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Abstract

Two conditions are shown under which elliptical distributions are scale mixtures of normal distribu-
tions with respect to probability distributions. The issue of finding the mixing distribution function is
also considered. As a unified theoretical framework, it is also shown that any scale mixture of normal
distributions is always a term of a sequence of elliptical distributions, increasing in dimension, and
that all the terms of this sequence are also scale mixtures of normal distributions sharing the same
mixing distribution function. Some examples are shown as applications of these concepts, showing
the way of finding the mixing distribution function.
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1. Introduction

In this paper, two conditions for an absolutely continuous elliptical distribution to be a
scale mixture of normal distributions, with respect to a probability distribution, are shown,
and the issue of finding the mixing distribution function is approached; also, it is shown
that any scale mixture of normal distributions can be viewed as a term of a sequence of
elliptical distributions. The proof of the main results relies on the concept of an expansive
sequence of elliptical distributions, that we state previously, and on the existence of some
distributions of higher dimensions shown by Gupta and Varga [8] and Eaton [4].

Scale mixtures of normal distributions are an important class of elliptical distributions.
They share good properties with normal distributions, are easy to work with, and are useful
to robustify statistical procedures usually based on normal distributions. In a Bayesian
framework, they can be used in simulation methods. So, a characterization and a way to
reduce elliptical distributions to scale mixtures of normal distributions is very valuable.

There are many publications on elliptical distributions. For a comprehensive study of
elliptical distributions, Kelker [10], Chu [3], Cambanis et al. [2], Fang et al. [5], Fang and
Zhang [6] and Gupta and Varga [8] can be seen. A survey about absolutely continuous
elliptical distributions can be found in [7].

Some results on scale mixtures of normal distributions and their relationship with elliptical
distributions can be found in [3–5,8,9]. Some of these approaches do not keep to probability
mixing distributions (as we do in this paper) but allow “weighting functions” that can turn
out to take negative values. Andrews and Mallows [1] study conditions for a unidimensional
symmetrical distribution to be a scale mixture of normal distributions.

The first condition that we show for an absolutely continuous elliptical distribution to be a
scale mixture of normal distribution is based upon the successive derivatives of its functional
parameter g, and includes the elliptical distribution in a sequence. In this way, these results
give an interpretation of derivatives of g in a probabilistic framework, extend the theorem of
Andrews and Mallows [1], reinterpret, in the framework of mixtures of normals, Proposition
1 of Eaton [4] and supplement, in some sense, Theorem 4.1.3 of Gupta and Varga [8].

The second condition refers to Laplace transforms, and also shows the mixing distribution
function. These results particularize some aspects of a theorem of Chu [3] (see also [8]) and
extend the lemma in Andrews and Mallows [1].

In Section 2, we introduce the concepts of expansive and semi-expansive sequences of
elliptical distributions and establish conditions under which an elliptical distribution can be
a term of an expansive sequence. These concepts provide a general theoretical framework
for the subsequent study of mixtures of normal distributions.

In Section 3 the two conditions are shown. Finally, in Section 4, some examples and
applications to the study of elliptical distributions are shown.

2. Sequences of elliptical distributions

We show the definition and some properties of elliptical distributions, introduce the
concepts of expansive and semi-expansive sequences of elliptical distributions, and study
some of their properties.
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2.1. Some properties of elliptical distributions

We deal with elliptical distributions that are absolutely continuous.

Definition 1 (Elliptical distribution). If � is an n-dimensional vector, � is an n×n positive
definite symmetric matrix and g is a non-negative Lebesgue measurable function on [0, ∞)

such that

0 <

∫ ∞

0
t
n
2 −1

g(t) dt < ∞, (2.1)

then the n-dimensional density f given by

f (x; �, �, g) = �
(

n
2

)
�

n
2

∫ ∞
0 t

n
2 −1

g(t) dt

|�|− 1
2 g

(
(x − �)′ �−1 (x − �)

)
(2.2)

is said to be elliptical with parameters �, � and g. If vector X has density (2.2), we say that
X has the elliptical distribution (e.d.) En (�, �, g) and write X ∼ En (�, �, g).

We will refer to function g by the name of functional parameter.
The parametrization of an elliptical distribution is not strictly unique. Suppose that

X ∼ En (�, �, g); then X ∼ En

(
�∗, �∗, g∗) iff there exist two positive numbers a and

b, such that �∗ = �, �∗ = a� and g∗(t) = bg(at) for almost all t �0 [7]; see also [6]).
We will say that two real functions g and g∗ are equivalent if g = bg∗ a.e. for some

b > 0; we will denote g ≡ g∗. Thus, the functional parameter g of an e.d. En(�, �, g) can
be replaced with another g∗ (keeping the same parameters � and �) iff g∗ ≡ g.

For each vector x = (x1, . . . , xn)
′, we will denote x(p) = (

x1, . . . , xp

)′, for p�n; also,
�(p) will denote the upper-left p × p submatrix of the n × n matrix �.

