,...,v).
We denote U;n U by U; (i=1,...,v). Let u; be any point of U;, i=1,...,v. We
obtain

sup 12O =00l _ o017 (o),

pev 110 = 0o 00
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where

n—1

Z,(0) = (n—p)~" > (Z(0) — EZ/(0)),

Z1(0) = 10 — 0o]| " (p(Xir1 — g(X: 10) — p(Xit1 — g(Xi | 60)))-
Thus

sup |Z,(0)|< sup|(n—p)~" Z — Z(w))| + sup |EZ,(0) — EZ,(uy))|
()EU/( ()GU/( 1= =p ()EU/(
+ | Zo(ue)| (k=1,...,v). (4.4)
Lemma 4.3.
max | Z,(u)| = O(n™'?VInn)  a.s.

seeey

Proof. Obviously,
1Z/(0)|< Ly (2lerss "+ |g(1\7, | 0) — g(f, |O)]"+1)

x |10 = o] g (X, | 0) — g(X; | 00)]

Lo legsr|*+ LI+ 1)7 sup 110 = 6o+ 1) - Ly(I X"+ 1)
€

Co(leva [ + 1K 4 1) (0€0)

with an appropriate constant C¢>0. Let u>2 such that u(t + 1)<y and W,,(0) =
Z,(0). Then (4.1) and (4.2) with 7 = p are satisfied. Now apply Lemma 4.2 to get
Lemma 4.3. O

Lemma 4.4.
n—1
max_sup [n' > (Z(0) - Zi(w)| = O(n”") as.
k=1,...v 0e Uy P
and
max sup |EZ,(0) — EZ,(u)| = O(n™ ).
k=1,...,v 0e Uy

Proof. By the strong law of large numbers, we obtain the first part of the lemma as
follows:

n—1
max_sup (7' > (Zt(G)Z,(uk))‘
=1,..., v ()EUk l:p

n—1

<n' maxsup S (10— 60| p(Xier — 9(X,|0)) — p(Xisr — g(Xs | w))]

()EUk 1= =p
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n—1
+n”" max sup (Ip(Xe1 — g(X: [ i) — p(Xie1 — g(Xi ] 60))]

k=1,....v geU, P
-1 -1
X 110 = o[ — [l — 0ol ")
n—1 y
<const x sup ||ux — 0|| Z (lecr | + X+ 1) = 0"y as.
0e Uy t=p

Analogously, one proves the second part of the lemma. [J
Proof of Lemma 4.1. Lemma 4.1 is a consequence of Lemmas 4.3, 4.4 and (4.4). O

Proof of Theorem 2.2. In view of Theorem 2.1, the assumptions of Theorem 2.2
imply é,, — 0y a.s. as n— oo such that én eV for n=n;(w). Without loss of generality,

let ||6, — 0o||=n"". Now Theorem 2.2 is a consequence of Lemma 4.1 and Theorem
41. O

Now we turn to prove Theorem 2.3. We assume that, in addition, condition %’ is
satisfied.

Lemma 4.5. We have

sup 16(0) — 5(0°)|<C7 \/m a.s. for n=zny(w)
e ool '

with U, = Un{0: ||0 — 0o||<n~ "> Inn} and a constant C;7>0.

Proof. Define 4, = {y: min—1 s ||z;"y — ;(60)[| > (1 + L))n~ 2 1n(n)}. Let y € 4,.

Hence g(y | .) is differentiable in U, and

0 0 ‘
— - <L, ] — s
50 9010) = 5901 00)| <Ly (b + )0 = o]

for 0e U, since ||z, y — hj(0)||= 1z, y — hj(00)|] — Lall0 — Oo]| =n~"/* In(n) for O T,.
Observe that

10(6) — 5(00)|

su
oy 0= 0o]]
1
<sp [ ] p’(x—g<y|6,>>Vg<y|0z>drd<Fn<x,y>—F(x,y>>H+Bn
0eU, XAy

<

/W“ p'(x—g(»]00))Vy(y|0o) d(Fy(x,y) — F(x’y))H

+ B,0(n**1n(n)) + B, + B, a.s., (4.5)
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where 0; = 0y + (0 — 0o) for t€]0, 1],

B, = sup /UMC (p(x —g(»10)) — p(x —g(¥]60)))

0eU,

% 110 — 60| d(Fa(x,) = F(x,7))),

B || [ ox— gl 00) a0y | 00) d(Fu(x.) ~ Fi)|
RxA¢
By=sup|| [ (p/(x = gly|0)99(r[0) = /(x = gy | 0) Vi | 0)
0eU, Rx A4,

x (10 = O d(Fu(x,y) = F(x,p))ll, 45 = R\A4,.

For y with zj v = h;j(0y) for some j, we put Vg(y|0y) =0. Rio’s [30] law of the
iterated logarithm (Theorem 2 and comments at p. 1191) yields

[ = ats100) 50010 8(F ) - Flx)| <oy as. (49

for j=1,...,q, n=ny(w) with a constant Cg>0. Obviously, P{X,€ 4°} = O(n™¥)
with some ©>0. Let 7,7, such that 2<7, <7y,, 7,(t + 1)<y. We deduce
sup E[I (X 45)(p(Xir1 — g(Xi[0)) = p(Xis1 — g(X; | 00)))]10 — 6o/ 7"
0eU,
<E|(X e A5)(Cr(Jeen [+ 1K + 1)

G e e D (e A N
— O(n*’z(l*‘/l/‘h)).
Using Lemma 4.2, we obtain
B,=o(m %) and B,=o(n"'?). (4.7)
Applying Lemma 4.2, one proves that

sup /[Rg P Aj(X,y, )HO 0()” ( (x y) F(X,y)) :0(1/171/2) a.s. (48)

0eU,

forj=1,...,q where
Ay(x,7,0) = p'(x — <|0>>8 g(v]0) — p'(x - <|0>>8 g(v]0).
Eqgs. (4.5)—(4.8) imply the lemma. [

Proof of Theorem 2.3. Theorem 2.2 states that ||0, — 6y|| = O(n"/2\/In(n)) a.s.

Hence ||6, — 0o||<n"/?In(n) and 6, V for n=n3(w). Lemma 4.5 and Theorem 4.1
imply Theorem 2.3. [
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