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a b s t r a c t

In this paper we propose a test for testing the equality of the mean vectors of two
groups with unequal covariance matrices based on N1 and N2 independently distributed
p-dimensional observation vectors. It will be assumed that N1 observation vectors from
the first group are normally distributed with mean vector µ1 and covariance matrix Σ1.
Similarly, the N2 observation vectors from the second group are normally distributed with
mean vectorµ2 and covariancematrixΣ2.We propose a test for testing the hypothesis that
µ1 = µ2. This test is invariant under the group of p×p nonsingular diagonal matrices. The
asymptotic distribution is obtained as (N1,N2, p) → ∞ and N1/(N1 + N2) → k ∈ (0, 1)
but N1/p and N2/pmay go to zero or infinity. It is compared with a recently proposed non-
invariant test. It is shown that the proposed test performs the best.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let xij be independently distributed as the multivariate normal distribution with the mean vector µi and the positive
definite covariance matrix 6i for i = 1, 2 and j = 1, 2, . . . ,Ni. For notational convenience, we shall denote it as
Np(µi,6i), i = 1, 2, where p denotes the dimension of the random vectors xij. In this article, we consider the problem
of testing the hypothesis

H : µ1 = µ2 (1.1)

against the alternative

A : µ1 ≠ µ2, (1.2)

when the covariance matrices 61 and 62 of the two groups may be unequal. This problem has recently been considered
by Chen and Qin [2] who proposed a test which we denote by Tcq. The test Tcq will be described in Section 2 from which it
will be clear that it is a rather complicated test and requires considerable terms in programming and computing. Also, it is
shown that the Tcq test is almost identical to a test that can be obtained by generalizing the Bai and Saranadasa [1] test when
61 ≠ 62. In addition, the test Tcq, although invariant under the group of orthogonal transformations, is not invariant under
the units of measurements. That is, if we consider Dxij instead of xij, where D is a nonsingular p× p diagonal matrix, the test
Tcq changes, which is an undesirable feature. It may be noted that when Ni is less than p, no fully affine invariant test exists.
Thus, in this article, we propose a test that is invariant under the transformation of the observation vector xij by nonsingular
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p × p diagonal matrices. It will be shown that this new test, denoted by T , performs better than Tcq. To describe this new
test T , we introduce some notations with ni = Ni − 1, i = 1, 2:

x̄i =
1
Ni

Ni
j=1

xij and Si =
1
ni

Ni
j=1

(xij − x̄i)(xij − x̄i)′. (1.3)

In high dimensional data, since Ni may be less than p, the sample covariance matrices Si may be singular. However, the
diagonal matrices consisting of only the diagonal elements of Si = (sijk), i = 1, 2, namely,

D̂i = diag(si11, . . . , sipp), i = 1, 2, (1.4)

are non-singular matrices. Let

D̂ =
D̂1

N1
+

D̂2

N2
= (d̂ij). (1.5)

Then

R = D̂−1/2


S1
N1

+
S2
N2


D̂−1/2

= (rij) (1.6)

is the sample correlation matrix, while Si may not converge to 6i in probability since Ni may be less than p, D̂i converges in
probability to Di, where

Di = diag(σi11, . . . , σipp), 6i = (σijk), i = 1, 2, (1.7)

if max1≤k≤p σikk < ∞ uniformly in p. Let

D =
D1

N1
+

D2

N2
= (dij). (1.8)

Then, D̂ → D in probability. Similar to the sample correlation matrix R, we define the population correlation matrix R by

R = D−1/2


61

N1
+

62

N2


D−1/2

= (ρij). (1.9)

We note that under the null hypothesis H in (1.1),

E[(x̄1 − x̄2)′D−1(x̄1 − x̄2)] = tr D−1


61

N1
+

62

N2


= tr R = p.

Also, under the null hypothesis H in (1.1),

Var[(x̄1 − x̄2)′D−1(x̄1 − x̄2)] = Var(x̄′

1D
−1x̄1 + x̄′

2D
−1x̄2 − 2x̄′

1D
−1x̄2)

= Var(x̄′

1D
−1x̄1)+ Var(x̄′

2D
−1x̄2)+ 4Var(x̄′

1D
−1x̄2)

=
2tr(D−161)

2

N2
1

+
2tr(D−162)

2

N2
2

+
4tr D−161D−162

N1N2

= 2tr


D−1/261D−1/2

N1


+


D−1/262D−1/2

N2

2
= 2tr R2.