If X ∼ En (�, �, g) and X(p) = (
X1, . . . , Xp

)′, with p < n, then (see [6,7])

X(p) ∼ Ep

(
�(p), �(p), g(p)

)
, (2.3)

where g(p) is the function given by

g(p)(t) =
∫ ∞

0
w

n−p
2 −1

g(t + w) dw (2.4)

=
∫ ∞

t

(w − t)
n−p

2 −1
g(w) dw. (2.5)

In particular, if p = n − 2, then

g(n−2)(t) =
∫ ∞

t

g(w) dw (2.6)

and, thence, g′
(n−2)(t) = −g(t) for each continuity point t of g. The following lemma

develops this subject. We denote by 0n×m the null n×m matrix and by In the identity n×n

matrix.

Lemma 2 (Derivative of marginal parameter). Let X ∼ En (0n×1, In, g) and Y ∼ En+2(
0(n+2)×1, In+2, h

)
for some n�1. Equality in distribution X

d= Y(n) holds iff g′ ≡ −h.
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Proof. Y(n) ∼ En

(
0n×1, In, h(n)

)
, where from (2.6), h(n) (t) = ∫ ∞

t
h (w) dw; therefore,

h′
(n) = −h a.e.

If X
d= Y(n), then g ≡ h(n) and g′ ≡ h′

(n) ≡ −h.
Reciprocally, if g′ ≡ −h, then there is a positive number b such that bg′ = −h = h′

(n) a.e.
and, consequently, bg = h(n)+c a.e., where c is a constant. But c = 0 because bg and h(n) are

functional parameters of n-dimensional e.d.’s, and then, from (2.1),
∫ ∞

0 t
n
2 −1bg (t) dt < ∞

and
∫ ∞

0 t
n
2 −1

h(n) (t) dt < ∞; therefore,

∫ ∞

0
t
n
2 −1

cdt =
∫ ∞

0
t
n
2 −1bg (t) dt −

∫ ∞

0
t
n
2 −1

h(n) (t) dt < ∞

and it is possible only if c = 0. Thence bg = h(n) a.e. and X ∼ En(0n×1, In, h(n)). �

2.2. Expansive and semi-expansive sequences

The concepts of expansive and semi-expansive sequences of elliptical distributions are
introduced. A sequence is expansive (alternatively: semi-expansive) if each one of its terms
is equivalent to a marginal distribution of the next term (alt.: of the term following the
next term). These concepts allow us to establish relations between the derivatives of the
functional parameter of a distribution and the functional parameters of some distributions
posterior to it in the sequence. And this permits us to derive conditions under which e.d.’s
are scale mixtures of normal distributions.

Theorem 4 shows a condition for a sequence of e.d.’s to be semi-expansive and Theorem
6 shows a condition for terms of expansive sequences.

When a term of a sequence is a vector or a matrix we use superscripts to denote its
position in the sequence and subscripts to denote its components.

Definition 3 (Expansive and semi-expansive sequences). For all m ∈ {1, 2, . . .}, let
Em

(
�m, �m, gm

)
be an m-dimensional elliptical distribution and let Xm = (

Xm
1 , . . . , Xm

m

)′
∼ Em

(
�m, �m, gm

)
.

(i) The sequence of distributions
{
Em

(
�m, �m, gm

)}
is said to be expansive if, for all

m ∈ {1, 2, . . .},

Xm d= Xm+1
(m) =

(
Xm+1

1 , . . . , Xm+1
m

)′
, (2.7)

namely, if the distribution of vector Xm is equal to the (marginal) distribution of a
subvector of vector Xm+1.

(ii) The sequence
{
Em

(
�m, �m, gm

)}
is said to be semi-expansive if, for all m ∈ {1, 2, . . .},

Xm d= Xm+2
(m) =

(
Xm+2

1 , . . . , Xm+2
m

)′
. (2.8)

Clearly, all expansive sequences are semi-expansive and a semi-expansive sequence is

expansive if, in addition, Xm d= Xm+1
(m) for all odd m.
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The next theorem shows a condition, based on the functional parameter g, for a sequence
to be semi-expansive.

(On notation: we use sometimes signs such as ġ or g̈ simply to denote functions, with no
reference to derivatives.)

Theorem 4 (Condition for semi-expansivity). The sequence of e.d.’s {Em (0m×1, Im, gm)}
is semi-expansive iff there exists a sequence

{
g∗

m

}
of functions such that

g∗
m ≡ gm, (2.9)

g∗
m+2 = − (

g∗
m

)′ (2.10)

for all m ∈ {1, 2, . . .} and t > 0.

