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Abstract

We study properties of a local dependence function of Wang for copulas. In this paper this
dependence function is called the mixed derivative measure of interactions as it is a mixed
derivative of a log of a density function. It is stressed that this measure is not margin free
in the sense that the interaction function of a density and the corresponding copula are not
equal. We show that there is no Archimedean copula with constant interactions. The interac-
tion function is positive (negative) for an Archimedean copula density whose second derivative
of the generator is log convex (log concave). Moreover, the only Archimedean copula with
interactions proportional to its density is Frank’s copula. We obtain some preliminary re-
sults concerning the connection between the behaviour of the interaction function and the
tail dependence of the distribution. Moreover, the notion of an interaction function has been
extended to the more than two dimensional case, and we study its properties for a canonical
Archimedean copula.

Keywords: Local dependence function, copulae, Archimedean copulae, complete monotonic
functions, d-monotonic functions, tail dependence, tail order.

1 Introduction

Many measures of dependence as well as dependence functions have been introduced in the litera-
ture to study dependence properties of distributions. A good overview can be found in e.g. [1] for
bivariate distributions. A very natural dependence function introduced in [7] is the mixed deriva-
tive of the log of a density function. The density of the independent random variables is a product
of the marginal densities. The logarithm of this product gives a sum of functions each dependent
on only one variable. Hence the mixed derivatives of this sum will be equal to zero. The opposite
is also true. If the support of a joint density is a rectangle then the interaction function equal to
zero ensures independence. This natural concept was used in [24] to study independencies and
conditional independencies in joint distributions. Following [24] we call this dependence function
the mixed derivative measure of interaction or the interaction function.

Let X = (X1, X2) be an absolutely continuous random vector and its density f12 be twice
differentiable. We assume that the support of f12 is a rectangle. We denote ∂2

∂x1∂x2
f12 as D2

12f12.
Then the mixed derivative measure of interaction can be defined as follows:

Definition 1.1 The mixed derivative measure of interaction for X with density f12, which is twice
differentiable, is

i12(x1, x2) = D2
12 log f12(x1, x2).
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In [7] it is shown that i12(x1, x2) is the natural continuous analogue of the collection of local
cross-product ratios which characterize the dependency structure of bivariate discrete data. A
second interpretation of the mixed derivative measure of interactions was given in [13]. Jones
showed, using kernel methods, that i12 is a local version of the linear correlation coefficient.

Properties of i12(x1, x2) ([7, 25]) include:

• it is finite everywhere;

• it is everywhere zero if and only if X1 and X2 are independent;

• it is constant if f12 is the bivariate normal density;

• it remains unchanged for densities constructed as follows:
h1(x1, x2) = f(x1, x2)g1(x1)/f1(x1), h2(x1, x2) = f(x1, x2)g2(x2)/f2(x2) where f1, f2 are
margins of f , and gi is a one dimensional density with the same support as fi, i = 1, 2;

• i12 is a function only of the conditional distribution of X2 given X1, or of X1 given X2;

There is a unique distribution for given margins and given interaction function: [7]. Proof of
this result uses an analogous result of [23] for contingency tables with prescribed row and column
sums and positive entries.

i12(x1, x2) ≥ 0 for all x1, x2 is equivalent with f12 being TP2 (Total Positive of order 2) or LRD
(Likelihood Ratio Dependent) (see e.g. [1]) which is a very strong notion of positive dependence
between X1 and X2.

Definition 1.2 A non-zero function f is TP2 if for all x1 < y1, x2 < y2 where (x1, x2) and
(y1, y2) belong to the domain of f

f(x1, x2)f(y1, y2) ≥ f(x1, y2)f(y1, x2).

The interaction function i12(x1, x2) describes the local dependence of f12 in the neighbourhood
of a point (x1, x2). Therefore if f12(x1, x2) behaves as the product of margins f1(x1)f2(x2) for
x1, x2 which are in the tail of the marginal densities then one could expect that the interaction
function is equal to zero in this region. Hence we expect some relationship between the behaviour
of the interaction function on the boundary of its domain and the usual concept of tail dependence.
In this paper we will make a first step to investigate properties of the interaction function and
search for connections between i12 and the tail dependence for the elliptical and the Archimedean
copulas. For these distributions the properties of the interaction function are determined by the
properties of their generating functions.

We first look at the relationship between the interaction function of a density and the corre-
sponding copula.

2 Interactions for copulas

A bivariate copula is a distribution on a unit square with uniform margins (see e.g. [19, 12]).
The density function f12 of X can be written as the product of marginal densities f1, f2 and the
corresponding copula density c:

f12(x1, x2) = f1(x1)f2(x2)c(F1(x1), F2(x2)), (1)

where F1, F2 are marginal cumulative distribution functions of X. Conversely if F−1
1 , F−1

2 exist
then the copula density corresponding to f12 is:

c(u1, u2) =
f12(F−1

1 (u1), F−1
2 (u2))

f1(F−1
1 (u1))f2(F−1

2 (u2))
. (2)
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We denote the mixed derivative measure of interaction of the density function and the copula
function as follows:

if12(x1, x2) = D2
12 log f12(x1, x2),

ic12(u1, u2) = D2
12 log c(u1, u2)

where D2
12c means ∂2

∂u1∂u2
c. The support of c is the unit square.

From the above and the relationships (1) and (2) we find that the interaction function of the
density is related to the interaction function of the corresponding copula:

if12(x1, x2) = ic12(F1(x1), F2(x2))f1(x1)f2(x2), (3)

ic12(u1, u2) =
if12(F

−1
1 (u1), F−1

2 (u2))
f1(F−1

1 (u1))f2(F−1
2 (u2))

. (4)

The interactions of a density and the corresponding copula differ by a factor which is the prod-
uct of marginal distributions. They are not equal as is suggested in [1] but they have the same
sign. From the above we see that even though the interaction function is affected by the marginal
transformations the linear transformations of the margins have no influence on the interaction
function of the copula. Hence to study properties of the interaction function of the copula we can
concentrate on the distributions with the standardized margins.

For meta-gaussian distributions, that is for distributions with standard normal margins and a
copula density c, the interaction function is given by:

ic,z12 (z1, z2) = ic12
(
Φ−1(z1),Φ−1(z2)

)
ϕ(z1)ϕ(z2), (z1, z2) ∈ R2, (5)

where ϕ and Φ (Φ−1) denote density and (inverse) cumulative distribution functions (cdf) of the
standard normal distribution, respectively.