Following Corollary 2.6 of [5], we have for i = 1, 2 and j = 1, . . . , p that E(s−1
ijj ) = σ−1

ijj + O(N−1
i ). Hence, s−1

ijj =

σ−1
ijj + Op(N−1

i ). Thus,

D̂−1
= D−1

[1 + Op(N−1
m )], Nm = min(N1,N2),

which implies

q̂n =
(x̄1 − x̄2)′D̂−1(x̄1 − x̄2)− p

√
p

=
(x̄1 − x̄2)′D−1(x̄1 − x̄2)− p[1 + Op(N−1

m )]
√
p

[1 + Op(N−1
m )]

= q̃n + Op

√
p

Nm


, (1.10)
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where

q̃n =
(x̄1 − x̄2)′D−1(x̄1 − x̄2)− p

√
p

. (1.11)

Assume Nm = O(pδ), δ > 1/2, then it follows that Op(
√
p/Nm) = op(1). Thus, q̂n → q̃n in probability. We note under the

null hypothesis H in (1.1) that E(q̃n) = 0 and the variance of q̃n is given by

Var(q̃n) =
2tr R2

p
≃ Var(q̂n). (1.12)

It may be noted that E(q̃n) = p−1/2(µ1−µ2)
′D−1(µ1−µ2) ≥ 0, which takes the value 0 if and only ifµ1 = µ2. Thus, our

proposed test is a one-sided test. Similarly, it can be shown that all other tests considered in this paper are also one-sided.
For obtaining a ratio consistent estimator of it (the ratio between it and the estimator converges to 1 in probability) and

in order to find an asymptotic null distribution of q̂n, we make the following assumptions:

Assumption (A).
(A1) 0 < c1 < min1≤k≤p σikk ≤ max1≤k≤p σikk < c2 < ∞ uniformly in p,
(A2) limp→∞ tr R4/(tr R2)2 = 0,
(A3) N1/N → k ∈ (0, 1) as N = N1 + N2 → ∞,
(A4) Nm = O(pδ), δ > 1/2, Nm = min(N1,N2).

Remark 1.1. Chen and Qin [2] assume the condition

lim
p→∞

tr 6i6j6k6ℓ

{tr(61 + 62)}2
= 0, i, j, k, ℓ = 1 or 2 (1.13)

instead of (A2). Without loss of generality, we can assume N1 ≤ N2. Since

2c1N
N1N2

Ip ≤ D =
D1

N1
+

D2

N2
≤

2c2N
N1N2

Ip

under the assumption (A1), it follows that

tr R4
≤

1
N4

1
tr{D−1(61 + 62)}

4
≤

N4
2

16c41N4
tr(61 + 62)

4,

tr R2
≥

1
N2

2
tr{D−1(61 + 62)}

2
≥

N2
1

4c22N2
tr(61 + 62)

2.

Hence,

tr R4

(tr R2)2
≤


c2N2

c1N1

4 tr 64
1 + 4tr 63

162 + 6tr 62
16

2
2 + 4tr 616

3
2 + tr 64

2

{tr(61 + 62)2}2
,

which implies that (A2) is weaker than (1.13). We note that the assumption (A1) is not required in [2]. However, the
assumption (A1) is not so strong and unrealistic.

It may be noted that

1
p
tr R2

=
1
p


tr

D−1


61

N1
+

62

N2

2


=
1

pN2
1
tr(D−161)

2
+

1
pN2

2
tr(D−162)

2
+

2
pN1N2

tr(D−161D−162)

= F1 + F2 + 2G, say, (1.14)

where

Fi =
1

pN2
i
tr(D−16i)

2, G =
1

pN1N2
tr(D−161D−162). (1.15)

From Lemma 2.1 of [4] and Lemma 3.2 of [6], under Assumption (A), it is found that Fi and G can be estimated by ratio
consistent estimators

F̂i =
1
p
[tr(D̂−1Si)2 − n−1

i (tr D̂
−1Si)2], (1.16)
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and

