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a b s t r a c t

Fixed effects panel data regression models are useful tools in econometric and microarray
analysis. In this paper, we consider statistical inferences under the setting of fixed effects
panel data partially linear regression models with heteroscedastic errors. We find that
the usual local polynomial estimator of the error variance function based on residuals
is inconsistent, and develop a consistent estimator. Applying this consistent estimator
of error variance and spline series approximation of the nonparametric component, we
further construct a weighted semiparametric least squares dummy variables estimator for
the parametric and nonparametric components. Asymptotic normality of the proposed
estimator is derived and its asymptotic covariance matrix estimator is provided. The
proposed estimator is shown to be asymptotically more efficient than those ignoring
heteroscedasticity. Simulation studies are conducted to demonstrate the finite sample
performances of the proposed procedure. As an application, a set of economic data is
analyzed by the proposed method.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Panel data refer to the pooling of observations on a cross-section of subjects, such as households, countries, firms,
etc., over a time period, which can be achieved by surveying a sample of subjects and following them over time; see,
e.g., Baltagi [4]. Such a two-dimensional information set enables researchers to estimate complex models and draw
efficient statistical inferences that may not be possible using pure time-series data or cross-section data. Both theoretical
developments and applied works in panel data analysis have become more popular in recent years.

Panel data parametric (mainly linear) regression models have been the dominant framework for analyzing panel data;
see [1,4] for summaries of early work and [18] for a recent comprehensive survey. If correctly specified, the parametric
model has the advantages of easy interpretation and efficient estimation. In practice, however, correct parameterization
is often difficult or unavailable, and a misspecification of the model could lead to biased and misleading estimates of the
underlying parameters. To address this issue, various more flexible models have been introduced in literature of statistics
and econometrics. Among the most important is the panel data partially linear regression model, which allows unspecified
relationship between the response variable and some covariate(s).

∗ Corresponding author at: School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China.
E-mail address: frank.jianhuahu@gmail.com (J. Hu).

http://dx.doi.org/10.1016/j.jmva.2016.10.010
0047-259X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmva.2016.10.010
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2016.10.010&domain=pdf
mailto:frank.jianhuahu@gmail.com
http://dx.doi.org/10.1016/j.jmva.2016.10.010


J. Hu et al. / Journal of Multivariate Analysis 154 (2017) 96–111 97

Let (Xit ,Uit , Yit) denote the observations collected from the ith subject, i = 1, . . . , n, at time t , t = 1, . . . , T , where
Yit ∈ R is the response of interest, Xit = (Xit1, . . . , Xitp)

⊤
∈ Rp is a p-vector of linear predictors and Uit = (Uit1, . . . ,Uitq)

⊤

is a q-vector of nonlinear predictors. A typical panel data partially linear regression model has the form

Yit = X⊤

it β + g(Uit)+ εit , εit = µi + νit , i = 1, . . . , n, t = 1, . . . , T , (1.1)

where β = (β1, . . . , βp)
⊤ is an unknown parameter vector, g(·) is an unknown function, µi is the individual effect of

subject i and νit is an idiosyncratic error. Depending on whether µi is correlated with the observed explanatory variables
(X⊤

it ,U
⊤

it )
⊤ or not, model (1.1) can be divided into two classes. One is the random effects model in which µi is uncorrelated

with (X⊤

it ,U
⊤

it )
⊤, so that E{µi(X⊤

it ,U
⊤

it )
⊤
} = 0, where E is the symbol of expectation; and another is the fixed effects model

in which µi is correlated with (X⊤

it ,U
⊤

it )
⊤, i.e., E{µi(X⊤

it ,U
⊤

it )
⊤
} ≠ 0. Considering a large number of random draws from the

cross section, it makes sense for us to treat the individual effects, µi, as random draws from the population. Fixed effects
panel data model, however, is appropriate if the interest is in a specific set of subjects, such as specific firms, a set of OECD
countries, all American states, and so on.

For model (1.1) with fixed effects, the individual effect is often viewed as a parameter to be estimated. It is typically
assumed that T is finite and n is large. Consequently, the number of parameters growswith the sample size, and the ordinary
least squares (OLS) or maximum likelihood estimator (MLE) would lead to inconsistent estimates of the common parameter
of interest. This is well-known as the incidental parameter problem; see [19] for a general discussion on this problem.
Due to the incidental parameter problem, it is a great challenge to construct consistent estimators for the parametric
and nonparametric components in the fixed effects panel data partially linear regression model, and few results were
available until Baltagi and Li [5], who proposed a difference-based series estimation (DSE) for the parametric component
and nonparametric component. They established the asymptotic normality of the former and derived the convergence rate
of the latter. This DSE, however; is not efficient when T > 2, see [2].

Fan et al. [9] found that the model (1.1) with fixed effects is also useful to conduct the microarray analysis of the
neuroblastoma cell in response to macrophage migration inhibitory factor (MIF). Fan et al. [8] proposed a novel profile least
squares estimation (PLSE) for the parametric component and a local linear estimation for the nonparametric component by
the back fitting method. They established the asymptotic normality of the former and the MSE upper bound of the latter.
In addition, the estimation problem of the model (1.1) with fixed effects was considered in [13,24], while the problem of
estimating a varying-coefficient panel data model with fixed effects was studied in [21].