2.1 Elliptical copulas

A random vector X = (X1, X2) is said to have an elliptically symmetric density f(x) if

f(x) = |Σ|−1/2g
(
xTΣ−1x

)
(6)

for some function g and Σ positive definite with entries Σ11 = Σ22 = 1 and Σ12 = Σ21 = ρ, −1 <
ρ < 1. Alternatively, we may say that

X d=RAU

where the radial random variable R ≥ 0 is independent of U. U is a bivariate random vector

distributed uniformly on the unit sphere in R2, and A =
(

1 0
ρ
√

1− ρ2

)
.

The properties of elliptical distributions and the corresponding copulas depend on the proper-
ties of g or equivalently on the properties of R. In [21] the properties of g have been established
that lead to an elliptically symmetric TP2 density. It has been shown that the only elliptically
symmetric TP2 density for all ρ, 0 < ρ < 1, is the gaussian distribution. Moreover, a bivariate
t-distribution has been shown not to be a TP2 density for any values of its parameters ρ and ν.

Another line of research concerns the tail dependence properties of elliptical distributions.
The coefficients of lower and upper tail dependence are defined in [12]. They give information
about dependence in the lower and upper tail of a joint distribution, respectively. Tail dependence
coefficients are invariant under strictly increasing transformations of margins. Hence they are
functions of the corresponding copula. These coefficients are defined as follows:
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λL = lim
q→0

C(q, q)
q

, λU = lim
q→1

1− 2q + C(q, q)
1− q

provided that the limits exist.
The positive values of the tail dependence coefficients indicate the strength of the association

of margins in the tails. For elliptical distributions the upper and lower tail dependence coefficients
are equal. In [22] it is proven that if the radial random variable R has a regularly varying tail (see
[20]: R is regularly varying with index −α, denoted as RV−α, means that the tail of the survival
function of R behaves at infinity as x−α) then X1 and X2 are tail dependent. The heaviness of
tails is often studied using a concept of Maximum Domain of Attraction (MDA) of a univari-
ate extreme value distribution (Φα - Frehet, Ψα - Weibull and Λ- Gumbel). R has a regularly
varying tail with index −α if R ∈ MDA(Φα). If R ∈ MDA(Λ) then λL = λU = 0. In the case
when λL = 0 one might want to distinguish the speed of convergence to zero of copula C(q, q)
as q → 0. In [9] the concept of tail order was introduced. The decay of a copula as q → 0 can
be described as being of order of C(q, q) ∼ qκL l(q) where l is a slowly varying function (see e.g
[20]) and κL is called the lower tail order. κL = 1 corresponds to the usual lower tail dependence
and 1 < κL < 2 describes so called intermediate tail dependence. If κl = 2 then C behaves in the
neighbourhood of (0, 0) as the independent copula. In [11] the concept has been extended to the
negative tail dependence which can occur when κ > 2. Similarly the upper tail order κU is defined
as C(1− q, 1− q) ∼ qκU l(q), where C denotes the survival function of C.

In [4] the coefficient of the tail dependence of the second kind is introduced to distinguish
different speeds of convergence of a copula on the corners of the unit square in case when R ∈
MDA(Λ). They are defined as follows:

µL = lim
q→0

2 log q
logC(q, q)

, µU = lim
q→1

2 log(1− q)
1− 2q + C(q, q)

− 1.

If λL = 1 then µL > −1 and µL = 1 whenever λL > 0. Similar behaviour is observed for µU .

If g is twice differentiable then the interaction function for an elliptically symmetric density f
given by (6), can be easily calculated using definition 1.1:

if12(x1, x2) =
4

(1− ρ2)2
d2

dt2
[log g(t)]t=ξ12 (x1 − ρx2)(x2 − ρx1)−

2ρ
1− ρ2

d

dt
[log g(t)]t=ξ12 (7)

where ξ12 = xTΣ−1x = 1
1−ρ2 (x2

1 + x2
2 − 2ρx1x2).

In the next two examples we will investigate the behaviour of interaction functions for gaus-
sian and Student-t densities and corresponding copulas as well as the meta-gaussian distribution
corresponding to these copulas.

Example 2.1 The interaction function for a bivariate gaussian density with standard normal
margins and correlation ρ is:

in12(z1, z2) =
ρ

1− ρ2
.

Notice that the interaction function is constant. For the gaussian distribution the interaction
function is positive (negative) if and only if ρ > 0 (ρ < 0). It is obvious that

idL = idU = lim
z→±∞

in12(z, z) =
ρ

1− ρ2
.

idU > (<)0 for ρ > (<)0, idU = 0 for ρ = 0 and idU →∞(−∞) when ρ→ 1(−1).
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The interaction function of the gaussian copula with parameter ρ is:

ic12(u1, u2) =
ρ

1−ρ2

ϕ(Φ−1(u1))ϕ(Φ−1(u2))
.

In contrast to the interaction function of the normal distribution the interaction function of the
normal copula is not constant.

In [10] is was shown that the tail order of an elliptical distribution with a Kotz type density
generator g given below is equal to κ = [2/(1 + ρ)]ξ.

g(x) = KxN−1 exp
(
−βxξ

)
, x > 0, β, ξ,N > 0 (8)

where K is a normalizing constant. The gaussian distribution belongs to this class with ξ = 1.
Hence the tail order of the gaussian copula is κ = 2/(1 + ρ). In case when 0 < ρ < 1 we see that
1 < κ < 2. Hence the gaussian copula possesses the intermediate tail dependence. The interaction
function of a distribution with gaussian copula and standard gaussian margins is constant (or
equivalently tends to a constant as z1 = z2 = z →∞).

Example 2.2 The interaction function for a bivariate Student-t density with correlation ρ and
degrees of freedom ν can be calculated from (7) with g(t) = (1 + t/ν)−(ν+2)/2. We get:

it12(x1, x2) = (ν + 2)
[

ρ

ν(1− ρ2) + ξ12
+

(x1 − ρx2) (x2 − ρx1)
(ν(1− ρ2) + ξ12)2

]
, (9)

where ξ12 = x2
1 + x2

2 − 2ρx1x2. Notice when ρ ≥ 0 and x1 = x2 = x → ∞, (9) is positive and of
order x−2. In case when x1 = −x2 = x→∞, (9) can be negative.