Proof. (The if part): For all m, let Xm = (
Xm

1 , . . . , Xm
m

)′ ∼ Em (0m×1, Im, gm). From

(2.9) and (2.10) we have g′
m ≡ −gm+2; hence, by virtue of Lemma 2, Xm d= Xm+2

(m) .
(The only if part): For all m ∈ {1, 2, . . .}, let Xm ∼ Em (0m×1, Im, gm).
First, we are going to obtain differentiable functions g̈m such that g̈m ≡ gm. For all

m, by virtue of (2.8) and (2.3) (see also (2.6)), Xm ∼ Em (0m×1, Im, ġm), with ġm(t) =∫ ∞
t

gm+2(w) dw; hence ġm ≡ gm; and function ġm is continuous. Again by (2.8) and (2.3),
we obtain that ġm ≡ g̈m, where g̈m(t) = ∫ ∞

t
ġm+2(w) dw. Thus gm ≡ g̈m, and function

g̈m is differentiable.
For all m, by obtaining again another equivalent function by means of (2.8) and (2.3), we

find that there exists a constant bm+2 > 0 such that g̈m(t) = bm+2
∫ ∞

t
g̈m+2(w) dw and,

consequently, g̈′
m = −bm+2g̈m+2. We add b1 = b2 = 1, and for all k ∈ {0, 1, 2, . . .} we

define functions g∗
1+2k and g∗

2+2k as follows:

g∗
1+2k =

⎛
⎝ k∏

j=0

b1+2j

⎞
⎠ g̈1+2k,

g∗
2+2k =

⎛
⎝ k∏

j=0

b2+2j

⎞
⎠ g̈2+2k.

All the elements of sequence
{
g∗

m

}
satisfy (2.9), because g∗

m ≡ g̈m ≡ gm. We check that
they also satisfy (2.10). For all k ∈ {0, 1, 2, . . .} we have that

(
g∗

1+2k

)′ =
⎛
⎝ k∏

j=0

b1+2j

⎞
⎠ g̈′

1+2k =
⎛
⎝ k∏

j=0

b1+2j

⎞
⎠ (−b1+2k+2g̈1+2k+2)

= −
⎛
⎝k+1∏

j=0

b1+2j

⎞
⎠ g̈1+2(k+1) = −g∗

1+2k+2.

Similarly, it is proved that
(
g∗

2+2k

)′ = −g∗
2+2k+2. �
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By applying iteratively (2.10) for m = 1, 3, 5, . . . and then for m = 2, 4, 6, . . . we see
that a sequence {Em (0m×1, Im, gm)} is semi-expansive iff there exist functions g∗

m ≡ gm

such that

g∗
1+2k = (−1)k

(
g∗

1

)(k)
, (2.11)

g∗
2+2k = (−1)k

(
g∗

2

)(k) (2.12)

for k ∈ {1, 2, . . .}.
We notice, by (2.11) and (2.12), that a semi-expansive sequence {Em (0m×1, Im, gm)} is

determined by g1 and g2. It is also determined by any pair of terms gn1 and gn2 , with n1
even and n2 odd, of the sequence {gm}, because from them equivalent functions to g1 and
g2 can be obtained by applying any of the expressions (2.4) or (2.5).

An expansive sequence {Em (0m×1, Im, gm)} is determined by any term, gn, of the se-
quence {gm}, because from this one equivalent functions to g1, g3 and g2 can be obtained
successively by applying (2.4) or (2.5), (2.11), and (2.4) or (2.5), respectively.

To prove Theorem 6 we need to establish first the following lemma.

Lemma 5 (Distributions of higher dimension). Let En (�, �, g) be an elliptical distribu-
tion, with n�1. If

(−1)k g(k)(t)�0 (2.13)

for k ∈ {1, 2, . . .} and t > 0, then, for all k ∈ {0, 1, 2, . . .},

0 <

∫ ∞

0
t

n+2k
2 −1 (−1)k g(k)(t) dt < ∞ (2.14)

and, hence, the distribution En+2k

(
�n+2k, �n+2k, gn+2k

)
, with

gn+2k = (−1)k g(k)

does exist for each vector �n+2k ∈ Rn+2k and each positive definite symmetric (n + 2k) ×
(n + 2k) matrix �n+2k .

Proof. We prove (2.14) by induction on k. From (2.1), the statement is true for k = 0.
Let, now, k > 0; we suppose that the statement is true for k − 1 and we prove it for k. By
integrating by parts we have∫ ∞

0
t

n+2k
2 −1 (−1)k g(k)(t) dt (2.15)

= lim
t→0

t
n+2k

2 −1 (−1)k−1 g(k−1)(t) (2.16)

− lim
t→∞ t

n+2k
2 −1 (−1)k−1 g(k−1)(t) (2.17)

+
(

n + 2k

2
− 1

) ∫ ∞

0
t

n+2(k−1)
2 −1 (−1)k−1 g(k−1)(t) dt. (2.18)
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The integrals in (2.15) and (2.18) exist and are non-negative. Hence, there exist the limits
(2.16) and (2.17). Clearly, they are not negative. We prove that both limits are zero by
reduction to absurd.

If the limit (2.16) would be equal to c > 0, there should be a point t1 > 0 such that for

every t ∈ (0, t1) it would be t
n+2k

2 −1 (−1)k−1 g(k−1)(t) > c
2 ; thence it would be

∫ ∞

0
t

n+2(k−1)
2 −1 (−1)k−1 g(k−1)(t) dt � c

2

∫ t1

0

1

t
dt = ∞,

which is false, by the recurrence hypothesis.
Similarly, if the limit (2.17) would be equal to c > 0, it would be a t1 such that∫ ∞

0
t

n+2(k−1)
2 −1 (−1)k−1 g(k−1)(t) dt � c

2

∫ ∞

t1

1

t
dt = ∞.

