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a b s t r a c t

In this paper, we consider the general linear model M = {y,Xβ, Σ}, without any rank
assumptions to themodel matrix X and covariancematrixΣ, and its two restrictedmodels
Mr1 = {y,Xβ|A1β = r1, Σ} and Mr12 = {y,Xβ|Aβ = r, Σ}, where r = (r′1, r

′

2)
′ and

A = (A′

1,A
′

2)
′.Wegive the necessary and sufficient conditions for the BLUEs to equal under

M and Mr1 , as well as under Mr1 and Mr12 . We also derive that the BLUEs under Mr1 are
superior to the BLUEs under M , and that the BLUEs under Mr12 are superior to the BLUEs
under Mr1 in the sense of the covariance matrix.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Consider a general linear model

y = Xβ + ε, E(ε) = 0, cov(ε) = 6, or in compact form M = {y,Xβ, 6}, (1.1)

where y is an n × 1 observable random vector, X is given n × p matrix of arbitrary rank, β is a p × 1 vector of unknown
parameters, 6 is a known nonnegative definite matrix of arbitrary rank. Also assume

r1 = A1β (1.2)

and

r2 = A2β (1.3)

to be disjoint sets ofm1 and m2 linear restrictions, respectively, withm1 + m2 = m. We denote by

r =


r1
r2


=


A1
A2


β = Aβ, (1.4)

the full set of restrictions with r(A) = m. Such information may arise from different sources like past experience or long
association of the experimenter with the experiment, similar kind of experiments conducted in the past, etc.; see Section 5.1
in [11]. The model (1.1) subject to (1.2) can be written in the following form

Mr1 = {y,Xβ|A1β = r1, 6}. (1.5)
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Furthermore, by unifying the model (1.5) and linear restrictions (1.3), we have

Mr12 = {y,Xβ|Aβ = r, 6}. (1.6)

Corresponding to (1.5) and (1.6), by utilization of the method of mixed estimation suggested by H. Theil and A.S.
Goldberger [15], we have

Mc1 =


y
r1


,


X
A1


β,


6 0
0 0


(1.7)

and

Mc12 =


y
r


,


X
A


β,


6 0
0 0


. (1.8)

When X has full column rank, some authors showed that the OLSE (ordinary least squares estimator) of β under Mr12 is
superior to the OLSE of β under Mr1 , and that the OLSE of β under Mr1 is superior to the OLSE of β under M in the sense
of the covariance matrix; see Section 5.4 in [11,2]. As is well known, OLSEs and BLUEs of unknown parameters in a general
linear model are two of the most useful estimations and defined according to different optimal criteria. This prompts us
to compare the superiority of BLUEs of β under M , Mr1 and Mr12 . Further, on the assumption that full column rank of X is
removed, we consider the superiority of BLUEs of Xβ under M , Mr1 and Mr12 .

Another purpose of this article is to investigate the relations among the BLUEs of the mean vector Xβ under M , Mr1 and
Mr12 . There is a rich literature on equality of BLUEs underM andMr1 . For example, T.Mathew [7] investigated the equality of
the BLUEs of Xβ under M and Mr1 and a necessary and sufficient condition was given. Recently, Y. Tian [17] and X. Ren [13]
revisited the equivalence of the BLUEs of Xβ under M and Mr1 and obtained some new equivalent conditions by rank of
matrix. Y. Tian [18] derived the equality of the BLUEs under Mr1 and Mc1 . The related work in this area can be found in
[1,8,3,12,5].

Now we recall that an unbiased linear estimator Gy of Xβ is the BLUE of Xβ under M if

cov(Gy) ≤L cov(Ly) ∀L : LX = X, (1.9)

where ‘‘≤L’’ refers to the Löwner ordering. It is well known that the general expression for BLUE of Xβ under M can be
written in some closed forms through generalized inverses of matrices. The following lemma was given by C.R. Rao [10].

Lemma 1.1. A linear estimator Gy is the BLUE of Xβ under M if and only if the matrix G satisfied the following equation:

G(X, 6EX) = (X, 0). (1.10)

This equation is always consistent, that is, C ((X, 0)′) ⊆ C ((X, 6EX)
′) holds. In this case, the general solution to (1.10), denoted

by PX;6, can be expressed in the following parametric form

PX;6 = (X, 0)(X, 6EX)
Ď
+ UE(X,6EX), (1.11)

where U ∈ Rn×n is arbitrary, and the general expression for the BLUE of Xβ under M can be written as

BLUE(Xβ|M ) = PX;6y. (1.12)

In particular,

(a) E{BLUE(Xβ|M )} = Xβ and cov{BLUE(Xβ|M )} = PX;66P′

X;6.
(b) C (X, 6) = C (X, 6EX) and r(X, 6) = r(X, 6EX).
(c) The product PX;66 can uniquely be written as PX;66 = (X, 0)(X, 6EX)

Ď6.

Remark 1.1. Recently, it was shown that the above result can also be proved by inertia of matrix, see Y. Tian [4].