Since for the generating function of the Student-t density we have (log g(t))′ = − ν+2
2(ν+t) → −1/2

and (log g(t))′′ = ν+2
2(ν+t)2 → 0 as ν → ∞, then we can see that the interaction function of the

Student-t distribution tends to ρ/(1 − ρ2) as ν → ∞, which is the interaction function of the
gaussian distribution.

The interaction function for the t-copula can be found with formula (4), where f1, f2 = f and
F1 = F2 = F are univariate Student-t densities and cdfs, respectively. In [10] one finds that the
t-copula with parameters ρ and ν has the tail order κ = 1 as the survival function FR of the radial
variable R is regularly varying with index −ν. The margins of the bivariate Student-t density are
univariate t and their survival functions are RV−ν . Hence the cdf is RV−ν at 0 (see e.g [20] for
properties of the regularly varying functions). The inverse cdfs are RV−1/ν and the densities are
RV−ν−1. Hence, f ◦ F−1 is RV(ν+1)/ν .

We will look now at the behaviour of the interaction function of a meta gaussian density with
Student-t copula. First we notice that since it12(x, x) ∼ x−2 as x→∞ then

ic12(u, u) = it12(F
−1(u), F−1(u))/(f(F−1(u)))2

is of order u−2 as u→ 0. From the above and using Mill’s ratio ic,z12 (z, z) = ic12(Φ(z),Φ(z))(ϕ(z))2

is of order z2 when z → −∞. This means that the interaction function of a meta-gaussian density
with t-copula tends to infinity along the diagonal.

idU = lim
z→∞

ic,z12 (z, z) = ∞.

Similarly one can show that along the anti-diagonal the interaction function of a meta-gaussian
density with t-copula tends to minus infinity.

In the next section we will study properties of another family of copulas that are constructed
with the help of a univariate generating function, called Archimedean copulas.
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2.2 Archimedean Copulas

Archimedean copulas have been studied extensively by many authors (see e.g [12, 15, 16, 14])
for basic properties and more references). This family of copulas is constructed with help of
the generating function ψ : [0,∞] → [0, 1] with continuous first two order derivatives on (0,∞)
satisfying

ψ(0) = 1, lim
x→∞

ψ(x) = 0, ψ
′
(x) < 0, ψ

′′
(x) > 0 for all x ∈ (0,∞). (10)

Then the function

CA(u1, u2) = ψ[ψ−1(u1) + ψ−1(u2)] (11)

is a strict Archimedean copula. CA is strictly positive except when u1 = 0 and u2 = 0. The
density function cA is nonzero on (0, 1]2 and is equal to:

cA(u1, u2) =
ψ
′′
(ψ−1(u1) + ψ−1(u2))

ψ′(ψ−1(u1)) · ψ′(ψ−1(u2))
. (12)

We consider here copula densities for which the mixed derivative exists. Hence such that the
fourth derivative of the generator, denoted as ψ(4), exists. With these assumptions the interactions
for Archimedean copulae are:

iA12(u1, u2) =
1

ψ′(ψ−1(u1))ψ
′(ψ−1(u2))

d2

dt2
[logψ′′(t)]t=ψ−1(u1)+ψ−1(u2)

. (13)

From the above we see that the interaction function can be zero only if the second derivative of
ψ is exponential. After incorporating conditions on ψ as stated above we see that the interaction
function is equal to zero if and only if

ψ(x) = exp(−θx), θ > 0.

Notice that due to (11) for all θ > 0 this is the generator of the independent copula which was
to be expected due to properties of the interaction function as discussed in Section 1.

For Archimedean copulas Kendall’s tau correlation can be calculated from the generator (see
e.g.[12]) as:

τ = 1− 4
∫ ∞

0

s (ψ′(s))2 ds. (14)

In [12] the Archimedean copulas with generators which are the Laplace transforms (LT) of a
positive random variables Y have been studied. The generators which are Laplace transforms of
a positive variable are completely monotone:

Definition 2.1 A real- valued function g which has continuous derivatives of all orders is com-
pletely monotone if (−1)kg(k)(x) ≥ 0 for x > 0 and for k = 0, 1, 2, ....

The tail dependence and the tail order of such LT-copulas have been investigated in [9]. The
tail order of a LT-copula is determined by the maximum non-negative moment of the variable Y .

A complete characterization of Archimedean copulas has been given in [15]. The authors
showed that any Archimedean copula is the survival copula of a random vector X following an
l1-norm symmetric distribution, i.e. X d=RS, where R is a positive random variable that places
no mass at zero and S is distributed uniformly on the simplex and independent of R.

The Archimedean generator ψ is the Williamson d-transform [27] of the distribution FR with
radial part R.
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Definition 2.2 If R is a non-negative random variable with distribution function FR satisfying
FR(0) = 0, and d ≥ 2 is an integer, then the Williamson d-transform of FR is a real function on
[0,∞) given by

ψ(x) =
∫ ∞

x

(
1− x

y

)d−1

dFR(y), x ≥ 0. (15)

Generators which are the Williamson d-transform of a positive function are d-monotone.

Definition 2.3 A real-valued function g is d−monotone if it is differentiable up to order d−2 on
(0,∞) with derivatives satisfying

(−1)kg(k)(x) ≥ 0, k = 0, 1, ..., d− 2, (16)

and if (−1)d−2f (d−2) is non-decreasing and convex on (0,∞).

The distribution function of R is uniquely given by its Williamson d-transform, and the distri-
bution function can be recovered through an inversion formula. If ψ is d-times differentiable FR
has a density given by

fR(x) =
(−1)dxd−1ψ(d)(x)

(d− 1)!
, x ≥ 0. (17)

The Laplace transform can be thought of as a limiting Williamson d-transform as d→∞.

Similarly to the copulas of elliptically symmetric distributions the properties of an Archimedean
copula (with a generator that is the Williamson d-transform of FR) are determined by the prop-
erties of the distribution of the radial part R.

Extremal behaviour of an Archimedean copula has been studied in [2] and [14]. In [14] the
authors showed that if R ∈ MDA(Φα), hence ψ ∈ RV−α, then the Archimedean copula has a
lower tail dependence coefficient λL = 2−α and the lower tail order κL = 1. Moreover, when
1/R ∈ MDA(Φα) for α ∈ (0, 1), hence 1 − ψ(x−1) ∈ RV−α then the copula has an upper tail
dependence λU = 2 − 2α and κU = 1. Additional conditions concerning intermediate upper and
lower tail orders of Archimedean copulas have been presented in [10]. An Archimedean copula has
a lower intermediate tail order when R ∈ MDA(Λ) with auxiliary function a(.) ∈ RVβ for some
0 < β < 1, and an upper intermediate tail order when 1/R ∈ MDA(Φα) with 1 < α < 2. In [11]
the last result has been extended. When 1/R ∈ MDA(Φα) and the expectation of 1/R is finite
then κU = α. In case when the tail order is larger than 2 then there is the negative dependence
in the tail.