All above-mentioned results assumed that the idiosyncratic errors νit are independent and identically distributed (i.i.d.).
In practice, however, the random errors are often heteroscedastic (with unequal variances). For example, heteroscedasticity
has been found in gasoline demands across Organization for Economic Co-operation and Development (OECD) countries,
in steam electricity generations across utilities of different sizes, in cost functions for US airline firms, and in medical
expenditures [4]. It is well known that when heteroscedasticity is present, ignoring its impact will result in inefficient
estimators of the regression coefficients and biased estimators of covariance. Under the setting of fixed effects panel data
linear regression model, Kézdi [14] and Stock and Watson [20] investigated the consistent estimations of the regression
parameters and asymptotic properties. They found that, due to the incidental parameter problem, the conventional
heteroscedasticity-robust (HR) asymptotic covariance matrix estimator is inconsistent, and further provided a

√
n

consistently bias-adjusted HR estimator. However, [14,20] did not make any assumption about the heteroscedasticity.
Therefore, the error variance in their case could not be estimated and the information of the heteroscedasticity could
not be taken into account to improve the estimation of the mean parameter. There is another important situation of
heteroscedasticity where the error variance is a function of some of the predictors, see [3,10,23]. In this situation, the error
variance could usually be estimated and the information of heteroscedasticity could be taken into account to improve the
estimation of the mean parameter, see Amemiya [3] for the cross-sectional data, Fan and Yao [10] for the time series data
and You et al. [23] for the random effects panel data. To date, however, whether the error variance could be estimated
consistently and whether the information of heteroscedasticity could be utilized to improve the estimation of the mean
parameter remains unsolved even in the setting of fixed effects panel data linear regressionmodel. In this paper, we address
these issues under the more general partially linear model (1.1).

As in [8], we assume that the errors are heteroscedastic and the error variance is a smoothing function of Vit in the form:

εit = µi + σ(Vit)νit , i = 1, . . . , n and t = 1, . . . , T , (1.2)

where σ(·) is an unknown function, var(νit) = 1, and Vit = (Vit1, . . . , Vitm)
⊤ is a known vector. Vit may be a function

of Xit and Uit , such as Vit = Uit in [8]. We find that the usual residuals-based local polynomial estimator of the error
variance function σ(·) is not consistent, and will propose an alternative consistent estimator. Applying the proposed
estimator together with spline series approximation of the nonparametric component, we further construct a weighted
semiparametric least squares dummy variables estimator for the parametric components and a weighted spline series
estimator for nonparametric components. Asymptotic normal distributions for the proposed estimators are derived and
asymptotic covariancematrix estimators are provided. The proposed estimator is shown to be asymptoticallymore efficient
than those ignoring the heteroscedasticity. The results can be extended to more general situation, such as the case where
the noise level may be a smoothing function of the mean, and so on.

Throughout this paper, we choose E {g(Uit)} = 0 as our identification condition and assume that n is large and T is small
and fixed with T ≥ 2. The remainder of the paper is as follows. The pilot estimators of the parametric and nonparametric
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components are presented in Section 2. A consistent estimator of the error variance is constructed in Section 3. In Section 4
we construct a weighted semiparametric least squares dummy variables estimator of parametric regression coefficients and
a weighted spline series estimator of nonparametric components. Section 5 reports some simulation results. An application
is illustrated in Section 6, followed by concluding remarks in Section 7. Proofs of themain results are relegated to Appendix.

2. Pilot estimators

For convenience, we assume that q = 1,m = 1, andwriteUit = Uit ,Vit = Vit . It is not difficult to extend our investigation
results to the case of q > 1 and m > 1. More discussions could be found in the concluding remarks. In this section we will
neglect the heteroscedasticity to construct the estimators of the parametric and nonparametric components by combining
the spline series approximation and least squares. Due to the identification condition E {g(Uit)} = 0, same as [15,16,22], we
apply the centered B-spline basis to approximate the unknown function g(Uit). Specifically, let {ζl(u), l = 1, 2, . . .} denote
a sequence of the centered B-spline basis functions. In addition, let K ≡ K(n) be a sequence of integers such that K → ∞

as n → ∞, ζK (u) = (ζ1(u), . . . , ζK (u))⊤, ζit = ζK (Uit), ζi = (ζi1, . . . , ζiT )
⊤ and ζ = (ζ⊤

1 , . . . , ζ
⊤
n )

⊤. We have suppressed
the dependence of ζit , ζi and ζ on K for ease of notation, where ζi and ζ are T × K and nT × K matrices, respectively.

Under fairly mild conditions, we can approximate g(u) in model (1.1) very well by θ⊤ζK (u) for some K -dimensional
vector θ. As a result, model (1.1) can be approximated by

Yit ≈ X⊤

it β + ζK⊤(Uit)θ + µi + σ(Vit)νit , i = 1, . . . , n, t = 1, . . . , T . (2.1)

Let B = In ⊗ 1T , where ⊗ denotes the Kronecker product, Y = (Y11, . . . , Y1T , . . . , YnT )
⊤, µ = (µ1, . . . , µn)

⊤ and
ε = (σ (V11)ν11, . . . , σ (V1T )ν1T , . . . , σ (VnT )νnT )

⊤. Then model (2.1) can be written in a matrix form as

Y ≈ Bµ + Xβ + ζθ + ε. (2.2)

DefineMB = InT − PB with PB = B(B⊤B)−1B⊤. Pre-multiplying (2.2) byMB leads to

MBY ≈ MBXβ + MBζθ + MBε. (2.3)

It is easy to see that

MBε =


ν11 −

T
t=1

ν1t , . . . , ν1T −

T
t=1

ν1t , . . . , νnT −

T
t=1

νnt

⊤

and E(MBε) = 0nT .