Ĝ =
1
p
tr(D̂−1S1D̂−1S2), (1.17)

respectively. Thus, a ratio consistent estimator of Var(q̂n) under Assumption (A) is given by

Var(q̂n) =
2F̂1
N2

1
+

2F̂2
N2
2

+
4Ĝ

N1N2

=
2tr R2

p
−

2
pn1N2

1
(tr D̂−1S1)2 −

2
pn2N2

2
(tr D̂−1S2)2. (1.18)

For testing the null hypothesis H in (1.1), we propose the statistic

T =
q̂nVar(q̂n)cp,n =

(x̄1 − x̄2)′D̂−1(x̄1 − x̄2)− p
pVar(q̂n)cp,n , (1.19)

where

cp,n = 1 +
tr R2

p3/2
. (1.20)

This cp,n is a correction term going to one to speed up the convergence. This correction term has been given by Srivastava
and Du [6] in the connection of a test when the covariance matrices of the two groups are equal. See [5] for the robustness
of Srivastava and Du [6] test.

For the asymptotic distribution of the statistic T under the hypothesis H in (1.1), we have the following theorem:

Theorem 1.1. Under the null hypothesis H in (1.1) and under the Assumption (A), the asymptotic distribution of the statistic T
as (N, p) → ∞ is given by

lim
(N,p)→∞

P0(T > z1−α) = 1 − Φ(z1−α),

where Φ denotes the distribution function of a standard normal random variable with mean 0 and variance 1, z1−α is the upper
(1 − α) × 100% point of the standard normal distribution, and P0 denotes that the distribution have been obtained under the
hypothesis that µ1 = µ2.

To obtain the asymptotic distribution of T under the alternative in (1.2), we choose the local alternative as defined in the
following assumption:

Assumption (B). As (N, p) → ∞

(µ1 − µ2)
′D−1/2RD−1/2(µ1 − µ2) = o(tr R2).

Remark 1.2. Instead of Assumption (B), Chen and Qin [2] assume

N(µ1 − µ2)
′6i(µ1 − µ2) = o{tr(61 + 62)

2
}, i = 1, 2,

which is clearly stronger when Di = σiIp for i = 1, 2.

The next theorem gives the asymptotic distribution of the test statistic T under the local alternative defined in
Assumption (B).

Theorem 1.2. Under Assumptions (A) and (B), the asymptotic distribution of the statistic T is given by

lim
(N,p)→∞

P1(T > z1−α) = Φ


−z1−α +

(µ1 − µ2)
′D−1(µ1 − µ2)

√

2tr R2


,

where P1 denotes that the distribution has been obtained under the alternative in (1.2), and z1−α is the upper (1 − α) × 100%
point of the statndard normal distribution.

The organization of the paper is as follows. In Section 2, we describe the statistic Tcq proposed by Chen and Qin [2] and
compare the performance with the proposed statistic T . In Section 3, we compare the powers of the proposed statistic with
Tcq statistic as well as with the usual generalized statistic Tu defined in Section 2 theoretically and numerically. In Section 4,
we give the proofs of Theorems 1.1 and 1.2. The concluding remarks are given in Section 5.



M.S. Srivastava et al. / Journal of Multivariate Analysis 114 (2013) 349–358 353

2. Recently proposed statistic

In this section, we describe a recently proposed test statistic for testing the hypothesis that the mean vectors of the two
groups are equal when the number of observations from each groups are smaller than the dimension and when it has been
found that the two groups have unequal covariance matrices by the test given by, e.g., [7]. A simple generalization of the
test statistic proposed by Bai and Saranadasa [1] is given by

Qn = [(x̄1 − x̄2)′(x̄1 − x̄2)− N−1
1 tr S1 − N−1

2 tr S2]/p1/2.

The variance of this statistic is given by

σ 2
Q =

2
pN2

1
tr 62

1 +
2

pN2
2
tr 62

2 +
4

pN1N2
tr 6162.

A consistent estimator of σ 2
Q from [5] is given by

σ̂ 2
Q =

2
N2

1
â21 +

2
N2

2
â22 +

4
pN1N2

tr S1S2,

where

â2i =
n2
i

p(ni − 1)(ni + 1)


tr S2

i −
1
ni
(tr Si)2


≃

1
p


tr S2

i −
1
ni
(tr Si)2


, i = 1, 2.