We first calculate interactions for a few families of Archimedean copulae that is for Frank,
Clayton and Gumbel copulas and then we study in more details properties of the interaction
function for Archimedean copulas.

2.2.1 Frank’s copula

The generating function and the density of Frank’s copula [5] are:

ψF (x) = −θ−1 log(1− (1− e−θ)e−x),

cFθ (u1, u2) =
θ(1− e−θ)e−θ(u1+u2)

[1− e−θ − (1− e−θu1)(1− e−θu2)]
.

The tail dependence coefficients and tail orders of Frank’s copula are λL = λU = 0 and κL = κU =
2, respectively. The interaction function for Frank’s copula is proportional to its density function.

iF12(u1, u2) = 2θcFθ (u1, u2).
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The properties of local dependence can be easily observed from the behaviour of the density.
This is very specific for Frank’s copula.

From the above and because the corners of the density of Frank’s copula are known to be finite
we get

idL = idU = lim
z→±∞

iF,z12 (z, z) = 0.

2.2.2 Clayton copula

The generating function and the density of Clayton’s copula [3] are:

ψCl(x) = (1 + x)−1/θ, θ ≥ 0

cClθ (u1, u2) = (1 + θ)(u1u2)−1−θ(u−θ1 + u−θ2 − 1)−
1
θ−2.

For the Clayton copula the tail dependence coefficients are: λL = 2−1/θ, λU = 0 and κL = 1
and κU = 2. The interaction function for this copula is:

iCl12 (u1, u2) = θ(1/θ + 2)
1

(uθ
1+uθ

2−1)2

u1+θ
1 u1+θ

2

.

From the above it follows that iCl12 (u, u) is of order u−2−4θ for u close to zero. Hence applying
Mill’s ratio we get:

idL = lim
z→−∞

iCl,z12 (z, z) = ∞.

Additionally we see that:
idU = lim

z→∞
iCl,z12 (z, z) = 0.

2.2.3 Gumbel-Hougaard copula

The generating function of the Gumbel-Hougaard copula[6, 8] is:

ψG(x) = exp(−x1/θ), θ ≥ 1.

For the Gumbel copula the tail dependence coefficients are: λL = 0, λU = 2 − 21/θ and
κL = 2−1/θ and κU = 1. The interaction function has quite a long functional form but we can
easily calculate that ψ−1(x) = (− log x)θ, ψ′(x) = − 1

θx
1/θ−1 exp(−x1/θ) and

[logψ′′(x)]′′ =
θ − 1
θ2

x3/θ + 2(θ − 1)x2/θ + (5θ2 − 5θ + 1)x1/θ + θ(θ − 1)(2θ − 1)
x2(θ − 1 + x1/θ)2

.

Since 1/[ψ′(ψ−1(u))]2 = θ2(− log u)2(θ−1)

u2 then

ic12(u, u) =
[logψ′′(x)]′′ |x=2ψ−1(u)

[ψ′(ψ−1(u))]2
→
{

(θ − 1)2−2+1/θ 1
(− log u)u2 u→ 0,

(2θ − 1)θ2−2 1
(− log u)2u2 u→ 1.

This gives

idL = lim
z→−∞

ic,z12 (z, z) → (θ − 1)2−2+1/θ 1

(− log ϕ(z) + log |z|)ϕ2(z)
z2

ϕ2(z)

= (θ − 1)2−2+1/θ z2

z2

2 + log |z|
= (θ − 1)2−1+1/θ,

and

idU = lim
z→∞

ic,z12 (z, z) → (2θ − 1)θ2−2 ϕ2(z)
(− log Φ(z))2Φ2(z)

= ∞
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Figure 1: The density function of a minimum information copula with rank correlation r = 0.8.

since limz→∞
ϕ(z)

− log Φ(z) = ∞.

Notice that similar to the gaussian distribution the interaction function of a meta gaussian dis-
tribution for Gumbel copula with an intermediate lower tail dependence converges to a constant
along the diagonal as z → −∞.

To conclude this section we point out that the examples above as well as the results presented
earlier for Gaussian and Student-t copulas suggest that the tail behaviour of the interaction func-
tion of copulas with the standard gaussian margins allows to quantify how strong the tail de-
pendence of copulas is. We observed that when a copula is tail independent then ic,z12 tends to
zero. In case of the intermediate tail dependence ic,z12 converges to a constant and its behaviour
is comparable to the Gaussian copula. When strong tail dependence is present the limit of ic,z12

becomes infinite.
More research is needed to understand better properties of the interaction function and the

connections of this local dependence measure with other dependence concepts.

2.3 Interactions for bivariate Archimedean copulae

In this section we study in more detail properties of the interaction function for Archimedean
copulae. As mentioned earlier for this family of copulae the properties of the interaction function
are determined by their generator.

2.3.1 Constant interaction function

In Section 2.2 we presented the form of the generator that led to a zero interaction function.

Property 1. i12 = 0 if and only if ψ(t) = exp(−θt), θ > 0.

The minimum information copula was introduced and studied in [17]. This is a distribution
on the unit square with uniform marginal distributions which minimizes the relative information
(Kullback-Leibler divergence) with respect to a uniform distribution subject to a correlation con-
straint. In Figure 1 the density of a minimum information copula with a correlation of 0.8 is
shown.

In [17] it is shown that the density of the minimum information copula is of the following form:

9



cMI(u1, u2) = a(u1, θ) · a(u2, θ)eθu1u2 ,

where a : [0, 1] × R → R is continuous and the parameter θ corresponds to correlation. The
function a has been represented as the Taylor expansion a(x, θ) =

∑∞
m=1 αm(x)θ2m. For the

coefficients αm(x) the recurrence relationship is known (see [17] for details).
From the above we can see that the interaction function of the minimum information copula

is constant, that is,

iMI
12 (u1, u2) = θ.

