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Asymptotic theory

1. Introduction

Let x; be independently distributed as the multivariate normal distribution with the mean vector u; and the positive
definite covariance matrix X; fori = 1,2 and j = 1,2,...,N; For notational convenience, we shall denote it as
Np(pi, %), i = 1,2, where p denotes the dimension of the random vectors x;. In this article, we consider the problem
of testing the hypothesis

H:py=p, (1.1)
against the alternative
Aty # Hy, (1.2)

when the covariance matrices X; and X, of the two groups may be unequal. This problem has recently been considered
by Chen and Qin [2] who proposed a test which we denote by T,. The test T,; will be described in Section 2 from which it
will be clear that it is a rather complicated test and requires considerable terms in programming and computing. Also, it is
shown that the T, test is almost identical to a test that can be obtained by generalizing the Bai and Saranadasa [1] test when
Y1 # X,.In addition, the test T4, although invariant under the group of orthogonal transformations, is not invariant under
the units of measurements. That is, if we consider Dx;; instead of x;;, where D is a nonsingular p x p diagonal matrix, the test
T4 changes, which is an undesirable feature. It may be noted that when N; is less than p, no fully affine invariant test exists.
Thus, in this article, we propose a test that is invariant under the transformation of the observation vector x;; by nonsingular
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p x p diagonal matrices. It will be shown that this new test, denoted by T, performs better than T,. To describe this new
test T, we introduce some notations withn; = N; — 1, i =1, 2:

Ni Ni
B 1 i 1 i B _,
X = N E x; and S = - E X — X)) (% — X)) (1.3)
tj=1 tj=1

In high dimensional data, since N; may be less than p, the sample covariance matrices S; may be singular. However, the
diagonal matrices consisting of only the diagonal elements of §; = (s), i = 1, 2, namely,

D; = diag(sii1, - - S Sipp), 1=1,2, (14)
are non-singular matrices. Let
PIRLIL PR (15)
NN, T '
Then
~ S S\l
R=D1V?2 (4= \Dp V2= (., 1.6
N, + N, (ryp) (16)

is the sample correlation matrix, while §; may not converge to X; in probability since N; may be less than p, ﬁi converges in
probability to D;, where

D; = diag(oi11, - . -, Oipp)» Y = (o), i=1,2, (1.7)

if maxq<k<p ok < oo uniformly in p. Let

D=4 2 (g (18)
NN, T '
Then, D — Din probability. Similar to the sample correlation matrix R, we define the population correlation matrix & by
_ X X\,
R=D"?(=+=|D2 = (p). 19
N, + N, (py) (1.9)

We note that under the null hypothesis H in (1.1),

E[(® — %,)D' (& — %;)] = tr D" (E + E)

N1 N
=trR =p.

Also, under the null hypothesis H in (1.1),

Var[(%; — X,)'D™'(%; — X;)] = Var(X,D"'%; + X,D"'%, — 2%,D"'x;)

= Var(x,D"'%;) + Var(x,D"'%;) + 4Var(¥,D"'x;)

2tr(D1%4)? N 2tr(D~1%,)? N 4trD~'yD7'%,

N? N2 NiN,
p~'/2x,Dp"1/? p~23,p1/2 2
= 2tr _— |+ —
Ny N,
= 2tr R°.

-1
ij

Following Corollary 2.6 of [5], we have fori = 1,2andj = 1,...,p that E(sy_jl) = 0,171 + O(Ni_l). Hence, s

oy ' 4 Op(N;"). Thus,

D' =D"[1+0,(N;")].  Nm = min(Ny, No),
which implies

G, = ® —%)D "% — %) —p

n ﬁ
X — X)) D71(% — %) — p[1+ O,(N,!
_ (%9 2) (%9 2) — p[1+ O,(N,, )][1+OP(N11_11)]

VP
VP

=qn+0p (N—> (1.10)
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where

. (@@ —%)D'® —%)-p
n \/ﬁ

Assume N,, = 0(p®), 8§ > 1/2, then it follows that 0y (o/P/Nm) = 0,(1). Thus, §, — Gy in probability. We note under the

null hypothesis H in (1.1) that E(G,) = 0 and the variance of g, is given by

(1.11)

2tr R?