Therefore, the integral (2.15) is equal to the addend (2.18), which, by the recurrence hy-
pothesis, is positive and finite. �

The next theorem shows that an e.d. En (�, �, g) can be a term of an expansive sequence
iff the successive derivatives of its functional parameter g are alternatively positive and
negative.

Theorem 6 (Condition for terms of expansive sequences). Let En(�, �, g) be an elliptical
distribution, with n�1.

There is an expansive sequence of e.d.’s whose nth term is the distribution En (�, �, g)

iff there is a function g̈ = g a.e. such that

(−1)k g̈(k)(t)�0 (2.19)

for k ∈ {0, 1, 2, . . .} and t > 0.
In this case, one such sequence is the sequence

{
Em

(
�m, �m, gm

)}
given by the following

specifications:

�m =
{

�(m) if m�n,(
�′ 0′

(m−n)×1

)′
if m > n,

(2.20)

�m =
⎧⎨
⎩

�(m) if m�n,(
� 0n×m

0m×n Im−n

)
if m > n.

(2.21)

For m < n

gm(t) =
∫ ∞

t

(w − t)
n−m

2 −1 g̈(w) dw (2.22)

and for k ∈ {0, 1, 2, . . .}
gn+2k = (−1)k g̈(k), (2.23)

gn+2k+1(t) = (−1)k+1
∫ ∞

t

(w − t)−
1
2 g̈(k+1)(w) dw. (2.24)
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Proof. First we prove that if condition (2.19) is satisfied then (2.20)–(2.24) really describe
a distribution Em

(
�m, �m, gm

)
for every m, and that sequence

{
Em

(
�m, �m, gm

)}
is ex-

pansive and its nth term is the distribution En (�, �, g).
Let Xn = (

Xn
1 , . . . , Xn

n

)′ ∼ En (�, �, g). Obviously, Xn ∼ En (�, �, g̈). For any m < n

there exists the distribution Em

(
�m, �m, gm

)
because this is just the distribution of subvector

Xn
(m). There exists also the distribution En

(
�n, �n, gn

) ; it is the same as En (�, �, g).

For k ∈ {1, 2, . . .}, by virtue of Lemma 5, there exists the distribution En+2k

(
�n+2k ,

�n+2k, gn+2k

)
, specified by (2.20), (2.21) and (2.23). We also see that for k ∈ {0, 1, 2, . . .}

there exits the distribution En+2k+1
(
�n+2k+1, �n+2k+1, gn+2k+1

)
, specified by (2.20), (2.21)

and (2.24): if Xn+2k+2 ∼ En+2k+2
(
�n+2k+2, �n+2k+2, gn+2k+2

)
, then, from (2.3), the dis-

tribution of subvector Xn+2k+2
(n+2k+1) =

(
Xn+2k+2

1 , . . . , Xn+2k+2
n+2k+1

)
is just En+2k+1(

�n+2k+1, �n+2k+1, gn+2k+1
)
.

Hence, there exists the sequence
{
Em

(
�m, �m, gm

)}
, and its nth term is the distribution

En (�, �, g).
Let us see that sequence

{
Em

(
�m�m, gm

)}
is expansive. For all m, let Xm ∼ Em

(
�m, �m ,

gm). For m < n we have Xm d= Xn
(m)

d= Xm+1
(m) ; and for k ∈ {0, 1, 2, . . .} we have that

Xn+2k+1 d= Xn+2k+2
(n+2k+1). To see that Xn+2k d= Xn+2k+1

(n+2k) we may suppose, without loss of
generality, that � = 0n×1 and � = In; then, by virtue of (2.23) and Lemma 2, we have that

Xn+2k d= Xn+2k+2
(n+2k) , and Xn+2k+2

(n+2k)

d= Xn+2k+1
(n+2k) .

Now we prove the reciprocal. Let
{
Em

(
�m, �m, gm

)}
be an expansive sequence whose nth

term is the distribution En (�, �, g). Then the sequence {Em (0m×1, Im, gm)} is expansive,
too, and, by virtue of Theorem 4, there exists a sequence of functions

{
g∗

m

}
satisfying (2.9)

and (2.10) for every m. Since (2.9) is verified for m = n, there exists a constant b > 0
such that g = gn = bg∗

n a.e. Let g̈ = bg∗
n and, for all m, let g̈m = bg∗

m. It is obvious

that g̈ = g a.e. and, besides, for all k, (−1)k g̈(k) = (−1)k
(
bg∗

n

)(k) = b (−1)k
(
g∗

n

)(k) =
bg∗

n+2k �0, where the last equality is obtained by induction on k, starting at k = 0 and by
applying (2.10). �

Note that if function g mentioned in Theorem 6 is continuous on (0, ∞), then we need
not use function g̈, and we can put g instead of g̈ in expressions (2.19) and (2.22)–(2.24).

Note how expressions (2.23) and (2.24) allow us to interpret the functional parameters
gm, for m�n, in the sequence

{
Em

(
�m, �m, gm

)}
, in terms of the successive derivatives

of parameter g.