Under the normality assumption â2i is the best estimator of tr 62
i /p in the sense that it is unbiased and is based on

sufficient statistics and thus will have uniformly minimum variance among all unbiased estimators. Thus, the usual test
statistic for testing the null hypothesis H in (1.1) can be based on

Tu =
Qn

σ̂Q
.

Before describing the test statistic Tcq proposed by Chen and Qin [2], we observe that

(x̄1 − x̄2)′(x̄1 − x̄2)−
1
N1

tr S1 −
1
N2

tr S2 =


x̄′

1x̄1 −
1
N1

tr S1


+


x̄′

2x̄2 −
1
N2

tr S2


− 2x̄′

1x̄2,

and since

nitr Si =

Ni
k=1

(xik − x̄i)′(xik − x̄i) =

Ni
k=1

x′

ikxik −
1
Ni

Ni
k,ℓ

x′

ikxiℓ, i = 1, 2,

we have for i = 1, 2,

x̄i′x̄i −
tr Si
Ni

=
1
N2

i

Ni
k,ℓ

x′

ikxiℓ −
1

Nini


Ni
k=1

x′

ikxik −
1
Ni

Ni
k,ℓ

x′

ikxiℓ



=


1
N2
i

+
1

N2
i ni

 Ni
k,ℓ

x′

ikxiℓ −
1

Nini

Ni
k=1

x′

ikxik

=
1

Nini

Ni
k,ℓ

x′

ikxiℓ −
1

Nini

Ni
k=1

x′

ikxik

=
1

Nini

Ni
k≠ℓ

x′

ikxiℓ.

Thus, it follows that

(x̄1 − x̄2)′(x̄1 − x̄2)−
1
N1

tr S1 −
1
N2

tr S2 =
1

N1n1

N1
i≠j

x′

1ix1j +
1

N2n2

N2
i≠j

x′

2ix2j − 2x̄′

1x̄2.

Hence, the statistic Tcq proposed by Chen and Qin [2] is given by

Tcq =
Qn

σ̃Q
,
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where

σ̃ 2
Q =

1
p


2

N1n1

tr 62
1 +

2
N2n2

tr 62
2 +

4
N1N2

tr 6162


,

tr 62
i =

1
Nini

tr


Ni
j≠k

(xij − x̄i(j,k))x′

ij(xik − x̄i(j,k))x′

ik


, i = 1, 2,

tr 6162 =
1

N1N2
tr


N1
j=1

N2
k=1

(x1j − x̄1(j))x′

1j(x2k − x̄2(k))x′

2k


,

with

x̄i(j,k) =
1

Ni − 2
(Nix̄i − xij − xik), i = 1, 2; j, k = 1, . . . ,Ni,

x̄i(k) =
1
ni
(Nix̄i − xik), i = 1, 2; k = 1, . . . ,Ni.

Clearly, the statistic Tcq differs from the statistic Tu in that it uses a different estimator of the variance σ 2
Q . No theoretical

reasons have been given as to why one should use their estimator of σ 2
Q than the uniformly minimum variance unbiased

estimator of σ 2
Q in the case where the observations are normally distributed. Indeed it is shown that the performance of the

usual test statistic Tu is no inferior than the test statistic Tcq. In addition, the estimator σ̃Q requires much more computing
and programming and takes considerably longer time in simulation. Irrespective of the selection between Tu and Tcq, the
proposed statistic performs better than both of them. The asymptotic distribution of the statistic Tu can be obtained on the
same lines as the one obtained for the statistic T . It may be noted that Chen and Qin [2] have obtained the distribution of Tcq
under weaker conditions than normality.

3. Power comparison

In this section we compare the power of the proposed test with that of the test Tcq since the asymptotic power of the
test Tu is identical to that of Tcq as both tests have the same numerator in the statistic while the denominator converges
to the same quantity σ 2

Q . We first do a theoretical comparison in Section 3.1, and then in Section 3.2, we compare them by
simulation.