In addition to (1.12), we may recall here three general representations for the BLUE(Xβ|M ):

BLUE(Xβ|M ) = y − 6EX(EX6EX)
−EXy, (1.13)

BLUE(Xβ|M ) = PXy − PX6EX(EX6EX)
−EXy, (1.14)

BLUE(Xβ|M ) = X(X′WĎX)−X′WĎy, (1.15)

where

W = 6 + XUX′, (1.16)

and U is an arbitrary matrix such that

C (W) = C (X, 6), (1.17)

see C.R. Rao [10].
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The paper is organized as follows. In Section 2, we present general expressions of BLUEs of Xβ under Mr1 , Mc1 , Mr12 and
Mc12 , and give the necessary and sufficient conditions for the equality of the BLUEs of Xβ and the equality of the BLUEs
of β under Mr1 and Mr12 to hold, respectively, which is motivated by the work of [7,17,13]. In Section 3, we discuss the
superiority of the BLUEs of Xβ, as well as the superiority of the BLUEs of β under the models mentioned above.

Throughout this paper, wewill use the symbolRm×n to denote the collection of allm×n realmatrices. The symbolsA′,A−,
AĎ, r(A) and C (A) denote, respectively, the transpose, the generalized inverse, the Moore–Penrose inverse, the rank and the
range (column space) of a real matrix A. A > B (≥ 0, < 0, ≤ 0) means that A−B is positive definite (positive semi-definite,
negative definite, negative semi-definite), and by (A, B) we refers to the partitioned matrix with A and B as submatrices.
Moreover, let PA, EA and FA stand for the three orthogonal projectors PA = AAĎ, EA = Im − AAĎ and FA = In − AĎA. Both
i+(A) and i−(A), called the partial inertia of A = A′, are defined to be the number of the positive and negative eigenvalues
of Awith multiplicities, respectively.

As is shown in the latter sections, estimations of parametric functions under M , Mr1 and Mr12 involve some complicated
operations of matrices and their generalized inverse. In order to simplify various matrix expressions including the
generalized inverses of matrices, we need the following four lemmas concerning inertia formulas for partitioned matrices
given by Y. Tian [16].

Lemma 1.2. Let A = A′
∈ Rm×m, B = B′

∈ Rn×n, C ∈ Rm×n and P ∈ Rm×m. Then

i±(PAP′) ≤ i±(A), i±(−A) = i∓(A), (1.18)

i±(PAP′) = i±(A), if P is nonsingular, (1.19)

i±


A 0
0 B


= i±(A) + i±(B), (1.20)

i±


0 C
C′ 0


= r(C). (1.21)

Lemma 1.3. Let A = A′
∈ Rm×m. Then

A ≤ 0 if and only if i+(A) = 0. (1.22)

In particular,
(a) A < 0 if and only if i−(A) = m.
(b) A = 0 if and only if i±(A) = 0.

Lemma 1.4. Let A = A′
∈ Rm×m, B ∈ Rm×n and C = C′

∈ Rn×n. Then

i±


A B
B′ 0


= r(B) + i±(EBAEB), (1.23)

i±


A B
B′ C


≥ i±(A). (1.24)

In particular,

(a) i±

A B
B′ 0


= r(B), if C (A) ⊆ C (B).

(b) i±

A B
B′ C


= i±(A), if C (B) ⊆ C (A) and C = B′AĎB.

Lemma 1.5. Let A1 = A′

1 ∈ Rn1×n1 , A2 = A′

2 ∈ Rn2×n2 , B1 ∈ Rq1×m, B2 ∈ Rq2×m, G1 ∈ Rq1×n1 and G2 ∈ Rq2×n2 . If
C (Ai) ⊆ C (G′

i), C (Bi) ⊆ C (Gi), i = 1, 2. Then

i±{B′

1(G
′

1)
ĎA1G

Ď
1B1 − B′

2(G
′

2)
ĎA2G

Ď
2B2} = i±


A1 0 G′

1 0 0
0 −A2 0 G′

2 0
G1 0 0 0 B1
0 G2 0 0 B2
0 0 B′

1 B′

2 0

 − r(G1) − r(G2). (1.25)

Hence,

r{B′

1(G
′

1)
ĎA1G

Ď
1B1 − B′

2(G
′

2)
ĎA2G

Ď
2B2} = r


A1 0 G′

1 0 0
0 −A2 0 G′

2 0
G1 0 0 0 B1
0 G2 0 0 B2
0 0 B′

1 B′

2 0

 − 2r(G1) − 2r(G2). (1.26)
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The following lemma can be found in G. Marsaglia and G.P.H. Styan [6].

Lemma 1.6. Let A ∈ Rm×n, B ∈ Rm×k and C ∈ Rl×n. Then:

r (A, B) = r (A) + r(EAB) = r (B) + r(EBA). (1.27)

r

A
C


= r (A) + r(CFA) = r (C) + r(AFC). (1.28)

r

CA+B


= r


A B
C 0


− r (A) , if C (B) ⊆ C (A) and C (C′) ⊆ C (A′). (1.29)

2. The expressions and equalities of the BLUEs

It is well known that a general solution to A1β = r1 is given by

β = AĎ
1r1 + FA1γ, (2.1)

where γ is an arbitrary vector. Therefore, under the model (1.5), we have

E(y) = Xβ = X(AĎ
1r1 + FA1γ), or equivalently,

E(y − XAĎ
1r1) = XFA1γ .