If we take MBε as the residuals, then model (2.3) is a version of the usual linear regression. Based on (2.3), we can estimate
β and θ with a given K by minimizing the loss function

S(β, θ) = (Y − Xβ − ζθ)⊤MB(Y − Xβ − ζθ). (2.4)

The loss function (2.4) has a unique minimizer (βn,
θn) given byβn = (X⊤MBMMBζMBX)−1X⊤MBMMBζMBY and θn = (ζ⊤MBζ)

−1ζ⊤MB(Y − Xβn).

It results a spline series estimator of g(u), given bygn(u) = ζK⊤(u)θn. Hereβn andgn(u) are called pilot estimators.
In order to present the asymptotic properties ofβn,gn(u) and other estimators proposed in subsequent sections, we need

the following notations and technical assumptions.
Write 5it = Xit − E(Xit |Uit), h̄j(Uit) = E(Xitj|Uit), j = 1, . . . , p, M1T = IT − P1T , 1i = diag(σ (Vi1), . . . , σ (ViT )),

Q1 = T−1E(ζ⊤

i M1T ζi), Q2 = T−1E(ζ⊤

i M1T 1iM1T ζi), 61 = T−1E(5⊤

i M1T 5i) and 62 = T−1E(5⊤

i M1T 1iM1T 5i).

Assumption 1. (X⊤

i1, . . . ,X
⊤

iT ,Ui1, . . . ,UiT , Vi1, . . . , ViT )
⊤ are independent and identically distributed (i.i.d.) over i =

1, . . . , n, and νit are i.i.d. over i = 1, . . . , n, t = 1, . . . , T , with mean 0 and variance 1. In addition,
T

t=1 E(∥51t∥
2+δ) ≤

c < ∞ and E(|ν11|2+δ) ≤ c < ∞, t = 1, . . . , T , for some δ > 0 and constant c > 0.

Assumption 2. Uit ’s are generated from a distribution which has a bounded support Ut and Lipschitz continuous density
function put (·) such that 0 < infUt p

u
t (·) ≤ supUt p

u
t (·) < ∞.

Assumption 3. Vit ’s are generated from a distribution which has a bounded support Vt and Lipschitz continuous density
function pvt (·) such that 0 < infVt p

v
t (·) ≤ supVt p

v
t (·) < ∞.

Assumption 4. g(·), σ(·) and h̄j(·) have the continuous second derivatives, j = 1, . . . , p.

Assumption 5. K = o(n1/2) and n1/2K−4
= o(1).

Assumption 6. 61, 6−1
1 626

−1
1 , Q1 are positive definite and ζK⊤(u)Q−1

1 Q2Q−1
1 ζK (u) > 0 for all u ∈

T
t=1 Ut .
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Denote ℑ =

6−1

1 626
−1
1

−1/2
and ηn(u) =

√
nT

ζK⊤(u)Q−1

1 Q2Q−1
2 ζK (u)

−1/2
. The asymptotic normality of βn is

established in the following theorem.

Theorem 1 (Asymptotic Normality). Under Assumptions 1–6,
√
nTℑ (βn − β)  N (0p, Ip) as n → ∞,

where denotes convergence in distribution.

The next theorem provides the convergence rates and asymptotic normality ofgn(u).
Theorem 2 (Convergence Rate). Under Assumptions 1–6,

(i) ∥θn − θ∥ = Op(
√
K/n + K−2);

(ii)
T

t=1


u∈Ut

{gn(u)− g(u)}2 pt(u) = Op(K/n + K−4);
(iii) If

√
n/K 2

→ 0 as n → ∞, then ηn(u) {gn(u)− g(u)}  N (0, 1) as n → ∞.

The proofs of Theorems 1 and 2 are the same as those of Theorems 1 and 2 in [24].
Since the pilot estimatorsβn andgn(u) do not take the heteroscedasticity into account, they may not be asymptotically

efficient. They are, however, consistent estimators of β and g(u), respectively, according to Theorems 1 and 2. Based onβn
andgn(u), we can estimate the residuals in models (1.1)–(1.2), then use them to estimate the error variance and construct
asymptotically more efficient estimators of the parametric and nonparametric components. We will investigate these in
subsequent sections.

3. Consistent estimator of error variance function

Afterβn andgn(·) are obtained, a natural estimator of µ = (µ1, . . . , µn)
⊤ is given byµ = (µ1, . . . ,µn)

⊤
= (B⊤B)−1B⊤(Y − Xβn −Gn)

withGn = (gn(U11), . . . ,gn(U1T ), . . . ,gn(UnT ))
⊤. Based onµ,βn andgn(·), the errors can be estimated byrit = Yit −µi −

X⊤

it
βn −gn(Uit), i = 1, . . . , n, t = 1, . . . , T . Using the data set (Vit ,rit), a typical estimator of the error variance function

σ 2(v) is

σ̃ 2
n (v) =

n
i=1

T
t=1

ωnit(v)r2it ,
where

ωnit(·) =
(nh)−1K{h−1(Vit − ·)}{An,2(·)− (Vit − ·)An,1(·)}

An,0(·)An,2(·)− A2
n,1(·)

,

An,j(·) =
1
nh

n
i=1

T
t=1

K

Vit − ·

h


(Vit − ·)j, j = 0, 1, 2,

and K(·) is a kernel function with bandwidth h; see [10] for more details.
In order to establish the asymptotic property of σ̃ 2

n (u), the following assumptions on K(·) and h are needed.