The minimum information copula is the unique copula with constant interaction function. This
follows from the result mentioned before [7] that the interaction function and margins determine
the density function. This copula does not belong to the Archimedean family because it is radially
symmetric and the only radially symmetric copula in this family is Frank’s copula [5]. Hence the
following property can be added:

Property 2. There is no Archimedean copula with constant (not equal to zero) interaction func-
tion.

2.3.2 Sign of the interaction function

The interaction function for Archimedean copulae given in (13) leads immediately to the following
property:

Property 3. iA12 > 0(< 0) if and only if ψ
′′

is a log-convex (log-concave) function.

The generators that are Laplace transforms of a positive function, are completely monotone
and log-convex [26]. The second order derivatives of such generators are also Laplace transforms.
Hence, they are also log-convex which means that iA12 ≥ 0 for LT-Archimedean copulas. However,
the complete monotonicity is not necessary for the interaction function to be positive as is shown
in the example below. This example presents the family of Archimedean generators constructed
with the help of the d−Williamson transform in [16] which generates so called gamma-simplex
copula.

Example 2.3 The generator ψθ,d(x) for x ≥ 0 and θ > 0 is given below.

ψθ,d(x) =
d−1∑

k=0

(
d− 1
k

)
(−1)d−1−kxd−1−k

Γ(θ)
Γ(k − d+ θ + 1, x),

where Γ(k, x) =
∫∞
x
tk−1e−tdt denotes the upper incomplete gamma function. For θ = d, ψd,d(x) =

e−x, which is the generator of the independent copula. For d = 2 the generator is:

ψθ,2(x) =
1

Γ(θ)
(Γ(θ, x)− xΓ(θ − 1, x)).

We find that

(logψ
′′
θ,2(x))

′′
= −θ − 2

x2

which is positive when θ < 2 and negative when θ > 2. Hence, the complete monotonicity of the
generator is not necessary for the interaction function to become positive at least for some values
of its parameters.

10



Clayton’s copula presented is Section 2.2 has a positive interaction function. The interaction
function for Frank’s copula is positive when θ > 0, and is negative for θ < 0.

The sign of the interaction function is determined by the sign of the second order derivative of
logψ

′′
(t)

d2

dt2
(log(ψ

′′
(t)) =

ψ(4)(t)ψ
′′
(t)− (ψ

′′′
(t))2

(ψ′′(t))2
. (18)

From the above we see immediately that if the fourth order derivative of ψ exists and is negative
then the interaction function is negative.

Property 4. i12 < 0 if ψ(4)(x) < 0.

The next example presents the generator 4.2.17 as given in [19] with the property that the second
order derivative of this generator is neither log-convex nor log-concave for certain values of its
parameters.

Example 2.4 The generator is of the form

ψ(x) =
(
(2−θ − 1) exp(−x) + 1

)− 1
θ − 1 for θ ∈ (−∞,∞) \ {0}.

For θ = −1 we get the generator of the independent copula and when θ tends to infinity we obtain
the upper Freshet bound. The general form of the interaction function leads to a long formula. In
Figure 2 we show a plot of this generator for θ = −6, its first and second order derivatives and
the (logψ

′′
(x))

′′
which determines the sign of the interaction function of the copula generated by

ψ. It can be observed that (logψ
′′
(x))

′′
is positive up to about x = 3 and then stays negative. For

θ > −1 the interaction function is positive.

Property 5. There exists an Archimedean copula with an interaction function that changes sign
for different regions of the unit square.

2.3.3 Proportionality to the density

In Section 2.2.1 we observed that Frank’s copula has an interaction function which is proportional
to the density. We will now show that Frank’s copula is the only Archimedean copula with this
property.

Property 6. Frank’s copula is the only Archimedean copula with interaction function propor-
tional to the density.

PROOF of Property 6 can be found in Appendix A.

2.3.4 Relationship with tail dependence

Similar to the discussion in Example 2.1 and by using the properties of the regularly varying
function, we see that if we assume that ψ ∈RV−α then (since ψ is d-monotone) ψ′ ∈RV−α−1 and
ψ′′ ∈RV−α−2. Moreover, ψ−1 ∈ RV−1/α. The logarithm of a regularly varying function is slowly
varying, denoted as RV0, hence logψ′′ ∈ RV0. If the first and second derivatives of logψ′′ are
eventually monotonic then the monotonic density theorem [20] can be used and we get (logψ′′)′′ ∈
RV−2. Hence the interaction function ic12(u, u) of an Archimedean copula with generator ψ is of
order u−2 as u→ 0. Using Mill’s ratio we can conclude that
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Figure 2: Generator ψ(x) for θ = −6 and its first and second order derivatives as well as part of
the interaction function which determines its sign.
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idL = lim
z→−∞

ic,z12 (z, z) = ∞.

Analogously, the regular variation of 1− ψ at zero and the monotonicity of the derivatives of
logψ′′ would lead to infinite behaviour of ic,z12 (z, z) at z → −∞.

Property 7. If ψ ∈RV−α and the first and second derivatives of logψ′′ are eventually monotone
then idL = ∞. Similarly if 1− ψ ∈RV−α at zero then idU = ∞.

In the next section we extend the definition of the bivariate interaction function to higher
dimensions and further study their properties for canonical d-dimensional Archimedean copulas.

3 k-dimensional interaction function

Let D = {1, 2, ..., d} and let XD = (X1, ..., Xd) be an absolutely continuous random vector with
density fD. We assume that the support of fD is a rectangle in Rd and that fD is d times dif-
ferentiable. Denote by Sk = {i1, ..., ik}, where ij ∈ D, j = 1, ..., k and 2 ≤ k ≤ d are subsets of
D with k different elements (notice Sd = D). Moreover let XSk

= (Xi1 , ..., Xik) and fSk
be the

k-dimensional margin of fD.

Then the k-dimensional interaction function for fD can be defined as follows:

Definition 3.1 For a given Sk, the k-dimensional interaction function for the density fD, which
is k times differentiable, is

iSk
(x1, ..., xd) =

∂k

∂xi1 ...∂xik
log fD(x1, ..., xd).

All two dimensional interactions equal to zero means that the joint density can be represented
as a product of functions depending on only one variable. This happens only if the random vari-
ables Xi, i = 1, ..., d are mutually independent. If all higher than two order interactions are zero
then the density can be rewritten as a product of functions depending on two variables. This
is a departure from mutual independence but the joint density has still quite an easy form e.g.
the multivariate gaussian distribution is the exponential function of a quadratic form, hence all
higher than 2-dimensional interactions are equal to zero. The knowledge that some higher order
interactions of a density are equal to zero indicates the complexity of the dependance structure
of this density. In other words the maximal order of interactions not equal to zero might be a
measure of departure from independence in a density.