Var(g,) = ~ Var(qn). (1.12)

It may be noted that E(g,) = p~"?(st; — #t,)'D~ ' (; — ) > 0, which takes the value 0 if and only if ., = ,. Thus, our
proposed test is a one-sided test. Similarly, it can be shown that all other tests considered in this paper are also one-sided.

For obtaining a ratio consistent estimator of it (the ratio between it and the estimator converges to 1 in probability) and
in order to find an asymptotic null distribution of §,, we make the following assumptions:

Assumption (A).

(A1) 0 < ¢ < mMing<k<p Oikk < MaAX;<k<p Tikk < C2 < 0o uniformly in p,
(A2) limp_, o tr R*/(tr R?)? =0,

(A3) Ny/N - ke (0,1)asN = N; + N, — o0,

(A4) N, = 0(p%), 8 > 1/2, N, = min(Nq, No).

Remark 1.1. Chen and Qin [2] assume the condition
. tr Ejzjszg
im ——————
p—oo {tr(Xq + X2))?
instead of (A2). Without loss of generality, we can assume N; < Nj. Since
2C1N < D] & < 2C2Nlp
Ny N, N1N;

under the assumption (A1), it follows that

=0, i,j,k,¢=1o0r2 (1.13)

1 N2
tr R < —tr{D7' (T + T)H < —2—tr(T; + Xp)°,
N{ 16¢7N4
2

1 N
tr R = tr(D7 (T + Ty = o tr(E + )%
N; 4c5N

Hence,

)

tr Rt <C2N2>4 tr £} 4 4tr B]%, + 6tr 2125 +4tr T, 55 +tr ¥)
(tr 2 ~ \c1N; {tr(Z1 + X)?)?

which implies that (A2) is weaker than (1.13). We note that the assumption (A1) is not required in [2]. However, the
assumption (A1) is not so strong and unrealistic.

It may be noted that

1 1 IS AN
—trR?: =~ |tr {D_1 (—] + —2>}
P p Ny N

= itr(D”E])2 + itr(D‘l):z)2 +
PN} pN?

tr(D~ 12 D7'%,)

PN1N;
=F 4+ F +2G, say, (1.14)

where

1 1
F,= —tr(D7'%))?, G= tr(D~ '3 D7 1'%,). 1.15
i lez ( 1) pN1N2 ( 1 2) ( )

From Lemma 2.1 of [4] and Lemma 3.2 of [6], under Assumption (A), it is found that F; and G can be estimated by ratio
consistent estimators

~ 1 ~ ~
F= E[tr(D*]Si)z —n; ' (tr D7'S)%, (1.16)
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and
~ 1 n—-1lc. n-1
G= *tl‘(D S:D 52), (1.17)
p

respectively. Thus, a ratio consistent estimator of Var(q,) under Assumption (A) is given by

2F, 2F, 4G

var(g,) = — + —
(qn) N12 sz NN,
2tr R? 2 . .
= - S (tr D7'S;)* — S (tr D'S,)%. (1.18)
p pn1N1 pny 2
For testing the null hypothesis H in (1.1), we propose the statistic
q X —%)D(® — %) —
T — AQn _ (%1 — X2) A( 1— %) P, (1.19)
Y, Var(an)cp,n V PVar(@n)Cp,n
where
1+ ur R® (1.20)
Con = —_ .
p.n p3/2

This ¢, , is a correction term going to one to speed up the convergence. This correction term has been given by Srivastava
and Du [6] in the connection of a test when the covariance matrices of the two groups are equal. See [5] for the robustness
of Srivastava and Du [6] test.

For the asymptotic distribution of the statistic T under the hypothesis H in (1.1), we have the following theorem:

Theorem 1.1. Under the null hypothesis H in (1.1) and under the Assumption (A), the asymptotic distribution of the statistic T
as (N, p) — o< is given by

lim Po(T > 2z1-4) = 1= P (21-0),
(N,p)—o00

where @ denotes the distribution function of a standard normal random variable with mean 0 and variance 1, z,_ is the upper
(1 — @) x 100% point of the standard normal distribution, and Py denotes that the distribution have been obtained under the
hypothesis that p, = j,.