3. Elliptical distributions as scale mixtures of normal distributions

We approach the issue of characterizing the e.d.’s that are scale mixtures of normal
distributions and the one of finding the corresponding mixing distribution function.

Firstly, some basic definitions and results concerning scale mixtures of normal distribu-
tions are shown. Then, we show a characterization of elliptical distributions that are scale
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mixtures of normal distributions and put them in relation with expansive sequences of e.d.’s.
Next, we show a second characterization and deal with the subject of finding the mixing
distribution function.

3.1. Basics on scale mixtures of normal distributions and related elliptical distributions

We denote Nn ( · ; �, �) the n-dimensional normal density with parameters � and �; we
write X ∼ Nn (�, �) if vector X has density Nn ( · ; �, �).

Definition 7 (Scale mixture of normal distributions). If � is an n-dimensional vector, � is
an n × n positive definite symmetric matrix and H is a (unidimensional) probability distri-
bution function such that H(0) = 0, then the n-dimensional density f given by

f (x; �, �, H)

=
∫ ∞

0
Nn

(
x; �, v2�

)
dH(v) (3.1)

= (2�)−
n
2 |�|− 1

2

∫ ∞

0
v−n exp

{
−1

2
v−2 (x − �)′ �−1 (x − �)

}
dH(v) (3.2)

is said to be a scale mixture of normal densities
{
Nn

(
x; �, v2�

) | v ∈ (0, ∞)
}

with mixing
distribution function H . If vector X has density (3.1), we say that the distribution of X
is the scale mixture of normal distributions (s.m.n.d.) SMNn (�, �, H) and write X ∼
SMNn (�, �, H).

Note that in the above definition we use only probability distribution functions as mixing
distributions. Some wider approaches to the idea of mixture (see for instance [3]) allow the
use of another kind of weighting function.

For each vector x �= �, we have f (x; �, �, H) < ∞, since function Nn(x; �, v2�), as a
function of v, is bounded, because it is continuous and both its limits, at 0 and at ∞, are 0.
On the contrary, the value

f (�; �, �, H) = (2�)−
n
2 |�|− 1

2

∫ ∞

0
v−n dH(v), (3.3)

which is proportional to the moment
∫ ∞

0 v−n dH(v), may be ∞.
A vector X = (X1, . . . , Xn)

′ has the distribution SMNn (�, �, H) iff it admits the fol-
lowing equality in distribution:

X
d= � + V Z, (3.4)

where Z ∼ Nn (0, �) and V , the mixture variable, is a unidimensional random variable
independent of Z and having distribution function H .

Then, the distribution of X conditional to V = v is (X | V = v) ∼ Nn

(
�, v2�

)
.

If X(p) = (
X1, . . . , Xp

)′, with p�n, then the distribution of X(p) conditional to V is(
X(p) | V = v

) ∼ Np

(
�(p), v

2�(p)

)
. Hence,

X(p) ∼ SMNp

(
�(p), �(p), H

)
, (3.5)

where the mixing distribution function is H , the same as for X.
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From (3.2) we see that any scale mixture of normal distribution is an elliptical distribution
(this subject will be developed in Corollary 9). The reciprocal is not true; some counterex-
amples are shown in Section 4. A first general characterization of e.d.’s that are s.m.n.d.’s
can be stated in terms of the usual quadratic form as follows.

Let X ∼ En(�, �, g). It is known that X has a stochastic representation of the form

X
d= � + A′Q

1
2 U(n) (3.6)

(see details in [6,7]) with Q = (X − �)′ �−1 (X − �). If we compare (3.6) with (3.4) we
deduce that X ∼ SMNn (�, �, H) iff

Q
d= V 2J 2, (3.7)

where V is the mixture variable, whose distribution function is H , and J is a variable
independent of V , with J 2 ∼ �2

n; this is equivalent to saying that the density of Q is a

mixture of gamma densities
{
G

(
1
2v−2, n

2

)
| v ∈ (0, ∞)

}
with mixing distribution function

H. (See also [8, Corollary 4.1.4.2]).

In this case, from (3.7), the moments of the modular variable R
d= Q

1
2 and those of vector

X (see [7]) can be expressed as functions of the moments of the mixture variable V:

E[Rs] = 2
s
2

�( n+s
2 )

�( n
2 )

E[V s],
Var[X] = E[V 2]�,

�2[X] = n(n + 2)
E

[
V 4

]
(E[V 2])2 ,

where Var[X] and �2 [X] denote the covariance matrix and the kurtosis coefficient (see [11])
of vector X, respectively.

Two more practical characterizations of e.d.’s that are s.m.n.d.’s are shown in the following
sections.

3.2. A necessary and sufficient condition

Elliptical distributions that are scale mixtures of normal distributions are characterized
and put in relation with expansive sequences of elliptical distributions.

The next theorem shows that a necessary and sufficient condition for an e.d. En (�, �, g)

to be a s.m.n.d. is the alternation of sign of the successive derivatives of its functional
parameter g; this is just the same condition established in Theorem 6 for being a term of
an expansive sequence. The particularization of Theorem 8 to n = 1 coincides with the
theorem established in [1] for univariate symmetrical distributions.