Assumption 7. The function K(·) is a symmetric density function with compact support.

Assumption 8. The bandwidth h satisfies nh8
→ 0 and nh2/(ln n)2 → ∞ as n → ∞.

Theorem 3. Under Assumptions 1–8,

σ̃ 2
n (v) =


1 −

2
T

+
1
T 2


σ 2(v)+

T − 1
T 3

T
t=1

E{σ 2(Vit)} + Op


h2

+
1
nh


+ op(h2).

Theorem 3 shows that σ̃ 2
n (v) is not a consistent estimator of the error variance function σ 2(v) for a bounded T . Hence

the typical error variance estimator is not consistent in the context of fixed effects panel data partially linear models,
which is caused by incidental parameters. Nevertheless, Theorem 3 suggests that, if we have a consistent estimator ofT

t=1 E{σ
2(Vit)}, then we can construct a consistent estimator of the error variance function σ 2(v) by correcting σ̃ 2

n (v).
So we now focus on constructing a consistent estimator of

T
t=1 E{σ

2(Vit)}.
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Defineζn =
n

i=1
T

t=1r2it/(nT ). After some algebraic calculations, we can expressζn as

ζn =
1
T


1 −

1
T

 T
t=1

E{σ 2(Vit)} + op(n−1/2).

As a result, we propose an estimator of the error variance function σ 2(v) as follows.

σ 2
n (v) =


1 −

2
T

+
1
T 2

−1 
σ̃ 2
n (v)−

1
T
ζn ,

which is shown to be a consistent estimator of σ 2(v) in the following theorem.

Theorem 4. Under Assumptions 1–8,

σ 2
n (v) = σ 2(v)+ Op


h2

+
1

√
nh


+ op(h2).

Remark 1. From Theorem 4, we can see thatσ 2
n (v) not only is consistent but also achieves the optimal convergence rate;

see [10,12].

The estimator σ 2
n (v) depends on the choice of bandwidth h. Since variance functions tend to have less structure than

models for the mean in the regression models, we can use rather simple rule of thumb (ROT) to select h. The details can be
found in [25].

4. Weighted semiparametric least squares dummy variables estimation

In this section, we construct asymptotically efficient estimators of the parametric and nonparametric components by
dividing the two sides of (2.1) by

σ 2
n (·). This yields

Yitσ 2
n (Vit)

≈
X⊤

it βσ 2
n (Vit)

+
ζK⊤(Uit)θσ 2

n (Vit)
+

µiσ 2
n (Vit)

+
σ(Uit)νitσ 2

n (Vit)
(4.1)

for i = 1, . . . , n and t = 1, . . . , T . Let

3 = diag (1/σ(V11), . . . , 1/σ(V1T ), . . . , 1/σ(VnT )) ,

3 = diag

1/
σ 2

n (V11), . . . , 1/
σ 2

n (V1T ), . . . , 1/
σ 2

n (VnT )


, (4.2)

νw
= 33−1ν, Xw

= 3X, ζw
= 3ζ, Yw

= 3Y (4.3)

and

Bw
=



1/
σ 2

n (V11) · · · 0
...

...
...

1/
σ 2

n (V1T ) · · · 0
...

...
...

0 · · · 1/
σ 2

n (Vn1)

...
...

...

0 · · · 1/
σ 2

n (VnT )


. (4.4)

Then (4.1) can be re-written as

Yw
≈ Xwβ + ζwθ + Bwµ + νw. (4.5)

DefineMBw = InT − PBw with PBw = InT − Bw(Bw⊤Bw)−1Bw⊤. Then pre-multiplying (4.5) byMBw leads to

MBwYw
≈ MBwXwβ + MBwζwθ + MBwνw. (4.6)

If we takeMBwνw as the residuals, model (4.6) is a version of the usual linear regression. Thus β and θ with a given K can be
estimated by minimizing the following loss function

Sw(β, θ) = (Yw
− Xwβ − ζwθ)⊤MBw(Yw

− Xwβ − ζwθ). (4.7)
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The loss function (4.7) has a unique minimizer (βw
n ,
θw

n )withβw
n = (Xw⊤MBwMMBw ζwMBwXw)−1Xw⊤MBwMMBw ζwMBwYw

andθw
n = (ζw⊤MBwζw)−1ζw⊤MBw(Yw

− Xwβw
n ). In this paper,βw

n is said to be a weighted semiparametric least squares
dummy variables (WSLSDV) estimator of the unknown parameter vector β. Furthermore, a weighted spline series estimator
of g(u) is given bygw

n (u) = ζK⊤(u)θw
n .

Let 5w
i = (1/σ(Ui1)5i1, . . . , 1/σ(UiT )5iT )

⊤, ιwi = (1/σ(Ui1), . . . , 1/σ(UiT ))
⊤, Mιwi

= IT − ιwi (ι
w⊤

i ιwi )
−1ιw⊤

i , 63 =

E(5w⊤

i Mιwi
5w

i )/T , Q3 = E(ζw⊤

i Mιwi
ζw
i )/T , ℑ

w
= 6

1/2
3 and ηw(u) = {ζK⊤(u)Q3ζ

K (u)}−1/2.