Thus, the model (1.5) can be equivalently written as

{y − XAĎ
1r1,XFA1γ, 6}, (2.2)

which leads to the fact that

y − XAĎ
1r1 ∈ C (XFA1 , 6) (2.3)

holds with probability 1. Y. Tian [18] points out that (2.3) is equivalent to
y
r1


∈ C


X 6

A1 0


. (2.4)

Thus (2.3) implies y ∈ C (X, 6), i.e., the consistency of the model (1.5) implies the consistency of the model (1.1). Similarly,
the consistency of the model (1.6) leads to the consistency of the model (1.5). In what follows, we assume that the model in
(1.6) is consistent, i.e.,

y
r


∈ C


X 6

A 0


(2.5)

holds with probability 1.

Lemma 2.1. Consider the models Mr1 and Mr12 , and defineX1 = (X′,A′

1)
′. Then:

(a) The BLUEs of Xβ andX1β under Mr1 can be written as, respectively,

BLUE(Xβ|Mr1) = XAĎ
1r1 + PXA1 ;6(y − XAĎ

1r1), (2.6)

BLUE(X1β|Mr1) = X1A
Ď
1r1 +


PXA1 ;6(y − XAĎ

1r1)
0


, (2.7)

where XA1 = XFA1 and PXA1 ;6 = (XA1 , 0)(XA1 , 6EXA1
)Ď + U1E(XA1 ,6EXA1

), in which U1 is arbitrary. Moreover,
(i) C (XA1 , 6EXA1

) = C (XA1 , 6) and r(XA1 , 6EXA1
) = r(XA1 , 6).

(ii) PXA1 ;66 = (XA1 , 0)(XA1 , 6EXA1
)Ď6.

(b) The BLUE of Xβ andX1β under Mr12 can be written as, respectively,

BLUE(Xβ|Mr12) = XAĎr + PXA12 ;6(y − XAĎr), (2.8)

BLUE(X1β|Mr12) = X1AĎr +


PXA12 ;6(y − XAĎr)

0


, (2.9)

where XA12 = XFA and PXA12 ;6 = (XA12 , 0)(XA12 , 6EXA12
)Ď + U2E(XA12 ,6EXA12

), in which U2 is arbitrary. Moreover,
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(i) C (XA12 , 6EXA12
) = C (XA12 , 6) and r(XA12 , 6EXA12

) = r(XA12 , 6).
(ii) PXA12 ;66 = (XA12 , 0)(XA12 , 6EXA12

)Ď6.

Proof. From Lemma 1.1, it is easy to see that the BLUE of XFA1γ under (2.2) is given by

PXA1 ;6(y − XAĎ
1r1). (2.10)

Substituting (2.10) into (2.1) yields (2.6). Similarly, we can get (2.8). Using (2.1), we observe that

X1β =


X
A1


(AĎ

1r1 + FA1γ)

= X1A
Ď
1r1 +


XA1γ
0


, (2.11)

and thus, in view of (2.10),

BLUE(X1β|Mr1) = X1A
Ď
1r1 +


BLUE(XA1γ|Mr1)

0


= X1A

Ď
1r1 +


PXA1 ;6(y − XAĎ

1r1)
0


, (2.12)

i.e., (2.7) is true. Similarly, we can get (2.9). �

From Lemma 1.1, we see that the BLUEs of Xβ under Mc1 and Mc12 can be expressed as

BLUE(Xβ|Mc1) = (In, 0)PX1;61


y
r1


, (2.13)

BLUE(Xβ|Mc12) = (In, 0)PX12;612


y
r


, (2.14)

respectively, where

PX1;61
= (X1, 0)(X1,61EX1

)Ď + U1E(X1,61EX1 ), (2.15)

PX12;612
= (X12, 0)(X12,612EX12

)Ď + U2E(X12,612EX12 ), (2.16)

X1 =


X
A1


,X12 =


X
A


, 61 =


6 0
0 0


∈ R(n+m1)×(n+m1) and 612 =


6 0
0 0


∈ R(n+m)×(n+m), in which U1 ∈ R(n+m1)×(n+m1)

and U2 ∈ R(n+m)×(n+m) are arbitrary.
The following lemma can be found in Y. Tian [18].

Lemma 2.2. Consider the models Mr1 , Mc1 , Mr12 and Mc12 . Then,

(a) BLUE(Xβ|Mr1) = BLUE(Xβ|Mc1) holds with probability 1.
(b) BLUE(Xβ|Mr12) = BLUE(Xβ|Mc12) holds with probability 1.
(c) BLUE(β|Mr1) = BLUE(β|Mc1) holds with probability 1, if β is estimable under Mr1 .
(d) BLUE(β|Mr12) = BLUE(β|Mc12) holds with probability 1, if β is estimable under Mr12 .

The following result was shown by Y. Tian [17].

Lemma 2.3. Consider the models M and Mr1 . Then the following statements are equivalent:

(a) BLUE(Xβ|M ) = BLUE(Xβ|Mr1) holds with probability 1.

(b) r


6 X
0 A1


= r


X
A1


+ r(X, 6) − r(X).

By Lemmas 2.2 and 2.3, it is easy to get the following result.

Theorem 2.4. Consider the models M and Mr1 . If β is estimable under M , then the following statements are equivalent:

(a) BLUE(β|M ) = BLUE(β|Mr1) holds with probability 1.
(b) BLUE(β|M ) = BLUE(β|Mc1) holds with probability 1.