To obtain the asymptotic distribution of T under the alternative in (1.2), we choose the local alternative as defined in the
following assumption:

Assumption (B). As (N, p) — oo
(1 — 1) D™PRD™2 (g — ) = o(tr R).

Remark 1.2. Instead of Assumption (B), Chen and Qin [2] assume
N(py — 1) iy — py) = oftr(Ey + p)°}, i=1,2,
which is clearly stronger when D; = oil, fori =1, 2.
The next theorem gives the asymptotic distribution of the test statistic T under the local alternative defined in

Assumption (B).

Theorem 1.2. Under Assumptions (A) and (B), the asymptotic distribution of the statistic T is given by
— 'p—1 —
<_Z]—o( i (1 — 13) (1 ﬂz)) ,

A 2tr R?

where Py denotes that the distribution has been obtained under the alternative in (1.2), and z,_,, is the upper (1 — «) x 100%
point of the statndard normal distribution.

lim Pl(T > Zl—ot) =@
(N,p)—o00

The organization of the paper is as follows. In Section 2, we describe the statistic T, proposed by Chen and Qin [2] and
compare the performance with the proposed statistic T. In Section 3, we compare the powers of the proposed statistic with
T4 statistic as well as with the usual generalized statistic T, defined in Section 2 theoretically and numerically. In Section 4,
we give the proofs of Theorems 1.1 and 1.2. The concluding remarks are given in Section 5.
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2. Recently proposed statistic

In this section, we describe a recently proposed test statistic for testing the hypothesis that the mean vectors of the two
groups are equal when the number of observations from each groups are smaller than the dimension and when it has been
found that the two groups have unequal covariance matrices by the test given by, e.g., [7]. A simple generalization of the
test statistic proposed by Bai and Saranadasa [1] is given by

Q= [® — %)@ — &) — N;'trS; — N, 'tr S,1/p"/%.

The variance of this statistic is given by

of = iztr 2+ iztr 2+ tr $,3,.
PN; PN; PN1N;
A consistent estimator of aé from [5] is given by
o 2 2
Q= 2 —ay + N2 —lp + NN, tr $15;,
where
Gy = n—f [trsi2 - 1(trS,')21|
p(ni — H(ni + 1) n;

1

1 , 1 2 .
—|trSf — —(trs)°|, i=1,2.
p n;

Under the normality assumption d; is the best estimator of tr ):l-z/p in the sense that it is unbiased and is based on
sufficient statistics and thus will have uniformly minimum variance among all unbiased estimators. Thus, the usual test
statistic for testing the null hypothesis H in (1.1) can be based on

T, = —.
0q
Before describing the test statistic T,; proposed by Chen and Qin [2], we observe that
_ o _ 1 1 - 1 - 1 -
X1 — %) (%1 — %) — N—ltrS1 — N—ztrsz = <x1x1 — N—ltr Sl> + (xzxz — N—ztrsz> — 2X X;,

and since

n; tl‘S - Z(xlk - Xl) (xlk - xl) - lekxzk Zx”(xllv i= 1, 2

k= Ni [ ¥4

we have fori =1, 2,

Ni Ni
XX — rs_ 1 Zx/ Xi¢ L Zx/x, Zx Xi¢
i Xi == wXie = = wXik — ikXi
N,' Ni k.l N,'n,' =1

Ni k.t
1 1\ &
= ——i——)i X Xip — E X} Xig
2 2 ikt ik
<N1- Ni n; ; i =1
Ni
/
= X X X
Z ikXit — ikNik
Nini 45 Nf i 3=
= § :szxllZ
Nini {7

Thus, it follows that

+ — sz,xzj 2%, X;.
i#j

1 1
X — %)X — %) — —trS§; — —trS
(X1 — %) (%1 — X3) NS S

Hence, the statistic T.; proposed by Chen and Qin [2] is given by
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where
05:7[ tr ¥2 + tr X2 + tr/ETZz]
p [Nimy Nanp NiN;
— 1 Ni
= ——tr > (X — Rig XX — Riga)Xy (. i=1,2,
Nini 7k

N1 Ny

= 1 - ’ - ’
tr X%, = NN, tr {Z Z(Xu — X13)) X7 (X2 — Xz(k))XZk} ,

j=1 k=1

with

_ 1 _ . .
Xk = m(Nixi —X;—Xxy), i=12jk=1,... N,

)_l,'(k):nli(Nj)_C,'—X,‘k), i:1,2; k:],...,N,‘.