We now study properties of k- dimensional interaction functions for canonical Archimedean
copulas. Similarly as in the two dimensional case, properties of the k-interaction function for
canonical Archimedean copulas can be studied by examining properties of its generator.

A copula is called canonical d-Archimedean if it has the form

Cψ(u1, ..., ud) = ψ

(
d∑

i=1

ψ−1(ui)

)
, (19)

where the following properties (a),(b) and (c) are satisfied

(a) ψ : [0,∞] → [0, 1] is d-monotone, and

(b) ψ(0) = 1, limx→∞ ψ(x) = 0.

Moreover, we assume that Cψ is d× k times differentiable with k ≤ d, and Cψ is strictly positive
except for ui = 0, i = 1, .., d, which can be translated to the additional condition:
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(c) ψ is d× k times differentiable with k ≤ d.

Then the density function cψ which is nonzero on (0, 1]d is equal to:

cψ(u1, ..., ud) =
ψ(d)

(∑d
j=1 ψ

−1(uj)
)

∏d
j=1 ψ

′(uj)
, (20)

and the k-interaction function is:

ik(u1, ..., ud) = iSk
(u1, ..., ud) =

1
∏k
j=1 ψ

′(uij )

dk

dtk
log
(
(−1)dψ(d)(t)

)
, (21)

where t =
∑d
j=1 ψ

−1(uj).
When d = 2 the interaction of Archimedean copula with generator ψ is equal to zero if and

only if ψ is of the form exp(−θt) where θ > 0. We will now investigate what form the generator
can have in case of a d-dimensional Archimedean copula with the k-interaction functions equal to
zero.

3.1 k-interactions equal to zero

The canonical Archimedean copula (19) describes exchangeable dependence, hence each of its k-
dimensional (1 ≤ k ≤ d) marginal distributions are the same. When ψ(x) = exp(−θx), θ > 0 the
density of the canonical Archimedean copulas is equal to 1 at every point of the unit hypercube.
This is the density of mutually independent random variables for which all k-interactions (2 ≤
k ≤ d) are equal to zero. We will investigate if there are generators for which the k-interactions
are zero but the lower order ones are not necessarily zero. The answer to this question is given in
Theorem 3.1.

Theorem 3.1 There are k − 1 functionally independent solutions of the differential equation

dk

dxk
log
(
(−1)dψ(d)(x)

)
= 0 (22)

satisfying the conditions (a),(b) and (c). These solutions are of the following form:

ψm(x) =

∫∞
x

(y − x)d−1 exp(Pm(y))dy∫∞
0
yd−1 exp(Pm(y))dy

, (23)

where m = 1, 2, ..., k − 1 and Pi(y) denotes a polynomial in y of degree i:

Pi(y) = ciy
i + ci−1y

i−1 + ...+ c1y

with ci < 0 and ci−1, ..., c1 arbitrary.

Notice that ψ1(x) = exp(c1x) with c1 < 0 is the generator of mutually independent copula.
For this generator all interactions of size 2 to d are equal to zero. Hence ψ1(x) is certainly one of
the possible solutions of (22) for k = 2, ..., d. The ψ2(x) is of the following form

ψ2(x) =

∫∞
x

(y − x)d−1 exp(c2y2 + c1y)dy∫∞
0
yd−1 exp(c2y2 + c1y)dy

,

where c2 < 0 and c1 arbitrary. We can see that ψ2(x) is d- monotone and log
(
(−1)dψ(d)

2 (x)
)

is a
second order polynomial, hence its third and higher order derivatives are zero. The second order
derivative of log

(
(−1)dψ(d)

2 (x)
)

does not have to vanish. This means that ψ2(x) is one of the
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Figure 3: Generators of canonical Archimedean copula with 4-interactions equal to 0.
psi(4,1)=exp(−x) has 2,3, and 4-interactions equal to zero (for each bivariate margins of the copula
Kendall’s τ = 0), for psi(4,2), given by (23) with c2 = −1, c1 = 0 we get 3 and 4-interactions equal
to zero (τ = −0.0686) and for psi(4,3), given by (23) with c3 = −1, c2 = c1 = 0 only 4-interactions
are zero (τ = −0.0954).

possible solutions of (22) for k ≥ 3. ψ1(x) and ψ2(x) are functionally independent etc.

PROOF of Theorem 3.1 that follows the above line of reasoning can be found in Appendix B.

The result above can be also obtained through the relationship between canonical Archimedean
copulas and simplex distributions as discussed in [15]. Notice that (23) can be rewritten as:

ψm(x) =
∫ ∞

x

(
1− x

t

)d−1 td−1 exp(Pm(t))∫∞
0
yd−1 exp(Pm(y))dy

dt

which is the Williamson d-transform of a non-negative random variable with density

fm(x) =
xd−1 exp(Pm(x))∫∞

0
yd−1 exp(Pm(y))dy

, x ≥ 0, m = 1, 2, ..., k − 1.

Alternative PROOF of Theorem 3.1 using the relationship between the generator and the radial
density can also be found in Appendix B.

We see that the solutions ψm correspond to simplex distributions with Kotz type distributed
radial densities (a simple form of this density is given in (8)). The radial random variable Rm
with density fm belongs to MDA(Λ) with auxiliary function a(x) = 1/xm−1 ∈ RV−(m−1). Hence
we get for bivariate margins of this Archimedean copula λL = 0, µL = 21/(m−1) and the copula
does not have the intermediate tail dependence. Similarly the upper tail λU = 0 and since 1/R
is regularly varying at zero with index larger than d there is no intermediate tail dependence but
there is a negative dependence in the bivariate tails.

Figure 3 shows plots of three generators (psi(d,m) for d = 4, m = 1, 2, 3) of canonical
Archimedean copula with 4-interactions equal to zero. The function psi(4,1) is a generator of
the independent copula. The functions psi(4,2) and psi(4,3) lead to three and four and only four
order interactions equal to zero, respectively. The Kendall’s tau for each of their bivariate margins
are calculated numerically.
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3.2 Positivity of k-interactions

From the definition of the k-interaction function one sees that its sign depends on the sign of the
derivative of the order k of the function log((−1)dψ(d)(x)).