(c) r


6 X
0 A1


= r


X
A1


+ r(X, 6) − r(X), or equivalently, C


0
A′
1


⊆ C


6

X′


.
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Proof. Since β is estimable under M , i.e.,

r(X) = p, (2.17)

we have

BLUE(Xβ|M ) − BLUE(Xβ|Mr1) = X{BLUE(β|M ) − BLUE(β|Mr1)}. (2.18)

Set

V = BLUE(Xβ|M ) − BLUE(Xβ|Mr1). (2.19)

Then

cov(V) = Xcov{BLUE(β|M ) − BLUE(β|Mr1)}X
′, (2.20)

which implies that (a) holds if and only if V = 0 holds with probability 1, that is, (c) holds. By Lemma 2.2, (a) is equivalent
to (b). �

Combining Lemmas 2.2 and 2.3 yields the following result.

Theorem 2.5. Consider the models M , Mr1 and Mc1 . Then the following statements are equivalent:

(a) BLUE(Xβ|M ) = BLUE(Xβ|Mr1) holds with probability 1.
(b) BLUE(Xβ|M ) = BLUE(Xβ|Mc1) holds with probability 1.

(c) r


6 X
0 A1


= r


X
A1


+ r(X, 6) − r(X).

Based on the above theorems, we can establish the following result.

Theorem 2.6. Consider the models Mr1 , Mc1 , Mr12 and Mc12 . Then the following statements are equivalent:

(a) BLUE(Xβ|Mr1) = BLUE(Xβ|Mr12) holds with probability 1.
(b) BLUE(Xβ|Mc1) = BLUE(Xβ|Mc12) holds with probability 1.
(c) BLUE(β|Mr1) = BLUE(β|Mr12) holds with probability 1, if β is estimable under Mr1 .
(d) BLUE(β|Mc1) = BLUE(β|Mc12) holds with probability 1, if β is estimable under Mr1 .

(e) r


6 X
0 A


= r


6 X
0 A1


+ r


X
A


− r


X
A1


.

Proof. Observe that

cov{BLUE(X1β|Mr1) − BLUE(X1β|Mr12)} =


(PXA1 ;6 − PXA12 ;6)6(PXA1 ;6 − PXA12 ;6)′ 0

0 0


=


cov{BLUE(Xβ|Mr1) − BLUE(Xβ|Mr12)} 0

0 0


. (2.21)

Since

E{BLUE(X1β|Mr1) − BLUE(X1β|Mr12)} = 0 (2.22)

and

E{BLUE(Xβ|Mr1) − BLUE(Xβ|Mr12)} = 0, (2.23)

(2.21) implies that (a) is equivalent to BLUE(X1β|Mr1) = BLUE(X1β|Mr12) holds with probability 1, which, by Lemma 2.3, is
equivalent to (e). Thuswe have shown that (a) and (e) are equivalent. The equivalence of (a) and (b) follows from Lemma 2.2.
Similar to the proof of Theorem 2.4, we can get (c) ⇔ (d) ⇔ (e). �

Remark 2.1. Clearly, if β is estimable under Mr1 , i.e., r(X
′,A′

1)
′
= p, then Theorem 2.6(e) can be simplified as C


0
A′
2


⊆

C


6 0
X′ A′

1


. For conciseness, in the following sections, we omit these simplifications.
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3. Comparisons among the BLUEs

In this section, we discuss the superiority of the BLUEs of Xβ, as well as the superiority of the BLUEs of β under M , Mr1 ,
Mc1 , Mr12 and Mc12 . We begin with the following lemma.

Lemma 3.1. Consider the models Mr1 , Mc1 , Mr12 and Mc12 . The following statements are true:

(a) cov{BLUE(Xβ|Mr1)} = cov{BLUE(Xβ|Mc1)}.
(b) cov{BLUE(Xβ|Mr12)} = cov{BLUE(Xβ|Mc12)}.
(c) cov{BLUE(β|Mr1)} = cov{BLUE(β|Mc1)}, if β is estimable under Mr1 .
(d) cov{BLUE(β|Mr12)} = cov{BLUE(β|Mc12)}, if β is estimable under Mr12 .

Proof. It is easy to see that

cov{BLUE(Xβ|Mr1)} = PXA1 ;66P′

XA1 ;6

= (XA1 , 0)(XA1 , 6EXA1
)Ď6{(XA1 , 6EXA1

)′}Ď(XA1 , 0)
′,

cov{BLUE(Xβ|Mc1)} = (In, 0)PX1;61
61P′X1;61

(In, 0)′

= (X, 0)(X1,61EX1
)Ď61{(X1,61EX1

)′}Ď(X, 0)′.

By (1.26) and direct calculations, we have

r[cov{BLUE(Xβ|Mr1)} − cov{BLUE(Xβ|Mc1)}]

= r[(XA1 , 0)(XA1 , 6EXA1
)Ď6{(XA1 , 6EXA1

)′}Ď(XA1 , 0)
′
− (X, 0)(X1,61EX1

)Ď61{(X1,61EX1
)′}Ď(X, 0)′]

= r



6 0 XA1 6EXA1
0 0 0

0 −61 0 0 X1 61EX1
0

X′

A1
0 0 0 0 0 X′

A1
EXA1

6 0 0 0 0 0 0
0 X′

1 0 0 0 0 X′

0 EX1
61 0 0 0 0 0

0 0 XA1 0 X 0 0


− 2r(XA1 , 6EXA1

) − 2r(X1,61EX1
)