Clearly, the statistic T, differs from the statistic T, in that it uses a different estimator of the variance aé. No theoretical
reasons have been given as to why one should use their estimator of aé than the uniformly minimum variance unbiased
estimator of aé in the case where the observations are normally distributed. Indeed it is shown that the performance of the
usual test statistic T, is no inferior than the test statistic T¢,. In addition, the estimator 6 requires much more computing
and programming and takes considerably longer time in simulation. Irrespective of the selection between T, and T, the
proposed statistic performs better than both of them. The asymptotic distribution of the statistic T, can be obtained on the
same lines as the one obtained for the statistic T. It may be noted that Chen and Qin [2] have obtained the distribution of T,
under weaker conditions than normality.

3. Power comparison

In this section we compare the power of the proposed test with that of the test T, since the asymptotic power of the
test T, is identical to that of T, as both tests have the same numerator in the statistic while the denominator converges
to the same quantity aé. We first do a theoretical comparison in Section 3.1, and then in Section 3.2, we compare them by
simulation.

3.1. Theoretical power comparison

The theoretical power of the proposed test for large (N, p) is given in Theorem 1.2 of Section 1. The theoretical power of
T4 (as well as of T,,) has been derived by Chen and Qin [2]. It is given by

m J ] > Z1— =@ | —z_ + — |, .l
(N.p) 1\ cq 1—«a 1-«a = (l )

where £(k) = (1 — k)Z; + kX, k= N{/N,N = N; + N, and § = p; — i,. It may be noted that
[Nk(1 — k)] 72tr £(k)? = N;2tr 22 4+ N, 2tr 22 + 2(N;Ny) ~'tr 3, %,
= (T + %)%,

when N; = N, = n* that is, when the sample sizes are equal. Furthermore, for diagonal matrices ¥; = D; =
diag(d;, ..., djp), the power given in (3.1) becomes
cp[ Zica + ”*‘”} (32)
41— Y | .
¢ V2c
where ¢ = le cj2 with ¢; = dy; + dy;. The power of the proposed test for equal sample size n* and diagonal matrices for

¥, and X, becomes

@ [—zla + (3.3)

n*§'D; 18]
v2p

since R = I,. Here D. = Dy + D, = diag(cy, ..., ¢p).
It may be noted that since the test statistic T, is invariant under the group of orthogonal transformations, the two

covariance matrices can be assumed to be diagonal for equal sample sizes provided X; and X, are exchangeable, namely,
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¥1X, = X, X;.Fortheoretical comparison, we make this assumption. It may be noted that the proposed statistic T, although

invariant under nonsingular diagonal matrices, it is not orthogonally invariant. Furthermore, we assume that the local
alternatives for both tests are such that

&8 . &D18

0 < lim — = lim ]

p—>0o0 p p—>0o0 tr DC_

It is noted that (3.4) is satisfied if § = (3, ..., 8)’, § # 0.1t is shown in Eq. (6.3) of [6] that

< 0. (3.4)

1/2

1
Yoz (35)

i=1

=T S

i 2
G

i=1

and hence for R = I,

N N _ic‘_] VP

p
—1
C:
88 ,; ! 88 88
~ — > =—, (3.6)
p P p Ve
>cf
i=1
where ‘>’ is strict unless ¢; = - - - = ¢,. Thus, we get the following theorem:
Theorem 3.1. Assume that %; = diag(dj, ..., djp), Ny = N, = n* and the Assumption (A). Under the local alternatives

satisfying (3.4), the power denoted by £ of the three tests have the following relationship:
B(T|8) = B(Teqld) = B(Tuld),

with strict inequality unless ¢y = - - - = ;.

Thus, in the case of equal sample sizes N; = N,, the proposed test is superior to the tests using the statistics T.; and T,,.