3.1. Theoretical power comparison

The theoretical power of the proposed test for large (N, p) is given in Theorem 1.2 of Section 1. The theoretical power of
Tcq (as well as of Tu) has been derived by Chen and Qin [2]. It is given by

lim
(N,p)→∞

P1(Tcq > z1−α) = Φ


−z1−α +

Nk(1 − k)δ′δ
2tr 6̃(k)2


, (3.1)

where 6̃(k) = (1 − k)61 + k62, k = N1/N,N = N1 + N2 and δ = µ1 − µ2. It may be noted that

[Nk(1 − k)]−2tr 6̃(k)2 = N−2
1 tr 62

1 + N−2
2 tr 62

2 + 2(N1N2)
−1tr 6162

= n∗−2tr(61 + 62)
2,

when N1 = N2 = n∗, that is, when the sample sizes are equal. Furthermore, for diagonal matrices 6i = Di =

diag(di1, . . . , dip), the power given in (3.1) becomes

Φ


−z1−α +

n∗δ′δ
√
2c


, (3.2)

where c =
p

j=1 c
2
j with cj = d1j + d2j. The power of the proposed test for equal sample size n∗ and diagonal matrices for

61 and 62 becomes

Φ


−z1−α +

n∗δ′D−1
c δ

√
2p


(3.3)

since R = Ip. Here Dc = D1 + D2 = diag(c1, . . . , cp).
It may be noted that since the test statistic Tcq is invariant under the group of orthogonal transformations, the two

covariance matrices can be assumed to be diagonal for equal sample sizes provided 61 and 62 are exchangeable, namely,
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6162 = 6261. For theoretical comparison, wemake this assumption. Itmay be noted that the proposed statistic T , although
invariant under nonsingular diagonal matrices, it is not orthogonally invariant. Furthermore, we assume that the local
alternatives for both tests are such that

0 < lim
p→∞

δ′δ

p
= lim

p→∞

δ′D−1
c δ

tr D−1
c

< ∞. (3.4)

It is noted that (3.4) is satisfied if δ = (δ, . . . , δ)′, δ ≠ 0. It is shown in Eq. (6.3) of [6] that

1
p

p
i=1

1
ci

≥

 p
p

i=1
c2i


1/2

, (3.5)

and hence for R = Ip,

δ′D−1
c δ

√

tr R2
=

δ′D−1
c δ

√
p

=
δ′D−1

c δ
p

i=1
c−1
i

p
i=1

c−1
i

√
p

≃
δ′δ

p

p
i=1

c−1
i

√
p

≥
δ′δ
p

i=1
c2i

=
δ′δ
√
c
, (3.6)

where ‘≥’ is strict unless c1 = · · · = cp. Thus, we get the following theorem:

Theorem 3.1. Assume that 6i = diag(di1, . . . , dip),N1 = N2 = n∗ and the Assumption (A). Under the local alternatives
satisfying (3.4), the power denoted by β of the three tests have the following relationship:

β(T |δ) ≥ β(Tcq|δ) = β(Tu|δ),

with strict inequality unless c1 = · · · = cp.

Thus, in the case of equal sample sizes N1 = N2, the proposed test is superior to the tests using the statistics Tcq and Tu.

3.2. Comparison of powers by simulation

In this section, we compare the performance of the proposed statistic T with the usual statistic Tu and Tcq in finite samples
and dimensions by simulation.We first examine the attained significance level (ASL) of the test statistics T and Tcq compared
to the nominal valueα = 0.05, and thenwe examine their attained power. Assume that the data is generated from themodel

xij = µi + 6
1/2
i zij, i = 1, 2; j = 1, . . . , ni,

where zij = (zij1, . . . , zijp)T and zijk’s are independent random variableswhich are distributed as either of the following three
distributions:

(i) N(0, 1), (ii) (χ2
2 − 2)/4, (iii) (χ2

8 − 8)/4.

The ASL is computed as α̂ = #(TH > z1−α)/r where TH are values of the test statistic obtained from data simulated
under H, r is the number of replications and z1−α is the 100(1 − α)% point of the standard normal distribution. From this
simulation, we also obtain ẑ1−α as the 100(1 − α)% point of the empirical distribution of TH . We define the attained power
of the test T as β̂ = #(TA > ẑ1−α)/r , where TA are values of the test statistic computed from data simulated under the
alternative.