Assumption 9. 63 is a positive definite matrix and ζK⊤(u)Q3ζ
K (u) > 0 for all u ∈ ∪

T
t=1 Ut .

The following two theorem establishes the asymptotic properties ofβw
n andgw

n (u).

Theorem 5. Under Assumptions 1–9,
√
nTℑ

w(βw
n − β)  N (0p, Ip) as n → ∞.

Theorem 6. Under Assumptions 1–9,

(i) ∥θw
n − θ∥ = Op(

√
K/n + K−2);

(ii)
T

t=1


u∈Ut

gw
n (u)− g(u)

2 pt(u) = Op(K/n + K−4);
(iii) If

√
n/K 2

→ 0 as n → ∞, then
√
nTηw(u)

gw
n (u)− g(u)


 N (0, 1) as n → ∞.

Remark 2. We can show that the WSLSDV estimatorβwn is asymptotically more efficient thanβn in the sense thatβwn has a
smaller asymptotic covariance matrix thanβn, i.e., 6

−1
3 ≤ 6−1

1 626
−1
1 . Let

f = G−1(5i, 1T )
⊤1

1/2
i − H−1(5i, 1T )

⊤1
−1/2
i ,

where G = E

(5i, 1T )

⊤(5i, 1T )

and H = E


(5i, 1T )

⊤1−1
i (5i, 1T )


. Then

f f⊤
= G−1(5i, 1T )

⊤1i(5i, 1T )G−1
− G−1(5i, 1T )

⊤(5i, 1T )H−1

− H−1(5i, 1T )
⊤(5i, 1T )G−1

+ H−1(5i, 1T )
⊤1−1

i (5i, 1T )H−1.

Since f f⊤ is nonnegative definite,

E(f f⊤) = G−1E

(5i, 1T )

⊤1i(5i, 1T )

G−1

− H−1
≥ 0.

Hence

6−1
3 = (Ip, 0p)H−1(Ip, 0p)

⊤
≤ 6−1

1 626
−1
1 = (Ip, 0p)G−1E


(5i, 1T )

⊤1i(5i, 1T )

G−1(Ip, 0p)

⊤.

By the same argument, we can show thatgw
n (·) is asymptotically more efficient thangn(·).

In order to use Theorems 5 and 6 to make statistical inference on β and g(·), we need consistent estimators of ℑ
w and

ηw(u), which are given respectively by

ℑw
=

1
nT


Xw⊤MBwMMBw ζwMBwXw1/2 and ηw(u) =


ζK⊤(u)(ζw⊤MBwζw)−1ζK (u)

1/2
,

as shown in the following theorem.

Theorem 7. Under Assumptions 1–9,ℑw(ℑw)−1
→ Ip andηw(u){ηw(u)}−1

→ 1 as n → ∞, where u ∈
T

t=1 Ut .

5. Simulation studies

In this section, we conduct some simulation studies to investigate the finite sample performance of the proposed
procedures in previous sections. The data are generated from the following fixed effects panel data partially linear regression
model

Yit = Xit1β1 + Xit2β2 + g(Uit)+ µi + σ(Vit)νit , i = 1, . . . , n, t = 1, . . . , T ,

where Xit1 ∼ i.i.d. N (1, 1), Xit2 ∼ i.i.d. N (0, 2.25), νit ∼ i.i.d. N (0, 1), Uit ∼ i.i.d. U(0, 1), β1 = 1.5, β2 = 2,
σ(Vit) =


0.2 + 1.5{cos(πVit)}2, Vit = Uit ,

g(Uit) =


Uit(1 − Uit) sin{2.1π/(Uit + 0.65)} − E[


Uit(1 − Uit) sin{2.1π/(Uit + 0.65)}]
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Table 1
The finite-sample performance of the estimators of the parametric component, nonparametric component and error variance function.

n = 100 n = 200 n = 300
T = 3 T = 4 T = 5 T = 10 T = 3 T = 4 T = 5 T = 10 T = 3 T = 4 T = 5 T = 10βn1 sm 1.5001 1.4965 1.5012 1.5000 1.5004 1.4970 1.4987 1.4991 1.5002 1.4998 1.5019 1.5007

std 0.0702 0.0571 0.0490 0.0329 0.0482 0.0388 0.0348 0.0228 0.0397 0.0314 0.0267 0.0187
mstd 0.0698 0.0558 0.0480 0.0323 0.0486 0.0395 0.0342 0.0228 0.0397 0.0322 0.0279 0.0187
cp 0.9530 0.9420 0.9500 0.9470 0.9500 0.9520 0.9470 0.9440 0.9430 0.9580 0.9590 0.9520βn2 sm 2.0002 1.9991 1.9999 2.0002 2.0000 1.9991 1.9984 1.9996 2.0013 2.0007 2.0008 1.9991
std 0.0484 0.0361 0.0324 0.0220 0.0329 0.0268 0.0238 0.0147 0.0267 0.0215 0.0184 0.0121
se 0.0466 0.0372 0.0319 0.0215 0.0324 0.0263 0.0228 0.0152 0.0265 0.0215 0.0186 0.0125
cp 0.9390 0.9570 0.9500 0.9350 0.9440 0.9470 0.9470 0.9500 0.9480 0.9520 0.9580 0.9580