3.2, Comparison of powers by simulation

In this section, we compare the performance of the proposed statistic T with the usual statistic T, and T, in finite samples
and dimensions by simulation. We first examine the attained significance level (ASL) of the test statistics T and T., compared
to the nominal value « = 0.05, and then we examine their attained power. Assume that the data is generated from the model

xij:ui—i-):i]/zz,-j, i=1,2;j=1,...,n,

where z; = (zj1, - - - , Zjp)T and z;'s are independent random variables which are distributed as either of the following three
distributions:

ONO. 1, () O —2)/4 (D) (x5 — 8)/4.

The ASL is computed as @ = #(Ty > z;_o)/r where Ty are values of the test statistic obtained from data simulated
under H, r is the number of replications and z;_,, is the 100(1 — «)% point of the standard normal distribution. From this
simulation, we also obtain z;_, as the 100(1 — «)% point of the empirical distribution of Ty;. We define the attained power
of the test T as B = #(Ty > Zi_q)/1, Where T, are values of the test statistic computed from data simulated under the
alternative.

In Tables 1 and 2, the ASL and the attained power of T, T, and T, are given for X; = DR1D, D = diag(dy, ..., d,),
di=2+@—i+1/p R = (), ri =115 = (=102 i % jand T, = WR,W, ¥ = diag(¥1, ..., V)
withy; = 4+ (p— i+ 1)/p. R = (). pi = 1, pj = (—1)H(0.4)1=1"" i 5 j. For the null hypothesis, we choose
1 = 1, = 0and for the alternative we choose u; = 0and u, = (uy, ..., u,)’, where u; = (—1)iy; with v; are i.i.d. as
U(1/2, 3/2) which denotes uniform distribution with the support (1/2, 3/2). In Tables 3 and 4, the ASL and the power are

given when ; i.i.d. as x# with the rest remaining the same. In the tables, we use 1000 replications of the test statistic. Also
we take N; = N, = n* for simplicity.
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Table 1
Attained significance levels of T, To; and T, when ¥; = 4+ (p —i+ 1)/pand n* = N; = N,.
p n* Zip iid. N(O, 1) Zip iid. (x2 —2)/2 zZj iid. (x2 — 8)/4
T Teq T, T T T, T Ty T,

60 30 0.083 0.090 0.090 0.072 0.072 0.069 0.073 0.078 0.079

100 40 0.074 0.091 0.090 0.071 0073 0073 0.084 0.097 0.097
60 0.066 0.086 0.086 0.049 0.066 0.065 0.057 0.066 0.067

80 0.054 0.069 0.069 0.071 0.084 0.083 0.052 0.074 0.074

100 0054 0082 0082 0043 0065 0065 0049 0.075 0.075

150 40 0.062 0.072 0.075 0.068 0.082 0.081 0.058 0.072 0.072
60 0.057 0.079 0.079 0.054 0.067 0.066 0.059 0.075 0.077

80 0.063 0.091 0.091 0.058 0.079 0.079 0.048 0.067 0.067

100 0049 0073 0074 0058 0070 0070 0.055 0.067 0.066

150 0055 0079 0078 0.045 0.066 0.066 0.041 0.050 0.050

200 0.045 0.066 0.066 0.042 0.057 0.057 0.053 0.073 0.073

200 40 0.055 0.068 0.068 0.058 0.077 0.073 0.067 0.084 0.081
60 0.060 0.078 0.079 0.057 0.074 0.073 0.072 0.093 0.093

80 0.067 0.087 0.085 0.044 0.069 0.069 0.045 0.065 0.065

100 0060 0087 0088 0041 0068 0.067 0.047 0.062 0.062

150 0043 0069 0070 0048 0076 0075 0.044 0.063 0.063

200 0.043 0.076 0.076 0.042 0.068 0.068 0.048 0.067 0.067

250 0.045 0.063 0.063 0.047 0.072 0.071 0.053 0.068 0.070

Table 2
Attained powers of T, Tog and T, when vy =4+ (p — i+ 1)/pand n* = N; = N,.
p n* Zj id.d. N(0, 1) Zj iid. (x2 —2)/2 zy iid. (x2 — 8)/4
T Teq T, T Teq Ty T Teq Ty