= r



6 0 XA1 0 0 0 0
0 −61 0 0 X1 0 0

X′

A1
0 0 0 0 0 X′

A1
0 0 0 −EXA1

6EXA1
0 0 0

0 X′

1 0 0 0 0 X′

0 0 0 0 0 EX1
61EX1

0
0 0 XA1 0 X 0 0


− 2r(XA1 , 6) − 2r(X1,61)

= r


6 0 XA1 0 0
0 −61 0 X1 0

X′

A1
0 0 0 X′

A1

0 X′

1 0 0 X′

0 0 XA1 X 0

 − 2r(XA1 , 6) − 2r(X1,61) + r(EX1
61EX1

) + r(EXA1
6EXA1

)

= r


6 0 XA1 0 0
0 −61 −X1FA X1 0

X′

A1
−FAX′

1 0 0 0
0 X′

1 0 0 X′

0 0 0 X 0

 − 2r(XA1 , 6) − 2r(X1,61) + r(EX1
61) + r(EXA1

6)

= r

 6 0 XA1
0 −6 −XA1

X′

A1
−X′

A1
0

 − r(XA1 , 6) − r(X1,61) − r(XA1) − r(X1) + 2r(X1)

= r

 0 6 XA1
6 0 0
X′

A1
0 0

 − r(XA1 , 6) − r(X1,61) − r(XA1) + r(X1) = 0. (3.1)
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Hence, (a) holds. Similarly, we can also show that (b) holds. Now we show that (c) is true. Note that

r{(A1, 0)(X1,61EX1
)Ď61} = r

X1 61EX1
61

A1 0 0


− r(X1,61EX1

) = 0, (3.2)

i.e.,

(A1, 0)(X1,61EX1
)Ď61 = 0. (3.3)

So we have

cov{BLUE(X1β|Mr1)} =


PXA1 ;66P′

XA1 ;6 0
0 0


=


cov{BLUE(Xβ|Mr1)} 0

0 0


, (3.4)

cov{BLUE(X1β|Mc1)} = PX1;61
61P′X1;61

= (X1, 0)(X1,61EX1
)Ď61{(X1,61EX1

)′}Ď(X1, 0)′

=


(X, 0)(X1,61EX1

)Ď61{(X1,61EX1
)′}Ď(X, 0)′ 0

0 0


=


cov{BLUE(Xβ|Mc1)} 0

0 0


, (3.5)

which combined with (a) leads to

cov{BLUE(X1β|Mr1)} = cov{BLUE(X1β|Mc1)}, (3.6)

i.e., X1[cov{BLUE(β|Mr1)} − cov{BLUE(β|Mc1)}]
X′

1 = 0. (3.7)

Noting that

r(X1) = r(X′,A′

1) = p, (3.8)

(3.7) leads to (c). Similarly, we can get (d). �

Remark 3.1. It follows from the result that the covariances of the estimations derived from the explicitly and implicitly
restricted models are superficially different features, but can really be viewed as the same thing.

Theorem 3.2. Consider the models M , Mr1 and Mc1 . Then

(a) cov{BLUE(Xβ|Mr1)} ≤ cov{BLUE(Xβ|M )}.
(b) cov{BLUE(Xβ|Mc1)} ≤ cov{BLUE(Xβ|M )}.
(c) cov{BLUE(β|Mr1)} ≤ cov{BLUE(β|M )}, if β is estimable under M .
(d) cov{BLUE(β|Mc1)} ≤ cov{BLUE(β|M )}, if β is estimable under M .

In particular,
(e) The following statements are equivalent:

(i) cov{BLUE(Xβ|Mr1)} = cov{BLUE(Xβ|M )}.
(ii) cov{BLUE(Xβ|Mc1)} = cov{BLUE(Xβ|M )}.
(iii) cov{BLUE(β|Mr1)} = cov{BLUE(β|M )}, if β is estimable under M .
(iv) cov{BLUE(β|Mc1)} = cov{BLUE(β|M )}, if β is estimable under M .

(v) r


6 X
0 A1


= r


X
A1


+ r(6,X) − r(X).

(f) The following statements are equivalent:
(i) cov{BLUE(Xβ|Mr1)} < cov{BLUE(Xβ|M )}.
(ii) cov{BLUE(Xβ|Mc1)} < cov{BLUE(Xβ|M )}.
(iii) cov{BLUE(β|Mr1)} < cov{BLUE(β|M )}, if β is estimable under M .
(iv) cov{BLUE(β|Mc1)} < cov{BLUE(β|M )}, if β is estimable under M .

(v) r


6 X
0 A1


= r


X
A1


+ r(6,X) − r(X) + n.
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Proof. From Lemmas 1.1, 1.2, 1.4, 1.5 and direct calculations, we get

i±[cov{BLUE(Xβ|Mr1)} − cov{BLUE(Xβ|M )}]

= i±(PXA1 ;66P′

XA1 ;6 − PX;66P′

X;6)

= i±[(XA1 , 0)(XA1 , 6EXA1
)Ď6{(XA1 , 6EXA1

)′}Ď(XA1 , 0)
′
− (X, 0)(X, 6EX)

Ď6{(X, 6EX)
′
}
Ď(X, 0)′]

= i±



6 0 XA1 6EXA1
0 0 0

0 −6 0 0 X 6EX 0
X′

A1
0 0 0 0 0 X′

A1
EXA1

6 0 0 0 0 0 0
0 X′ 0 0 0 0 X′

0 EX6 0 0 0 0 0
0 0 XA1 0 X 0 0


− r (X, 6EX) − r(XA1 , 6EXA1

)(by (1.25))