βw
n1 sm 1.5011 1.4975 1.5021 1.5000 1.4998 1.4980 1.4992 1.4993 1.4995 1.5003 1.5011 1.5001

std 0.0592 0.0483 0.0401 0.0267 0.0414 0.0326 0.0297 0.0183 0.0349 0.0275 0.0230 0.0152
mstd 0.0597 0.0469 0.0397 0.0263 0.0418 0.0335 0.0286 0.0184 0.0344 0.0272 0.0232 0.0151
cp 0.9570 0.9500 0.9430 0.9420 0.9530 0.9530 0.9440 0.9500 0.9450 0.9470 0.9570 0.9520βw

n2 sm 1.9997 1.9993 1.9996 2.0002 2.0002 1.9994 1.9993 1.9997 2.0010 2.0007 2.0007 1.9989
std 0.0420 0.0303 0.0263 0.0178 0.0278 0.0229 0.0194 0.0123 0.0228 0.0184 0.0153 0.0098
mstd 0.0399 0.0313 0.0265 0.0175 0.0278 0.0223 0.0191 0.0123 0.0229 0.0182 0.0155 0.0100
cp 0.9270 0.9550 0.9540 0.9510 0.9490 0.9510 0.9460 0.9490 0.9480 0.9500 0.9530 0.9600

gn(·) sm 0.1803 0.1490 0.1322 0.0921 0.1319 0.1103 0.0970 0.0695 0.1104 0.0917 0.0826 0.0609
std 0.0508 0.0403 0.0348 0.0238 0.0355 0.0282 0.0250 0.0164 0.0293 0.0227 0.0204 0.0134gw

n (·) sm 0.1739 0.1433 0.1273 0.0893 0.1269 0.1062 0.0934 0.0679 0.1063 0.0884 0.0802 0.0599
std 0.0487 0.0392 0.0344 0.0228 0.0342 0.0274 0.0239 0.0160 0.0285 0.0217 0.0195 0.0131

σ̃ 2
n (·) sm 0.4573 0.3641 0.3093 0.1886 0.4476 0.3501 0.2955 0.1703 0.4444 0.3482 0.2866 0.1624

std 0.0797 0.0707 0.0630 0.0458 0.0570 0.0524 0.0514 0.0360 0.0458 0.0466 0.0409 0.0306σ 2
n (·) sm 0.3174 0.2542 0.2236 0.1510 0.2348 0.1912 0.1646 0.1114 0.1978 0.1576 0.1368 0.0958

std 0.1070 0.0807 0.0763 0.0448 0.0781 0.0584 0.0496 0.0315 0.0570 0.0445 0.0377 0.0262

and

µi =

T
t=1

(Xit1 + Xit2)/T −

T
t=1

E(Xit1 + Xit2)/T ,

which are correlated with (Xit1, Xit2). The sample sizes are taken as n = 100, 200 and 300, and T = 3, 4, 5 and 10, and the
replication number for the simulation is 1000. For the spline basis functions, we take the uniform knots and five knots.

For the WSLSDV estimatorβw
n = (βw

n1,
βw

n2)
⊤ of the parametric components β = (β1, β2)

⊤, given a sample size, the
samplemean (sm), standard deviation (std), mean of the estimate of the standard deviation (mstd) and coverage percentage
(cp) of the 95% nominal confidence intervals are summarized in Table 1. In this table, we also present the sm, std, mstd
and cp of the unweighted semiparametric least squares dummy variables estimatorβn = (βn1,βn2)

⊤, which ignores the
heteroscedasticity.

Table 1 provides the following observations:

• The proposed WSLSDV estimatorβw
n and the unweighted SLSDV estimatorβn are asymptotically unbiased, butβw

n has
smaller standard deviation thanβn.

• The standard deviations of the proposedWSLSDV estimatorβw
n and the unweighted SLSDV estimatorβn decrease as the

sample size n increases.
• When n × T is fixed (for example, the cases (n, T ) = (100, 10) and (n, T ) = (200, 5)), the standard deviations of the

proposed WSLSDV estimatorβw
n and the unweighted SLSDV estimatorβn decrease as T increases.

• The means of the standard error estimates closely agree with the simulation standard errors for the proposed WSLSDV
estimatorβw

n .
• The estimated confidence interval attains a coverage close to the nominal 95% level.

For the nonparametric component, its estimators are assessed via the Square-Root of Averaged Squared Errors (RASE):

RASE(gn) =


1
nT

n
i=1

T
t=1

{gn(Uit)− g(Uit)}
2

1/2

.

For a given sample size, the sm and std of the RASEs ofgn(·) andgw
n (·) are calculated. The results are shown in Table 1 aswell,

which show that the RASEs of bothgn(·) andgw
n (·) decrease as the sample size n increases, and when nT is fixed, the RASEs

ofgn(·) andgw
n (·) decrease as T increases. More importantly, when n and T are fixed,gw

n (·) has smaller RASE thangn(·).
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Fig. 1. (a) n = 100 and T = 3; (b) n = 100 and T = 4; (c) n = 100 and T = 5; (d) n = 100 and T = 10. σ 2(·) (solid curve), σ̃ 2
n (·) (dashed curve) andσ 2

n (·) (dash-dotted curve).