Comparing the result in [18], the positivity of 2-interactions (log convexity of (−1)dψ(d)) is
equivalent with Cψ being multivariate totally positive of order 2 (MTP2) which is the generalization
of the TP2 concept of positive dependence.

Definition 3.2 fD is MTP2 if

fD(x ∨ y)fD(x ∧ y) ≥ fD(x)fD(y)

where x ∨ y = (max{x1, y1}, ...,max{xn, yn}) and x ∧ y = (min{x1, y1}, ...,min{xn, yn}).

The completely monotone generators (Laplace transforms) are log convex and their d-th deriva-
tives multiplied by (−1)d are also completely monotone, hence are also log convex. This means
that the generators of the LT-Archimedean copulas have positive 2-interactions. Positivity of 2-
interactions, however, does not guarantee that also the higher order interactions are positive.

Example 3.1 By simple calculations we get that the d-th derivative of the generator of Clayton’s
copula is

ddψCl

dxd
= (−1)d

1
θ

(
1
θ

+ 1
)
· ... ·

(
1
θ

+ d− 1
)

(1 + x)−
1
θ−d.

Hence the sign of the k-interactions is determined by

−
(

1
θ

+ d

)
dk

dxk
log(1 + x).

This means that the k-th order interactions for Clayton’s copula are positive when k is even and
negative for odd k.

3.3 Proportionality of d-interactions to the density

The interesting property has been observed in Section 2.3. We showed that the Frank’s copula is
the unique copula for which the interaction function is proportional to the density. Hence we can
see that the local dependence is high in points when the density is high. The significance of this
result is rather of theoretical than practical importance. In this section we examine whether the
higher order interactions can be proportional to the density for canonical Archimedean copula.

Comparing (20) and (21) we see that the k-interaction function can be proportional to the
density only in case k = d. We want to find a generator that satisfies conditions (a), (b) and (c)
in Section 3.2 and such that

dd

dxd
log
(
(−1)dψ(d)(x)

)
= Aψ(d)(x) (24)

where A is a non-zero constant.

Theorem 3.2 There are d−1 functionally independent solutions of the differential equation (24)
satisfying conditions (a),(b) and (c). These solutions can be represented as solutions of the integral
equations

ψm(x) =

∫∞
x

(y − x)d−1 exp(Aψm(y) + Pm(y))dy∫∞
0
yd−1 exp(Aψm(y) + Pm(y))dy

, (25)
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where m = 1, 2, ..., d− 1 and Pi(y) denotes a polynomial in y of degree i:

Pi(y) = ciy
i + ci−1y

i−1 + ...+ c1y

with ci < 0 and ci−1, ..., c1 arbitrary.

Notice that (25) simplifies to (23) when A = 0. For fixed parameters ci and A each integral
equation has a unique solution since the associated to (25) map T : ψ → Tψ with

Tψ =

∫∞
x

(y − x)d−1 exp(Aψ + Pm(y))dy∫∞
0
yd−1 exp(Aψ + Pm(y))dy

is a contracting map in the space of continuous functions on [0,∞), and consequently T has a
unique fixed points in this space. The integral equations are therefore well suited to be solved
numerically. For A ̸= 0 it might be impossible to construct (exact) analytical solutions for d > 2
but numerical approximation can always be constructed. For d = 2 (25) has an analytical solution.

PROOF of Theorem 3.2 can be found in Appendix C. Afterwards we show how the integral equa-
tion can be solved for the case d = 2 and leads to one solution corresponding to the generator of
Frank’s copula.

4 Conclusions

In this paper we studied properties of the interaction functions for densities and corresponding
copulas. The interaction function of a copula is not equal to the interaction function of the
corresponding distribution. They, however, have the same sign.

The interaction function gives information about local dependence in a density. It allows
to study independencies and conditional independencies in a joint distribution as well as the
complexity of the dependence structure. This is done by investigating how the density can be
factorized into the products of lower dimensional functions.

In this paper we looked at the interaction function of the elliptical and Archimedean copulas as
they are determined by the one dimensional function. The properties of the interaction function
can be translated into the properties of generators of these densities. This naturally simplifies the
problem. Much more research is needed to be able to interpret properties of general distributions
from the behaviour of corresponding interaction functions.

Since the interaction function provides information about local dependence then it is not
surprising that its extreme behaviour would be related to the extreme behaviour of a copula. We
made a first step in investigating the relationship between the extremes of the iteration function
ic,z12 for meta gaussian distributions, that is, for distributions with standard normal margins and a
copula density c. We noticed that if c has tail dependence then ic,z12 (z, z) is infinite as z →∞. In the
case of a copula with tail independence the interaction function of the meta gaussian density seems
to go to zero and when the copula with density c has intermediate tail dependence one can expect
that ic,z12 (z, z) converges to a constant that is not equal to zero (see the gaussian distribution and
the Gumbel copula). More research is needed to establish full classification of extremal behaviour
of the interaction function.

Appendix A

PROOF of Property 6
We present here only the main steps of the proof and refer the reader to the full solution of this
problem in Appendix C formulated in Section 3.3 for the general case.
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Comparing equations (12) and (13) it is easy to see that the interaction function is proportional
to its density function if

d2

dx2
(log(ψ

′′
(x)) =

ψ(4)(x)ψ
′′
(t)− (ψ

′′′
(x))2

(ψ′′(x))2
= Aψ

′′
(x), A ̸= 0.

This is a second order differential equation for h = ψ
′′

that can be solved by substituting y = h
′
.

This substitution leads to a Bernoulli equation which can be simplified to a first order linear
equation. Solving this equation and incorporating the conditions (10), leads to the desired result.

Appendix B

PROOF of Theorem 3.1
The condition (b) is trivially satisfied. The functions (23) are differentiable and their derivatives
up to d− 1-th order are of the form

ds

dxs
ψm(x) = (−1)s(d− 1) · (d− 2) · ... · (d− s)

∫∞
x

(y − x)d−1−s exp(Pm(y))dy∫∞
0
yd−1 exp(Pm(y))dy

s = 1, ..., d− 1 and the d-th order derivative calculated with Leibnitz rule is equal to:

dd

dxd
ψm(x) = (−1)d(d− 1)!

exp(Pm(x))∫∞
0
yd−1 exp(Pm(y))dy

.

Hence ψm are d-monotone and sufficiently differentiable. log
(
(−1)dψ(d)

m (x)
)

is the m-th order
polynomial for which the m + 1-th and all higher order derivatives are zero. The lower order
derivatives do not have to be equal to zero. Moreover the functions are functionally independent.