= i±



6 0 XA1 0 0 0 0
0 −6 0 0 X 0 0

X′

A1
0 0 0 0 0 X′

A1
0 0 0 −EXA1

6EXA1
0 0 0

0 X′ 0 0 0 0 X′

0 0 0 0 0 EX6EX 0
0 0 XA1 0 X 0 0

 − r (X, 6) − r(XA1 , 6)(by (1.19))

= i±


6 0 XA1 0 0
0 −6 0 X 0

X′

A1
0 0 0 X′

A1
0 X′ 0 0 X′

0 0 XA1 X 0

 + i∓(EXA1
6EXA1

) + i±(EX6EX) − r (X, 6) − r(XA1 , 6)(by (1.20))

= i±


6 0 XA1 0 0
0 −6 −XA1 X 0

X′

A1
−XA1 0 0 0

0 X′ 0 0 X′

0 0 0 X 0

 + i∓(EXA1
6EXA1

) + i±(EX6EX) − r (X, 6) − r(XA1 , 6)

= i±


6 0 XA1 0 0
0 −6 −XA1 0 0

X′

A1
−X′

A1
0 0 0

0 0 0 0 X′

0 0 0 X 0

 + i∓(EXA1
6EXA1

) + i±(EX6EX) − r (X, 6) − r(XA1 , 6)

= i±


6 6 XA1 0 0
6 0 0 0 0
X′

A1
0 0 0 0

0 0 0 0 X′

0 0 0 X 0

 + i∓(EXA1
6EXA1

) + i±(EX6EX) − r (X, 6) − r(XA1 , 6)

= i∓(EXA1
6EXA1

) + i±(EX6EX) − r(EX6).(by Lemma 1.4(a)) (3.9)

Hence,

i+[cov{BLUE(Xβ|Mr1)} − cov{BLUE(Xβ|M )}] = 0, (3.10)

i−[cov{BLUE(Xβ|Mr1)} − cov{BLUE(Xβ|M )}] = r


6 X
0 A1


− r


X
A1


− r(6,X) + r(X), (3.11)

which results in (a). Combining Lemma 3.1 and (a) yields (b). Now we show that (c) is true. Clearly, if β is estimable under
M , i.e., r(X) = p, there exists a permutation matrix P ∈ Rn×n such that

PX = (X′

1,X
′

2)
′, (3.12)

where X1 ∈ Rp×p has full rank. Let

V = cov{BLUE(β|Mr1)} − cov{BLUE(β|M )}. (3.13)

Then

cov{BLUE(Xβ|Mr1)} − cov{BLUE(Xβ|M )} = XVX′. (3.14)
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It follows from (1.18), (1.19), (1.24) and (3.12) that

i±(V) ≥ i±(XVX′) = i±[cov{BLUE(Xβ|Mr1)} − cov{BLUE(Xβ|M )}]

= i±(PXVX′P′)

= i±


X1VX′

1 X1VX′

2
X2VX′

1 X2VX′

2


≥ i±(X1VX′

1) = i±(V), (3.15)

i.e.,

i±(V) = i±[cov{BLUE(Xβ|Mr1)} − cov{BLUE(Xβ|M )}] (3.16)

which results in (c). Combining Lemma 3.1 and (c) yields (d). Applying Lemma 1.3 to (3.11) and (3.16) gives (e) and (f). �

One of the referees pointed out that Theorem 3.2(a) can be easily derived by the united theory of least squares of
C.R. Rao. In fact, by (1.13), (2.1) and (2.2), it follows that

BLUE(Xβ|Mr1) = XAĎ
1r1 + (y − XAĎ

1r1) − 6EXA1
(EXA1

6EXA1
)−EXA1

(y − XAĎ
1r1)

= y − 6EXA1
(EXA1

6EXA1
)−EXA1

(y − XAĎ
1r1). (3.17)

Now we, in view of (1.13) and (3.17), have

cov{BLUE(Xβ|M )} = 6 − 6EX(EX6EX)
−EX6, (3.18)

cov{BLUE(Xβ|Mr1)} = 6 − 6EXA1
(EXA1

6EXA1
)−EXA1

6. (3.19)

Therefore

cov{BLUE(Xβ|M )} − cov{BLUE(Xβ|Mr1)} = 61/2(P61/2EXA1
− P61/2EX)6

1/2. (3.20)

Noting that

C (61/2EX) ⊂ C (61/2EXA1
), (3.21)

we, from Proposition 7.1 in [9], get

P61/2EXA1
− P61/2EX ≥ 0, (3.22)

which leads to

cov{BLUE(Xβ|M )} − cov{BLUE(Xβ|Mr1)} ≥ 0, (3.23)

i.e., Theorem 3.2(a) holds.

Remark 3.2. In comparison, part (a) of the above theoremwas also investigated using linear zero function and the principle
of covariance adjustment; see Section 7.9 in [14].

Remark 3.3. In the situation where r(A1) = m1 and r(6) = n, part (c) of the above theorem was proved in Section 5.10
in [11] using a different technique. Of course, their results need to make a slight modification.

Unifying Theorems 2.4, 2.5, 3.2(e), we obtain the following conclusion.