Fig. 2. (a) n = 200 and T = 3; (b) n = 200 and T = 4; (c) n = 200 and T = 5; (d) n = 200 and T = 10. σ 2(·) (solid curve), σ̃ 2
n (·) (dashed curve) andσ 2

n (·) (dash-dotted curve).

For the error variance function, its estimators are also assessed via the Square-Root of Averaged Squared Errors (RASE).
For a given sample size, the sm and std of the RASEs of σ̃ 2

n (·) andσ 2
n (·) are calculated. The results are also shown in Table 1.

The RASE of σ̃ 2
n (·) decreases significantlywith increasing T , but not obviouswith increasing n. The RASE ofσ 2

n (·), on the other
hand, decreaseswith either increasing n or increasing T . Figs. 1–3 also illustrate these phenomena,which are consistentwith
Theorems 3 and 4. It is apparent from Figs. 1–3 that the proposed variance estimatorσ 2

n (·) ismuch closer to the true variance
function σ 2(·) than the typical residuals-based estimator σ̃ 2

n (·) that ignores the heteroscedasticity.
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Fig. 3. (a) n = 300 and T = 3; (b) n = 300 and T = 4; (c) n = 300 and T = 5; (d) n = 300 and T = 10. σ 2(·) (solid curve), σ̃ 2
n (·) (dashed curve) andσ 2

n (·) (dash-dotted curve).

6. An application to economical data

Wenowdemonstrate the application of the proposed estimation procedures to analyze a set of economical data. The data
were extracted from the STARS database of the World Bank. From this database we obtained measures of Gross Domestic
Product (GDP) and the aggregate physical capital stock, both were denominated in constant local currency units at the end
of period 1987 (converted into US dollars at the end of period 1987) for 81 countries over the period from 1960 to 1987. We
excluded one country whose workforce has around 15 years of schooling, which is much higher than others. The database
also provided the number of individuals in the workforce between ages 15 and 64, and the mean years of schooling for the
workforce, e.g., Duffy and Papageorgiou [7]. Fig. 2(a)–(c) present the scatter plots of the logarithm of the real GDP against the
logarithms of real capital, labor supply and mean years of schooling for the workforce. This data set has also been analyzed
by [24], but without heteroscedasticity.

According to [24], on the log scale, a linear relationship is reasonable between GDP and capital or labor supply. However,
the relationship between GDP and mean years of schooling for the workforce is clearly nonlinear. Therefore, we use the
following fixed effects panel data partially linear regression model to fit this data set by taking the heteroscedasticity into
account.

Yit = Xit1β1 + Xit2β2 + g(Uit)+ µi + σ(Vit)νit , i = 1, . . . , 81, t = 1, . . . , 28,
where Yit is the log real GDP of country i in year t (with t = 1 for year 1960, and so on), µi is individual affect of each
country, Xit1 is the log of real capital, Xit2 is the log of labor supply, Uit is the log of mean years of schooling for the
workforce and Vit = Uit . The unweighted SLSDV estimate of β = (β1, β2)

⊤ is βn = (βn1,βn2)
⊤

= (0.5495, 0.2670)
with standard deviation (0.0105, 0.0347) and the weighted SLSDV estimate isβw

n = (βw
n1,
βw

n2) = (0.5685, 0.3195) with
standard deviation (0.0077, 0.0282). Both estimates imply significant and positive effects of capital and labor supply on the
GDP (at 5% level). As a result, the real GDP is strongly and positively correlated with both real capital and labor supply. In
addition, the weighted SLSDV has smaller standard deviation than the unweighted SLSDV.

Furthermore, the fitted nonparametric component curve g(·) and error variance σ 2(·) are plotted in Fig. 4(b) and (c).
Fig. 4(b) shows that theGDP changes little for logmeanyears of schooling between−2.5 and1 (corresponding approximately
tomean years of schooling between 0 and 3 years). When the logmean years of schooling is over 1 (about 3 years), however,
theGDP increaseswith themean years of schooling rapidly at a nonlinear and accelerated pace. All these results are generally
consistent with those obtained by previous studies. Fig. 4(c) shows that error variance σ(·) is a nonlinear function of Uit . In
addition, the individual effect (µi) of each country is provided in Fig. 4(d) as well.

7. Concluding remarks

In this paper, we have studied the statistical inference of the fixed effects panel data partially linear regression
model with heteroscedastic errors whose variance is a smooth function of some covariate(s). We found that the typical
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a b

c d

Fig. 4. (a) The scatter plot of log real GDP against log mean years of schooling for the workforce; (b) The estimators of g(·). Solid curve: the weighted
series/sieve estimator and dash-dotted curve: the unweighted series/sieve estimator; (c) The estimators of σ 2(·). Solid curve:σ 2

n (·) and dash-dotted curve:
σ̃ 2
n (·); (d) Individual effects. Solid-cycle curve: based on weighted fitting and solid-star curve: based on unweighted fitting.

residuals-based local polynomial estimator of the error variance function is not consistent, apparently due to the incidental
parameter problem. We then proposed a consistent alternative estimator of the error variance function. Applying the
proposed estimator and series/sieve approximation of the nonparametric component, we further constructed a weighted
semiparametric least squares dummy variables estimator for the parametric and nonparametric components. Asymptotic
normal distributions for the proposed estimators were derived and asymptotic covariancematrix estimators were provided
as well. Both estimators are shown to be asymptotically more efficient than the those ignoring the heteroscedasticity.