In Tables 1 and 2, the ASL and the attained power of T , Tcq and Tu are given for 61 = DR1D, D = diag(d1, . . . , dp),
di = 2 + (p − i + 1)/p, R1 = (rij), rii = 1, rij = (−1)i+j(0.2)|i−j|0.1 , i ≠ j and 62 = 9R29, 9 = diag(ψ1, . . . , ψp)

with ψi = 4 + (p − i + 1)/p,R2 = (ρij), ρii = 1, ρij = (−1)i+j(0.4)|i−j|0.1 , i ≠ j. For the null hypothesis, we choose
µ1 = µ2 = 0 and for the alternative we choose µ1 = 0 and µ2 = (u1, . . . , up)

′, where ui = (−1)ivi with vi are i.i.d. as
U(1/2, 3/2)which denotes uniform distribution with the support (1/2, 3/2). In Tables 3 and 4, the ASL and the power are
given when ψi i.i.d. as χ2

3 with the rest remaining the same. In the tables, we use 1000 replications of the test statistic. Also
we take N1 = N2 = n∗ for simplicity.
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Table 1
Attained significance levels of T , Tcq and Tu when ψi = 4 + (p − i + 1)/p and n∗

= N1 = N2 .

p n∗ zijk i.i.d. N(0, 1) zijk i.i.d. (χ2
2 − 2)/2 zijk i.i.d. (χ2

8 − 8)/4
T Tcq Tu T Tcq Tu T Tcq Tu

60 30 0.083 0.090 0.090 0.072 0.072 0.069 0.073 0.078 0.079
100 40 0.074 0.091 0.090 0.071 0.073 0.073 0.084 0.097 0.097

60 0.066 0.086 0.086 0.049 0.066 0.065 0.057 0.066 0.067
80 0.054 0.069 0.069 0.071 0.084 0.083 0.052 0.074 0.074

100 0.054 0.082 0.082 0.043 0.065 0.065 0.049 0.075 0.075
150 40 0.062 0.072 0.075 0.068 0.082 0.081 0.058 0.072 0.072

60 0.057 0.079 0.079 0.054 0.067 0.066 0.059 0.075 0.077
80 0.063 0.091 0.091 0.058 0.079 0.079 0.048 0.067 0.067

100 0.049 0.073 0.074 0.058 0.070 0.070 0.055 0.067 0.066
150 0.055 0.079 0.078 0.045 0.066 0.066 0.041 0.050 0.050
200 0.045 0.066 0.066 0.042 0.057 0.057 0.053 0.073 0.073

200 40 0.055 0.068 0.068 0.058 0.077 0.073 0.067 0.084 0.081
60 0.060 0.078 0.079 0.057 0.074 0.073 0.072 0.093 0.093
80 0.067 0.087 0.085 0.044 0.069 0.069 0.045 0.065 0.065

100 0.060 0.087 0.088 0.041 0.068 0.067 0.047 0.062 0.062
150 0.043 0.069 0.070 0.048 0.076 0.075 0.044 0.063 0.063
200 0.043 0.076 0.076 0.042 0.068 0.068 0.048 0.067 0.067
250 0.045 0.063 0.063 0.047 0.072 0.071 0.053 0.068 0.070

Table 2
Attained powers of T , Tcq and Tu when ψi = 4 + (p − i + 1)/p and n∗

= N1 = N2 .

p n∗ zijk i.i.d. N(0, 1) zijk i.i.d. (χ2
2 − 2)/2 zijk i.i.d. (χ2

8 − 8)/4
T Tcq Tu T Tcq Tu T Tcq Tu

60 30 0.245 0.249 0.250 0.316 0.327 0.324 0.320 0.335 0.338
100 40 0.378 0.368 0.371 0.384 0.403 0.407 0.386 0.409 0.413

60 0.537 0.519 0.521 0.590 0.552 0.558 0.616 0.610 0.621
80 0.664 0.673 0.670 0.678 0.669 0.674 0.678 0.680 0.688

100 0.810 0.814 0.814 0.842 0.821 0.822 0.834 0.819 0.821
150 40 0.456 0.468 0.466 0.435 0.442 0.433 0.430 0.438 0.435

60 0.587 0.600 0.601 0.632 0.631 0.632 0.625 0.632 0.636
80 0.672 0.670 0.668 0.733 0.730 0.731 0.706 0.712 0.713