60 30 0245 0249 0250 0316 0327 0324 0320 0335 0.338

100 40 0378 0368 0371 0384 0403 0407 0.38  0.409 0.413
60 0537 0519 0521 0590 0552 0558 0.616 0.610 0.621

80 0664 0673 0.670 0.678 0.669 0.674 0.678 0.680 0.688

100 0810 0814 0814 0.842 0.821 0.822 0834 0819 0.821

150 40 0456 0468 0466 0435 0442 0433 0430 0438 0.435
60 0.587 0.600 0.601 0.632 0.631 0.632 0.625 0.632 0.636

80 0672 0.670 0.668 0.733 0.730 0.731 0706 0.712 0.713

100 0823 0828 0830 0833 0830 0829 0810 0.807 0.807

150 0964 0964 0964 0962 0955 0955 0966 0.960 0.960

200 0995 0993 0993 0990 0990 0990 0995 0.995 0.995

200 40 0488 0475 0476 0462 0453 0451 0457 0.464 0.458
60 0608 0.619 0619 0615 0618 0.620 0.607 0.618 0.623

80 0770 0773 0774 0780 0771 0772 0778 0776 0.779

100 0.808 0792 0794 0896 0.894 0.893 0896 0.893 0.893

150 0960 0959 0959 0966 0964 0964 0964 0.960 0.960

200 0.990 0986 0986 0983 0984 0984 0990 0.988 0.988

250 0999 0999 0999 0998 0998 0998 1.000 1.000 1.000

It is shown that the attained significance levels of the proposed test T approximate « = 0.05 well except when the
sample size is very small. As shown in Table 2, the powers of T, T, and T, are almost the same. In Table 4, however, the
power of T is substantially higher than those of T; and T,,. The reason can be given as follows. Since the non-diagonal terms
of R 1 and R, are close to 0, it can be regarded that both X; and X, are the diagonal matrices. Then, the asymptotic powers
of T and T, (or T,) are given by (3.2) and (3.3) respectively, and the value of (3.3) is significantly larger than that of (3.2) in
the settings of Table 4. Generally, the value of (3.3) seems to be larger than that of (3.2) when the difference between the
maximum and minimum values of {oy;|i = 1,2; j=1, ..., p}islarge.

4. Proofs of theorems in Section 1

In this section, we give the proofs of the two theorems stated in Section 1. We begin with the proof of Theorem 1.1.

4.1. Proof of Theorem 1.1

Since g, — @, in probability as shown in Section 1, we need only to find the distribution of the statistic
X —%)D7 'R — %) —p
(2tr R?)1/2

T:
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Table 3
Attained significance levels of T, T.; and T, when v; i.i.d. as x32 and n* = Ny = N,.

T Ty T, T Ty T, T Te T,

60 30 0.077 0.085 0.089 0.117 0.084 0.072 0.091 0.069 0.068

100 40 0.069 0.089 0.089 0.117 0.097 0.092 0.078 0.069 0.069
60 0.067 0.075 0.075 0.074 0.075 0.071 0.067 0.081 0.080

80 0.059 0.072 0.071 0.055 0.059 0.055 0.059 0.071 0.071

100 0.063 0.080 0.079 0.074 0.075 0.074 0061 0.067 0.066

150 40 0.054 0.063 0.063 0.108 0.088 0.088 0.068 0.079 0.079
60 0.058 0.061 0.062 0.074 0.082 0081 0073 0.074 0.072

80 0.052 0.061 0.061 0.079 0.071 0.069 0.059 0.077 0.077

100 0.058 0.067 0.067 0.067 0.076 0.074 0071 0.077 0.077

150 0.048 0.069 0069 0070 0.084 0.084 0.070 0.073 0.073

200 0.066 0.080 0080 0055 0065 0065 0046 0.059 0.059

200 40 0.073 0.079 0.080 0.113 0.093 0.089 0.085 0.086 0.085
60 0.061 0.073 0.074 0.072 0.070 0.066 0.078 0.082 0.082