Theorem 8 (Condition for being a mixture). Let En (�, �, g) be an elliptical distribution,
with n�1, and let X = (X1, . . . , Xn)

′ ∼ En (�, �, g). There is a mixing distribution
function H such that

X ∼ SMNn (�, �, H)
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iff there exists a function g̈ = g a.e. such that

(−1)k g̈(k)(t)�0 (3.8)

for k ∈ {0, 1, 2, . . .} and t > 0.

Proof. (i) (The if part): By virtue of Theorem 6, there exists an expansive sequence of e.d.’s{
Em

(
�m, �m, gm

)}
, whose nth term is the distribution En (�, �, g). Therefore, there exists,

by virtue both of Theorem 4.1.3 of Gupta and Varga [8] and Theorem 2 of Eaton [4], a
mixture function H, such that X ∼ SMNn (�, �, H).

(The only if part): If distribution En (�, �, g) is a s.m.n.d., then the cited theorem of Gupta
and Varga [8] implies that there exists an expansive sequence of e.d.’s

{
Em

(
�m, �m, gm

)}
whose nth term is the distribution En (�, �, g). The result follows now from
Theorem 6. �

Note that, once again, if function g is continuous we can do without the function g̈ and
directly put g in (3.8).

The next corollary shows that any s.m.n.d. SMNn (�, �, H) is also an e.d. En (�, �, g),
included in a sequence of e.d.’s having functional parameters that are functions of the suc-
cessive derivatives of g, and which are also s.m.n.d.’s, all with the same mixing distribution
function H .

Corollary 9 (Mixtures inside sequences). Let SMNn (�, �, H) be a scale mixture of nor-
mal distributions, with n�1.

(i) A vector X satisfies X ∼ SMNn (�, �, H) iff X ∼ En (�, �, g), with

g(t) =
∫ ∞

0
v−n exp

{
−1

2
v−2t

}
dH(v). (3.9)

(ii) The sequence
{
Em

(
�m, �m, gm

)}
of elliptical distributions described by (2.20)–(2.24),

replacing g̈ with g, is expansive, its nth term is the distribution En (�, �, g) and, in
addition, it verifies that if Xm ∼ Em

(
�m, �m, gm

)
then

Xm ∼ SMNm

(
�m, �m, H

)
,

where H is the same mixture function as in SMNn (�, �, H).

Proof. (i) It follows immediately from (3.2).
(ii) Function g satisfies (3.8), therefore, by virtue of Theorem 6, the sequence {Em (�m ,

�m, gm

)}
is expansive and its nth term is the distribution En (�, �, g). Besides, for all

m, if Xm ∼ Em

(
�m, �m, gm

)
then there exists, by virtue of Theorem 4.1.3 of Gupta and

Varga [8], a mixing function Hm such that Xm ∼ SMNm

(
�m, �m, Hm

)
. Now, the mixing

function Hm is the same for all m, because if m < r then Xm is distributed as a sub-vector
of Xr and (see (3.5)) Hm = Hr . Hence, for all m, Hm = Hn = H and Xm ∼ SMNm(
�m, �m, H

)
. �
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Remark. Let En (�, �, g) be an e.d. equivalent to SMNn (�, �, H). The functional param-
eters gm of the distributions of the sequence alluded in Corollary 9(ii) can be obtained from
g1 and g2 in this way

g1+2k = (−1)k g
(k)
1 ,

g2+2k = (−1)k g
(k)
2

for k ∈ {1, 2, . . .}. As for the starting points, g1 and g2, if n > 2 then g1(t) = ∫ ∞
t

(w − t)
n−1

2 −1 g(w) dw and g2(t) = ∫ ∞
t (w − t)

n−2
2 −1 g(w) dw; if n = 1, and we suppose

that g = g1 is continuous (in any case, we can replace g with anyone of its equivalents: the
function g̈ of Theorem 8 or the function defined by (3.9)), we make g3 = −g′ and calculate

g2 as g2(t) = ∫ ∞
t (w − t)− 1

2 g3(w) dw = − ∫ ∞
t (w − t)− 1

2 g′(w) dw; and if n = 2, we

make g1(t) = ∫ ∞
t (w − t)− 1

2 g(w) dw and, if g is not continuous, we can calculate g2 as

g2(t) = − ∫ ∞
t (w − t)− 1

2 g′
1(w) dw.

3.3. A second condition: Calculation of the mixing distribution function

If a given e.d. En(�, �, g) is known to be a s.m.n.d. SMNn (�, �, H) the issue arises
of finding the corresponding mixing distribution function H. According to Definition 7,
this should be a probability distribution function. We obtain H from the inverse Laplace
transform of the functional parameter g. In this way, the corresponding s.m.n.d. is fully
determined.

Theorem 10, based upon Theorem 8, shows first that a condition for an e.d. En(�, �, g)

to be a s.m.n.d., in the sense of Definition 7, is that its functional parameter is the Laplace
transform of a distribution function M of a measure with support in (0, ∞). The theorem
also shows the relation between the mixing distribution function H and the distribution
function M . Thus, the theorem particularizes some aspects of a theorem of Chu [3] (see
also [8]) and extends the lemma in [1].