100 0.823 0.828 0.830 0.833 0.830 0.829 0.810 0.807 0.807
150 0.964 0.964 0.964 0.962 0.955 0.955 0.966 0.960 0.960
200 0.995 0.993 0.993 0.990 0.990 0.990 0.995 0.995 0.995

200 40 0.488 0.475 0.476 0.462 0.453 0.451 0.457 0.464 0.458
60 0.608 0.619 0.619 0.615 0.618 0.620 0.607 0.618 0.623
80 0.770 0.773 0.774 0.780 0.771 0.772 0.778 0.776 0.779

100 0.808 0.792 0.794 0.896 0.894 0.893 0.896 0.893 0.893
150 0.960 0.959 0.959 0.966 0.964 0.964 0.964 0.960 0.960
200 0.990 0.986 0.986 0.983 0.984 0.984 0.990 0.988 0.988
250 0.999 0.999 0.999 0.998 0.998 0.998 1.000 1.000 1.000

It is shown that the attained significance levels of the proposed test T approximate α = 0.05 well except when the
sample size is very small. As shown in Table 2, the powers of T , Tcq and Tu are almost the same. In Table 4, however, the
power of T is substantially higher than those of Tcq and Tu. The reason can be given as follows. Since the non-diagonal terms
of R1 and R2 are close to 0, it can be regarded that both 61 and 62 are the diagonal matrices. Then, the asymptotic powers
of T and Tcq (or Tu) are given by (3.2) and (3.3) respectively, and the value of (3.3) is significantly larger than that of (3.2) in
the settings of Table 4. Generally, the value of (3.3) seems to be larger than that of (3.2) when the difference between the
maximum and minimum values of {σijj| i = 1, 2; j = 1, . . . , p} is large.

4. Proofs of theorems in Section 1

In this section, we give the proofs of the two theorems stated in Section 1. We begin with the proof of Theorem 1.1.

4.1. Proof of Theorem 1.1

Since q̂n → q̃n in probability as shown in Section 1, we need only to find the distribution of the statistic

T̃ =
(x̄1 − x̄2)′D−1(x̄1 − x̄2)− p

(2tr R2)1/2
.
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Table 3
Attained significance levels of T , Tcq and Tu when ψi i.i.d. as χ2

3 and n∗
= N1 = N2 .

p n∗ zijk i.i.d. N(0, 1) zijk i.i.d. (χ2
2 − 2)/2 zijk i.i.d. (χ2

8 − 8)/4
T Tcq Tu T Tcq Tu T Tcq Tu

60 30 0.077 0.085 0.089 0.117 0.084 0.072 0.091 0.069 0.068
100 40 0.069 0.089 0.089 0.117 0.097 0.092 0.078 0.069 0.069

60 0.067 0.075 0.075 0.074 0.075 0.071 0.067 0.081 0.080
80 0.059 0.072 0.071 0.055 0.059 0.055 0.059 0.071 0.071

100 0.063 0.080 0.079 0.074 0.075 0.074 0.061 0.067 0.066
150 40 0.054 0.063 0.063 0.108 0.088 0.088 0.068 0.079 0.079

60 0.058 0.061 0.062 0.074 0.082 0.081 0.073 0.074 0.072
80 0.052 0.061 0.061 0.079 0.071 0.069 0.059 0.077 0.077

100 0.058 0.067 0.067 0.067 0.076 0.074 0.071 0.077 0.077
150 0.048 0.069 0.069 0.070 0.084 0.084 0.070 0.073 0.073
200 0.066 0.080 0.080 0.055 0.065 0.065 0.046 0.059 0.059

200 40 0.073 0.079 0.080 0.113 0.093 0.089 0.085 0.086 0.085
60 0.061 0.073 0.074 0.072 0.070 0.066 0.078 0.082 0.082
80 0.069 0.086 0.086 0.084 0.072 0.071 0.073 0.082 0.082

100 0.070 0.083 0.083 0.066 0.062 0.060 0.064 0.073 0.072
150 0.057 0.085 0.085 0.054 0.073 0.069 0.039 0.047 0.045
200 0.043 0.053 0.052 0.065 0.081 0.080 0.049 0.072 0.072
250 0.068 0.083 0.083 0.059 0.076 0.075 0.059 0.070 0.069