Corollary 3.3. Consider the models M , Mr1 and Mc1 . Then the following statements are equivalent:

(a) BLUE(Xβ|M ) = BLUE(Xβ|Mr1) holds with probability 1.
(b) BLUE(Xβ|M ) = BLUE(Xβ|Mc1) holds with probability 1.
(c) cov{BLUE(Xβ|M )} = cov{BLUE(Xβ|Mr1)}.
(d) cov{BLUE(Xβ|M )} = cov{BLUE(Xβ|Mc1)}.
(e) BLUE(β|M ) = BLUE(β|Mr1) holds with probability 1, if β is estimable under M .
(f) BLUE(β|M ) = BLUE(β|Mc1) holds with probability 1, if β is estimable under M .
(g) cov{BLUE(β|M )} = cov{BLUE(β|Mr1)}, if β is estimable under M .
(h) cov{BLUE(β|M )} = cov{BLUE(β|Mc1)}, if β is estimable under M .

(i) r


6 X
0 A1


= r


X
A1


+ r(X, 6) − r(X).

Theorem 3.4. Consider the models Mr1 , Mc1 , Mr12 and Mc12 . Then the following statements are true:
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(a) cov{BLUE(Xβ|Mr12)} ≤ cov{BLUE(Xβ|Mr1)}.
(b) cov{BLUE(Xβ|Mc12)} ≤ cov{BLUE(Xβ|Mc1)}.
(c) cov{BLUE(β|Mr12)} ≤ cov{BLUE(β|Mr1)}, if β is estimable under Mr1 .
(d) cov{BLUE(β|Mc12)} ≤ cov{BLUE(β|Mc1)}, if β is estimable under Mr1 .

In particular,
(e) The following statements are equivalent:

(i) cov{BLUE(Xβ|Mr12)} = cov{BLUE(Xβ|Mr1)}.
(ii) cov{BLUE(Xβ|Mc12)} = cov{BLUE(Xβ|Mc1)}.
(iii) cov{BLUE(β|Mr12)} = cov{BLUE(β|Mr1)}, if β is estimable under Mr1 .
(iv) cov{BLUE(β|Mc12)} = cov{BLUE(β|Mc1)}, if β is estimable under Mr1 .

(v) r


6 X
0 A


= r


6 X
0 A1


+ r


X
A


− r


X
A1


.

(f) The following statements are equivalent:
(i) cov{BLUE(Xβ|Mr12)} < cov{BLUE(Xβ|Mr1)}.
(ii) cov{BLUE(Xβ|Mc12)} < cov{BLUE(Xβ|Mc1)}.
(iii) cov{BLUE(β|Mr12)} < cov{BLUE(β|Mr1)}, if β is estimable under Mr1 .
(iv) cov{BLUE(β|Mc12)} < cov{BLUE(β|Mc1)}, if β is estimable under Mr1 .

(v) r


6 X
0 A


= r


6 X
0 A1


+ r


X
A


− r


X
A1


+ n.

Proof. Note that

cov{BLUE(X1β|Mr12)} = PXA12 ;XA12 ;66P′XA12 ;XA12 ;6

= (XA12 , 0)(XA12 , 6EXA12
)Ď6{(XA12 , 6EXA12

)′}Ď(XA12 , 0)
′

=


(XA12 , 0)(XA12 , 6EXA12

)Ď6{(XA12 , 6EXA12
)′}Ď(XA12 , 0)

′ 0
0 0


=


cov{BLUE(Xβ|Mr12)} 0

0 0


. (3.24)

we set

V = cov{BLUE(X1β|Mr12)} − cov{BLUE(X1β|Mr1)}. (3.25)

Then, by (3.4) and (3.24), we get

V =


cov{BLUE(Xβ|Mr12)} − cov{BLUE(Xβ|Mr1)} 0

0 0


, (3.26)

i.e.,

i±(V) = i±[cov{BLUE(Xβ|Mr12)} − cov{BLUE(Xβ|Mr1)}]. (3.27)

From (3.10) and (3.11), we obtain

i−(V) = r


6 X
0 A


− r


6 X
0 A1


− r


X
A


+ r


X
A1


(3.28)

and

i+(V) = 0. (3.29)

Combining (3.27) and (3.29) yields (a). By (a) and Lemma 3.1, we have (b). As to (c). Noticing β is estimable under Mr1 , i.e.,

r(X1) = p, (3.30)

then

V = X1[cov{BLUE(β|Mr12)} − cov{BLUE(β|Mr1)}]
X′

1. (3.31)

Similar to (3.12)–(3.16) of Theorem 3.2, we derive

i±(V) = i±

cov{BLUE(β|Mr12)} − cov{BLUE(β|Mr1)}


, (3.32)

which combined with (3.29) results in (c). Obviously, by Lemma 3.1, (c) is equivalent to (d). Applying Lemma 1.3 to (3.28)
and (3.32) gives (e) and (f). �

Combining Theorem 2.6 with 3.4 (e), we can get the following result.
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Corollary 3.5. Consider the models Mr1 , Mc1 , Mr12 and Mc12 . The following statements are equivalent:

(a) BLUE(Xβ|Mr1) = BLUE(Xβ|Mr12) holds with probability 1.
(b) BLUE(Xβ|Mc1) = BLUE(Xβ|Mc12) holds with probability 1.
(c) cov{BLUE(Xβ|Mr12)} = cov{BLUE(Xβ|Mr1)}.
(d) cov{BLUE(Xβ|Mc12)} = cov{BLUE(Xβ|Mc1)}.
(e) BLUE(β|Mr1) = BLUE(β|Mr12) holds with probability 1, if β is estimable under Mr1 .
(f) BLUE(β|Mc1) = BLUE(β|Mc12) holds with probability 1, if β is estimable under Mr1 .
(g) cov{BLUE(β|Mr12)} = cov{BLUE(β|Mr1)}, if β is estimable under Mr1 .
(h) cov{BLUE(β|Mc12)} = cov{BLUE(β|Mc1)}, if β is estimable under Mr1 .