PROOF (Alternative) of Theorem 3.1

Since ψ is k × d times differentiable then the corresponding radial density fR exists. Using
Leibnitz rule we can differentiate ψ d-times and find ψ(d). We can also use the relationship (17)
and get that

ψ(d)(x) = (−1)d(d− 1)!
fR(x)
xd−1

. (26)

Hence the radial densities of solutions of the differential equation (22) must be of the form

fR(x) ∝ xd−1 exp(c0 + c1x+ ...+ ck−1x
k−1).

Only k− 1 functionally independent solutions are available as the constant part of the polynomial
disappears through the normalization of the density. The constant corresponding to the highest
power of the polynomial in each solution has to be negative as otherwise this would not be a
proper density.

Appendix C

PROOF of Theorem 3.2
The differential equation (24) can be integrated d times, yielding

log
(
(−1)dψ(d)(x)

)
= Aψ(x) + cd−1x

d−1 + ...+ c1x+ c0 = Aψ(x) +Qd−1(x) (27)

18



To get a solution satisfying the conditions a),b) and c) we must impose cd−1 < 0 or cd−1 = 0 and
cd−2 < 0 or, ... , or cd−1 = ... = c2 = 0 and c1 < 0. This will give d− 1 possible solutions of (24).

The equation (27) can be rewritten as
(
(−1)dψ(d)(x)

)
= exp (Aψ(x) +Qd−1(x)) .

Integrating the above from 0 to x gives

ψ(d−1)(x) = ψ(d−1)(0) + (−1)d
∫ x

0

exp (Aψ(y) +Qd−1(y)) dy

Noticing that due to the restrictions on ci, i = 1, ..., d− 1 we have limx→∞ ψ(d−1)(x) = 0, and so

ψ(d−1)(0) = (−1)d−1

∫ ∞

0

exp (Aψ(y) +Qd−1(y)) dy

which leads to

ψ(d−1)(x) = (−1)d−1

∫ ∞

x

exp (Aψ(y) +Qd−1(y)) dy. (28)

Integrating (28) again from 0 to x and including the information that limx→∞ ψ(d−2)(x) = 0, the
following can be obtained

ψ(d−2)(x) = (−1)d−2

∫ ∞

x

∫ ∞

τ

exp (Aψ(y) +Qd−1(y)) dydτ

which by changing the order of integration gives

ψ(d−2)(x) = (−1)d−2

∫ ∞

x

(y − x) exp (Aψ(y) +Qd−1(y)) dy.

Repeating the above steps, integrating from 0 to x and rearranging the order of integrals, we get

ψ(d−3)(x) = (−1)d−3 1
2

∫ ∞

x

(y − x)2 exp (Aψ(y) +Qd−1(y)) dy.

Finally after d such steps

ψ(x) =
1

(d− 1)!

∫ ∞

x

(y − x)d−1 exp (Aψ(y) +Qd−1(y)) dy. (29)

Since ψ(0) = 1 then we also have

1 =
1

(d− 1)!

∫ ∞

0

yd−1 exp (Aψ(y) +Qd−1(y)) dy

which gives that

ec0 =
1

1
(d−1)!

∫∞
0
yd−1 exp (Aψ(y) + cd−1yd−1 + ...+ c1y) dy

. (30)

From (29) and (30) it follows that ψ, that is, the possible solutions of the differential equation
(24) have to satisfy (25).

PROOF (Solution of (24) for the case of d = 2)
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In case d = 2 an analytical solution of (24) can be found. In this case the equation can be
rewritten as:

ψ(2)(x) = eAψ(x)+c1x+c0 with c1 < 0.

Denoting as v(x) = Aψ(x) + c1x+ c0 and noticing that Aψ(2)(x) = v(2)(x) we get

v(2)(x) = Aev(x).

Multiplying the above by v′(x) and integrating both sides from 0 to x leads to:

v′(x)2 = 2Aev(x) − 2Aev(0) + v′(0)2 = 2Aev(x) + k. (31)

If A > 0 then k = −2AeA+c0 + (Aψ
′
(0) + c1)2 should be non-negative. Thus two cases have to be

studied i) A > 0 and k = 0 and ii) A > 0 and k > 0. If A < 0 then k is always positive. Hence we
need to consider also the case iii) A < 0 and k > 0.

Case i: A > 0 and k = 0.
Since v′(x) = Aψ′(x) + c1 < 0 then equation (31) can be written as follows

v′(x) = −
√

2Aev(x)/2.

This is a separable equation which leads to the solution:

v(x) = −2 log

(√
A

2
x+ e−

A+c0
2

)
.

Hence ψ is

ψ(x) = − 2
A

log

(√
A

2
x+ e−

A+c0
2

)
− c1
A
x− c0

A
.

This solution does not tend to zero for x tending to infinity.

Case ii: A > 0 and k > 0.
In this case the following equation has to be solved1

v′(x) = −
√

2Aev(x) + k.

Substituting w(x) =
√

2Aev(x) + k we get w2(x) − k = 2Aev(x) and the equation above
reduces to the separable equation

1
k − w2

w′(x) =
1
2

which leads to the solution of the form

w(x) =
√
k

√
k+w(0)√
k−w(0)

e
√
kx − 1

√
k+w(0)√
k−w(0)

e
√
kx + 1

.

Since w2(x) = 2Aev(x) + k and v(x) = Aψ(x) + c1x+ c0 we find after some algebra that

Aψ(x) = A− (c1 +
√
k)x+ 2 log(2

√
k)− 2 log(

√
k + w(0) + (

√
k − w(0))e−

√
kx). (32)

Incorporating the condition limx→∞ ψ(x) = 0 we get that

c1 = −
√
k (33)

1Notice that similar to Case i) only the negative sign has to be taken into account.

20



and

A+ 2 log(2
√
k)− 2 log(

√
k + w(0)) = 0. (34)

Since w(0) =
√

2AeA+c0 + k then from (33) and (34) we can find that

ec0 =
2
A
c21(1− e−A/2).

The above can be included into (32) and we get

ψ(x) = − 2
A

log
(
1− (1− e−A/2)ec1x

)

with c1 < 0, which is the generator of Frank’s copula.

Case iii: A < 0 and k > 0
The solution procedure presented in case ii) can be repeated analogously in this case yielding

ψ(x) = − 2
A

log
(
1− (1− e−A/2)ec1x

)
with c1 < 0.
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