80 0.069 0.086 0.086 0.084 0.072 0071 0073 0.082 0.082

100 0.070 0.083 0.083 0066 0062 0060 0064 0.073 0.072

150  0.057 0.085 0.085 0.054 0073 0069 0039 0.047 0.045

200 0.043 0.053 0.052 0065 0.081 0080 0049 0.072 0.072

250 0.068 0.083 0083 0059 0076 0.075 0.059 0.070 0.069

Table 4
Attained powers of T, Ty and T, when v; i.id. as xZ and n* = Ny = N,.
p n* Ziy i.i.d. N(0, 1) Zigeidd. (x2 —2)/2 Z iid. (x2 — 8)/4

T Ty Ty T Ty T, T T Ty

60 30 0738 0268 0272 0726 0540 0541 0.708 0.431 0.441

100 40 0.824 0395 039 0754 0427 0433 0.832 0.369 0.378
60 0979 0727 0731 0993 0.884 0.883 0.993 0.803 0.808

80 0.998 0.884 0.883 0.999 0959 0.960 0.998 0.953 0.956

100 0999 0927 0926 1.000 0952 0952 1000 0.990 0.990

150 40 0966 0.621 0.622 0.840 0472 0458 0.875 0.495 0.496
60 0982 0654 0655 0988 0.603 0598 0996 0.815 0.817

80 1.000 0964 0963 1.000 0944 0944 0999 0.870 0.874

100 1.000 0978 0979 1000 0858 0853 1000 0.982 0.982

150 1.000 1.000 1.000 1.000 1000 1000 1.000 0.999 0.999

200 1.000 1.000 1.000 1.000 1.000 1000 1.000 1.000 1.000

200 40 0928 0.628 0.624 0914 0557 0566 0926 0.528 0.540
60 0.997 0.852 0.854 0998 0.868 0.867 0975 0.660 0.660

80 1.000 0.858 0.856 1.000 0.966 0.966 1.000 0.938 0.940

100 1.000 0960 0960 1.000 0996 0996 1000 0.986 0.987

150 1.000 1000 1000 1000 1000 1.000 1.000 1.000 1.000

200 1.000 1.000 1.000 1.000 1.000 1000 1.000 1.000 1.000

250 1.000 1.000 1.000 1.000 1000 1000 1.000 1.000 1.000

Under normality assumption,
u=&R 2D (R — &) ~ Ny(0, I).
Thus,
uRu—p
(2tr R2)1/2°
Let Aq, ..., A, be the eigenvalues of R = GD; G’ where GG’ = I, and D, = diag(Aq, ..., A,). Then,
P

T=
2 )4

)»i(vi — ]) ZZ,'
,i‘., — i=1 i=1

QU RHZ T 2u R

where v = (v1,...,vp) = G'u ~ Ny(0,1,) and z; = Ai(vf — 1). Thus, zy, .. ., z, are independent random variables with
E(z)) = 0, E(z?) = 21} and E(z}) = 60A}. Under the assumption (A2), Lyapunov’s condition (see, [3, p. 332]) is satisfied for
é = 2, namely,

p
E(z}
,; @) tr R*

=15 —
(2tr R?)? (tr R?)?

0, p— oo.
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Hence, from Lyapunov’s central limit theorem, it follows that T is asymptotically normally distributed under the hypothesis
that u; = p,. This proves the theorem.

4.2. Proof of Theorem 1.2

We note that
QuURHVPT = & — % — py + 1) D & — X — 1y + Hy)
+2(ry — ) D7 (R — &) — (q — 1) D7 (g — y)
and
Var[(py — )’ D™ & — &) = (i — ) D RD™V (g — py) = o(tr R2).
Hence,
(1 — ) D™ Ry — X)) — (o — )’ D™ ey — ) R
(2tr R?)1/2

in probability from Assumption (B). From Theorem 1.1, the first term on the right hand side is asymptotically distributed as
N(0, 1). This ends the proof.

0,

5. Concluding remarks

In this paper a new test statistic is proposed for testing the equality of the two mean vectors when the covariance matrices
of the two groups are not equal. It is required that both N; = O(p®), § > 1/2 and both N; and p go to infinity. It has
been shown that the proposed test which is invariant under nonsingular diagonal matrix transformation of the observation
vectors performs much better than the T, statistic proposed by Chen and Qin [2], as well as the usual test statistic which is
simple and easier to compute. This usual test T,, performs as good as T.
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