(i) r


6 X
0 A


= r


6 X
0 A1


+ r


X
A


− r


X
A1


.

4. Conclusion and example

In this article, we derived that, when we gradually add linear restrictions into the general linear model M , the BLUEs
become more and more superior, i.e.,

cov{BLUE(Xβ|Mr12)} ≤ cov{BLUE(Xβ|Mr1)} ≤ cov{BLUE(Xβ|M )}, (4.1)
cov{BLUE(β|Mr12)} ≤ cov{BLUE(β|Mr1)} ≤ cov{BLUE(β|M )}. (4.2)

This result is actually easy to understand. Becausewhen appending successively linear restrictions, we getmore information
about the unknown regression parameters. Consequently, we hope that its estimator BLUE should have a higher estimation
accuracy. As is shown in this article, we first derived (4.1), by which we then established (4.2). Alternatively, Firstly, we
can also compare the superiority of the BLUEs of estimable parametric functions Kβ under M , Mr1 and Mr12 , by which we
then get (4.1) and (4.2) with K = X and K = Ip. We also gave the necessary and sufficient conditions for the statement
BLUE(Xβ|Mr1) = BLUE(Xβ|Mr12) to hold.

Motivated by the referees’ suggestion,wenow take an example discussed in Section 4.1 of [14] to illustrate our theoretical
results. Consider the linear model

M = {y,Xβ, 6}, (4.3)

where

X =

110×1 110×1 010×1 110×1 010×1
110×1 010×1 110×1 110×1 010×1
110×1 110×1 010×1 010×1 110×1
110×1 010×1 110×1 010×1 110×1

 , β =


µ
β1
β2
τ1
τ2

 . (4.4)

This designed set-up is typical in agricultural experiments where several treatments are applied to various blocks of land.
The experiment is often conducted to assess the differential impact of the treatments. Here, the parameter µ represents
a general effect which is present in all the observations, the parameters β1 and β2 represent the respective effects of two
blocks and the parameters τ1 and τ2 represent the respective effects of two treatments. Let

6 =

311′ 211′ 211′ 11′

211′ 311′ 11′ 211′

211′ 11′ 311′ 211′

11′ 211′ 211′ 311′

 , (4.5)

where 1 denotes 110×1, which will be used in the following part. Also suppose that

τ1 − τ2 = 0, i.e., A1β = 0 (4.6)

and

β1 − β2 = 0, i.e., A2β = 0, (4.7)

where A1 = (0, 0, 0, 1, −1) and A2 = (0, 1, −1, 0, 0). These two restrictions may be a known fact from the theory or
experiment view.
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Direct calculations will show that

cov{BLUE(Xβ|M )} =

311′ 211′ 211′ 11′

211′ 311′ 11′ 211′

211′ 11′ 311′ 211′

11′ 211′ 211′ 311′

 , (4.8)

cov{BLUE(Xβ|Mr1)} =

5/211′ 3/211′ 5/211′ 3/211′

3/211′ 5/211′ 3/211′ 5/211′

5/211′ 3/211′ 5/211′ 3/211′

3/211′ 5/211′ 3/211′ 5/211′

 , (4.9)

cov{BLUE(Xβ|Mr12)} =

211′ 211′ 211′ 211′

211′ 211′ 211′ 211′

211′ 211′ 211′ 211′

211′ 211′ 211′ 211′

 . (4.10)

Now it is easy to see that211′ 211′ 211′ 211′

211′ 211′ 211′ 211′

211′ 211′ 211′ 211′

211′ 211′ 211′ 211′

 ≤

5/211′ 3/211′ 5/211′ 3/211′

3/211′ 5/211′ 3/211′ 5/211′

5/211′ 3/211′ 5/211′ 3/211′

3/211′ 5/211′ 3/211′ 5/211′

 ≤

311′ 211′ 211′ 11′

211′ 311′ 11′ 211′

211′ 11′ 311′ 211′

11′ 211′ 211′ 311′

 , (4.11)

i.e.,

cov{BLUE(Xβ|Mr12)} ≤ cov{BLUE(Xβ|Mr1)} ≤ cov{BLUE(Xβ|M )}. (4.12)

This is in accordance with our result (4.1). It should be noted that if C (A′

1) ∩ C (X′) = {0}, then the restriction (1.2) has no
effect on the BLUE of Xβ under M , see Section 4.9 in [14]. Furthermore, Theorem 3.2(e) gives the conditions under which
the restriction (1.2) has no effect on the covariance of the BLUE of Xβ under M . Of course, if the restriction (1.2) does not
meet the conditions in Theorem 3.2(e), then it improves the estimation accuracy. For example, the restriction in (4.6) raises
the accuracy of the BLUE of Xβ under M , but the restriction (0, 0, 0, 1, 1)β = 0 does nothing.
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