Table 4
Attained powers of T , Tcq and Tu when ψi i.i.d. as χ2

3 and n∗
= N1 = N2 .

p n∗ zijk i.i.d. N(0, 1) zijk i.i.d. (χ2
2 − 2)/2 zijk i.i.d. (χ2

8 − 8)/4
T Tcq Tu T Tcq Tu T Tcq Tu

60 30 0.738 0.268 0.272 0.726 0.540 0.541 0.708 0.431 0.441
100 40 0.824 0.395 0.396 0.754 0.427 0.433 0.832 0.369 0.378

60 0.979 0.727 0.731 0.993 0.884 0.883 0.993 0.803 0.808
80 0.998 0.884 0.883 0.999 0.959 0.960 0.998 0.953 0.956

100 0.999 0.927 0.926 1.000 0.952 0.952 1.000 0.990 0.990
150 40 0.966 0.621 0.622 0.840 0.472 0.458 0.875 0.495 0.496

60 0.982 0.654 0.655 0.988 0.603 0.598 0.996 0.815 0.817
80 1.000 0.964 0.963 1.000 0.944 0.944 0.999 0.870 0.874

100 1.000 0.978 0.979 1.000 0.858 0.853 1.000 0.982 0.982
150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

200 40 0.928 0.628 0.624 0.914 0.557 0.566 0.926 0.528 0.540
60 0.997 0.852 0.854 0.998 0.868 0.867 0.975 0.660 0.660
80 1.000 0.858 0.856 1.000 0.966 0.966 1.000 0.938 0.940

100 1.000 0.960 0.960 1.000 0.996 0.996 1.000 0.986 0.987
150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Under normality assumption,
u = R−1/2D−1/2(x̄1 − x̄2) ∼ Np(0, Ip).

Thus,

T̃ =
u′Ru − p
(2tr R2)1/2

.

Let λ1, . . . , λp be the eigenvalues of R = GDλG ′ where GG ′
= Ip and Dλ = diag(λ1, . . . , λp). Then,

T̃ =

p
i=1
λi(v

2
i − 1)

(2tr R2)1/2
=

p
i=1

zi

(2tr R2)1/2
,

where v = (v1, . . . , vp)
′
= G ′u ∼ Np(0, Ip) and zi = λi(v

2
i − 1). Thus, z1, . . . , zp are independent random variables with

E(zi) = 0, E(z2i ) = 2λ2i and E(z4i ) = 60λ4i . Under the assumption (A2), Lyapunov’s condition (see, [3, p. 332]) is satisfied for
δ = 2, namely,

p
i=1

E(z4i )

(2tr R2)2
= 15

tr R4

(tr R2)2
→ 0, p → ∞.
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Hence, from Lyapunov’s central limit theorem, it follows that T is asymptotically normally distributed under the hypothesis
that µ1 = µ2. This proves the theorem.

4.2. Proof of Theorem 1.2

We note that

(2tr R2)1/2T̃ = (x̄1 − x̄2 − µ1 + µ2)
′D−1(x̄1 − x̄2 − µ1 + µ2)

+ 2(µ1 − µ2)
′D−1(x̄1 − x̄2)− (µ1 − µ2)

′D−1(µ1 − µ2)

and

Var[(µ1 − µ2)
′D−1(x̄1 − x̄2)] = (µ1 − µ2)

′D−1/2RD−1/2(µ1 − µ2) = o(tr R2).

Hence,

(µ1 − µ2)
′D−1(x̄1 − x̄2)− (µ1 − µ2)

′D−1(µ1 − µ2)

(2tr R2)1/2
→ 0,

in probability from Assumption (B). From Theorem 1.1, the first term on the right hand side is asymptotically distributed as
N(0, 1). This ends the proof.

5. Concluding remarks

In this paper a new test statistic is proposed for testing the equality of the twomean vectorswhen the covariancematrices
of the two groups are not equal. It is required that both Ni = O(pδ), δ > 1/2 and both Ni and p go to infinity. It has
been shown that the proposed test which is invariant under nonsingular diagonal matrix transformation of the observation
vectors performs much better than the Tcq statistic proposed by Chen and Qin [2], as well as the usual test statistic which is
simple and easier to compute. This usual test Tu performs as good as Tcq.
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