Theorem 10 (Condition: mixing distribution function). Let En(�, �, g) be an elliptical
distribution, with n�1, and let X ∼ En (�, �, g). There is a mixing distribution func-
tion H such that X ∼ SMNn (�, �, H) iff there exists a measure distribution function M,
with M(x) = 0 for x�0, such that

g(t) =
∫ ∞

0
e−ty dM (y) (3.10)

for almost all t, namely, such that g is equivalent to the Laplace transform of M, a.e. In this
case, the mixing distribution function H is related to the distribution function M as follows:

M(y) =
∫ ∞

0 t
n
2 −1g(t) dt

�
(

n
2

)
∫

(0,y]

(
−u

n
2

)
dH

(
(2u)−

1
2

)
. (3.11)
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Proof. If (3.10) holds then, for k ∈ {0, 1, 2, . . .} and t > 0,

(−1)k g(k)(t) =
∫ ∞

0
yke−ty dM(y)�0

and X ∼ SMNn (�, �, H) for some mixing distribution function H .
If X ∼ SMNn (�, �, H), then, by equating (2.2)–(3.2) we obtain that

g (t) =
∫ ∞

0 s
n
2 −1g(s) ds

2
n
2 �

(
n
2

)
∫ ∞

0
v−n exp

{
−1

2
v−2t

}
dH(v) (3.12)

for almost all t , and now, by making the change u = 1
2v−2, we obtain

g (t) =
∫ ∞

0 s
n
2 −1g(s) ds

�
(

n
2

)
∫ ∞

0
exp {−tu}

(
−u

n
2

)
dH

(
(2u)−

1
2

)

=
∫ ∞

0
e−ty dM (y) (3.13)

for almost all t , where M is as in (3.11). �

If we know the inverse Laplace transform M of g, we may use (3.11) to find H , as we
will show in Section 4. Furthermore, the next corollary shows an explicit expression for the
density h of H , whenever it exists. It is obtained easily by differentiating in (3.11).

Corollary 11 (Mixing density function). Suppose that (3.10) and (3.11) holds. Then dis-
tribution H is absolutely continuous, with density h, iff M is absolutely continuous. In this
case

g(t) =
∫ ∞

0
e−tym (y) dy

with m(y) = M ′ (y) a.e., for almost all t, and

m (y) =
∫ ∞

0 s
n
2 −1g(s) ds

2
3
2 �

(
n
2

) y
n−3

2 h
(
(2y)−

1
2

)
, (3.14)

a.e. and, therefore,

h (v) = 2
n
2 �

(
n
2

)
∫ ∞

0 t
n
2 −1g(t) dt

vn−3m

(
1

2
v−2

)
. (3.15)

Remark. Some results about the moment
∫ ∞

0 v−n dH (v) can be obtained. If (3.10) (and
(3.11)) holds then (see (3.12) and also (3.3))∫ ∞

0
v−n dH (v) = 2

n
2 �

(
n
2

)
∫ ∞

0 s
n
2 −1g(s) ds

× g(0)

= (2�)
n
2 |�| 1

2 f (�; �, �, g).

It will be
∫ ∞

0 v−n dH (v) < ∞ iff g (0) < ∞ or, equivalently, if f (�; �, �, g) < ∞.
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Remark. Function M , given by (3.11), is a distribution function of a measure. Its limit at
infinity is limy→∞ M(y) = g(0) (put t = 0 in (3.13) and compare with (3.11)). Therefore,
M is a distribution function of a finite measure iff g(0) < ∞ (or

∫ ∞
0 v−n dH (v) < ∞

or f (�; �, �, g) < 0). In this case, if we have chosen the functional parameter g so that
g(0) = 1 (the reparametrization g∗(t) = g(t)/g(0) can do it), function M is a probability
distribution function.

4. Some examples and applications

First, in light of the obtained results, we are going to realize the utility of the previous
concepts for a comprehensive treatment of the relationship between e.d.’s and s.m.n.d.’s.

Next, we consider three families of elliptical distributions and study their possible rep-
resentation as scale mixtures of normal distributions.

We put q(x) = (x − �)′ �−1 (x − �).

4.1. Examples of mixtures

A degenerate mixture: If we make H(v) = I[v0,∞)(v) (the distribution function of a
probability degenerate in v0), for some v0 ∈ (0, ∞), in (3.1), then f ( · ; �, �, H) is
the normal density Nn

(·; �, v2
0�

)
. This is an elliptical density with functional parame-

ter g(t) = exp
{
− 1

2v−2
0 t

}
. We may check that g, in fact, satisfies (3.8): (−1)k g(k)(t) =

2−kv−2k
0 e− 1

2 v−2
0 t �0. Also, the results of Section 3.3 permit us to get back H from g. In this

case, g is the Laplace transform of distribution function M(y) = I[
2−1v−2

0 ,∞
) (y). From

(3.11) we have that

I[
1

2v2
0
,∞

) (y) =2
n
2 vn

0

∫
(0,y]

(
−u

n
2

)
dH

(
(2u)−

1
2

)
=vn

0

∫
[
(2y)

− 1
2 ,∞

) v−n dH (v) ,

and hence
∫

[z,∞)
v−n dH (v) = v−n

0 I(−∞,v0] (z). This implies that PH ((−∞, v0)) =
PH ((v0, ∞)) = 0 and PH ({v0}) = 1, where PH is the probability whose distribution
function is H . Therefore, H(v) = I[v0,∞)(v).

A uniform mixture: If n = 3 and H has density h(v) = I(0,1)(v), then f (x; �, �, H) =
(2�)− 3

2 |�|− 1
2 (q(x))−1 exp

{
− 1

2q(x)
}

for x �= � and f (�; �, �, H) = ∞. This is an

elliptical density with functional parameter g(t) = t−1 exp
{
− 1

2 t
}

. Again we may check:

(−1)k g(k)(t) = k!t−(k+1)e− t
2
∑k

j=0
1
j !

(
t
2

)j �0. And we also can get back H from g: by
making use of the inverse Laplace transform we obtain that m(y) = I(

1
2 ,∞

) (y), and from

(3.15) we get h (v) = I(0,1) (v). Note that in this case M (y) = yI[
1
2 ,∞

) (y), and then

limy→∞ M(y) = f (�; �, �, H) = ∞.
A Pareto mixture: If n = 3 and H has density h(v) = v−2I[1,∞)(v), then the mixture

density (3.1) is just the E3 (�, �, g) density with g(t) = t−2
(

2 − (2 + t) exp
{
− 1

2 t
})
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for t > 0. In this case we have f (�; �, �, H) = 2− 7
2 �− 3

2 |�|− 1
2 < ∞. Again we check:

(−1)k g(k)(t) = 2 (k+1)!
tk+2

(
1 − e− t

2
∑k+1

j=0
1
j !

(
t
2

)j
)

�2 (k+1)!
tk+2

(
1 − e− t

2
∑∞

j=0
1
j !

(
t
2

)j
)

=
0. Now we obtain H from g: by making use of the inverse Laplace transform we ob-
tain that m(y) = 2yI(

0, 1
2

) (y), and now (3.15) yields h (v) = v−2I[1,∞) (v). In this case

limy→∞ M(y) < ∞ and f (�; �, �, H) < ∞, too.

4.2. Application to the study of elliptical distributions

Pearson-type VII distribution: For any positive integer n, let

f (x) = �
(

m+n
2

)
(m�)

n
2 �

(
m
2

) |�|− 1
2

(
1 + m−1q (x)

)− m+n
2

(4.1)

for some m ∈ (0, ∞). This is a En (�, �, g) density with g(t) = (
1 + t

m

)− m+n
2 . We have

(−1)k g(k)(t) =
(

1 + t

m

)− m+n
2 −k �

(
m+n

2 + k
)

m
m+n

2 �(m+n
2 )

�0;

therefore, (4.1) is a SMNn (�, �, H) density for some H . We obtain H from g: the use of
Laplace transform yields m(y) = m

m+n
2

(
�

(
m+n

2

))−1
e−myy

m+n
2 −1, and from (3.15) we get

h (v) = m
m
2

(
�

(
m
2

))−1 2−(m
2 −1) exp

{
− 1

2mv−2
}

v−m−1.

If V is the mixture variable, then W = mV −2 has the gamma G
(

1
2 , m

2

)
distribution. If

m is an integer, then (4.1) is a Student’s t density, and variable W has the �2
m distribution. If

m = 1, (4.1) is a Cauchy density.
Pearson-type II distribution: For any n, let

f (x) = �
(

n
2 + m + 1

)
�

n
2 � (m + 1)

|�|− 1
2 (1 − q (x))m I[0,1) (q (x))

for some m ∈ (−1, ∞). This an instance of an e.d. that is not a s.m.n.d., because its
functional parameter, g(t) = (1 − t)m I[0,1)(t), does not satisfy condition (3.8), for the
lack of continuity at 1 of some of its derivatives g(k). Actually, g(k)(1+) = 0 for all m ∈
(−1, ∞); but, for m < 0, we have g(1−) = ∞; for any non-negative integer m, we have
g(m)(1−) = (−1)m m!; and for positive non-integer m, g(	m
)(1−) is ∞ if the integer part,
	m
, of m is even, and is −∞ if 	m
 is odd.

Logistic distribution: Here a density is shown that, as opposed to the previous distribution,
is positive everywhere, but is not a scale mixture of normal densities either. For any n we
consider the density (see [5])

f (x) = �
(

n
2

)
�

n
2
∫ ∞

0 t
n
2 −1 e−t

(1+e−t )
2 dt

|�|− 1
2

exp {−q (x)}
(1 + exp {−q (x)})2

.
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Here g(t) = e−t
(
1 + e−t

)−2 and condition (3.8) is not satisfied, because (−1)2 g(2)(t) =
e−t

(
1 + e−2t − 4e−t

) (
1 + e−t

)−4
< 0 for t ∈

(
0, − ln

(
2 − √

3
))

.
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