It is not difficult to extend our results to the scenario of q > 1 by tensor product spline series technique and extend our
results to the scenario ofm > 1 by local linear multivariate regression technique.
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Appendix. Proofs of main results

In order to prove other results we first present the following three lemmas.

Lemma A.1. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d random vectors, where the Yi’s are scalar random variables. Further assume that
E|Yi|

4 < ∞ and supx


|y|4f (x, y)dy < ∞, where f (·, ·) denotes the joint density of (X, Y ). Let K(·) be a bounded positive
function with a bounded support, and satisfies Lipschitz’s condition. Then if nh8

→ 0 and nh2/(ln n)2 → ∞, it holds that

sup
x

1n
n

i=1

[Kh(Xi − x)Yi − E{Kh(Xi − x)Yi}]

 = Op


ln(1/h)

nh

1/2

.

The proof of Lemma A.1 follows immediately from the result of Mack and Silverman [17].
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Define B∗, 3, X∗, ζ∗ and Y∗ the same way as Bw, 3, Xw, ζw and Yw in (4.2)–(4.4), except with σ 2(·) in place of σ 2(·).
Further define

MMB∗ ζ∗ = InT − PMB∗ ζ∗ = InT − MB∗ζ∗(ζ∗⊤MB∗ζ∗)−ζ∗⊤MB∗ ,

β̌
w

n = (X∗⊤MB∗MMB∗ ζ∗MB∗X∗)−1X∗⊤MB∗MMB∗ ζ∗MB∗Y∗, and

θ̌
w

n = (ζ∗⊤MB∗ζ∗)−1ζ∗⊤MB∗(Y∗
− X∗β̌

w

n ) and ǧwn (u) = ζK⊤(u)θ̌
w
.

Lemma A.2. Under Assumptions 1–9,

(i)

(nT )−1X∗⊤MB∗MMB∗ ζ∗MB∗X∗


6−1

3 →p Ip as n → ∞;
(ii) For any fixed K-vector λ,


(nT )−1λ⊤ζ∗⊤MB∗ζ∗λ


(λ⊤Q3λ)

−1
→p 1 as n → ∞, where 63 and Q3 are defined in Section 4.

Proof. Let 5∗
= 35 and H = (H1, . . . ,Hp) with Hj = (h̄j(U11), . . . , h̄j(U1T ), . . . , h̄j(UnT ))

⊤. Then X∗⊤MB∗MMB∗ ζ∗MB∗X∗

can be written as

X∗⊤MB∗MMB∗ ζ∗MB∗X∗
= 5∗⊤MB∗MMB∗ ζ∗MB∗5∗

+ H⊤3MB∗MMB∗ ζ∗MB∗3H

+ 5∗⊤MB∗MMB∗ ζ∗MB∗3H + H⊤3MB∗MMB∗ ζ∗MB∗5∗.

Due toMB∗MMB∗ ζ∗MB∗ = MB∗ − (In − MMB∗ ζ∗), we have

1
nT

5∗⊤MB∗MMB∗ ζ∗MB∗5∗
=

1
nT

5∗⊤MB∗5∗
−

1
nT

5∗⊤(In − MMB∗ ζ∗)5∗.

The (ℓ, k)th entry of (nT )−15∗⊤(In − MMB∗ ζ∗)5∗ is

1
nT

E

5∗⊤

(k) (In − MMB∗ ζ∗)5∗

(k)


=

1
n
E

tr

E(5(ℓ)5

T
(k)|U11, . . . ,U1T , . . . ,UnT )3(In − MMB∗ ζ∗)3


= O(n−1K) = o(1),

where 5(ℓ) is the ℓth column of 5. Moreover, by Assumption 1 we can show that

1
nT

5∗⊤MB∗5∗
→p 63 as n → ∞.

Given that MB∗MMB∗ ζ∗MB∗ ≤ MB∗ andMB∗ is an idempotent matrix, the maximum eigenvalue ofMB∗MMB∗ ζ∗MB∗ is 1. Thus

1
nT

H⊤

(ℓ)3MB∗MMB∗ ζ∗MB∗3H(k) =
1
nT
(H(ℓ) − ζξhℓ)

⊤3MB∗MMB∗ ζ∗MB∗3(H(k) − ζξhk)

≤
1
nT
(H(ℓ) − ζξhℓ)

⊤(H(k) − ζξhk) = Op(K−4) = op(1),

where H(ℓ) is the ℓth column of H. It follows from Markov’s inequality that

1
nT

5∗⊤MB∗MMB∗ ζ∗MB∗3H = Op(K−2) and
1
nT

H⊤3MB∗MMB∗ ζ∗MB∗5∗
= Op(K−2).

This proves (i). Following the same line we can prove (ii) as well. �

Lemma A.3. Under Assumptions 1–9,

(i)
√
nT ℑ

w(β̌
w
n − β)  N (0p, Ip) as n → ∞;

(ii) ∥θ̌
w
n − θ∥ = Op(

√
K/n + K−2);

(iii)
T

t=1


u∈Ut

{ǧw
n (u)− g(u)}pt(u) = Op(K/n + K−4);

(iv) if we further have
√
n/K 2

→ 0 as n → ∞, then
√
nT ηw(u){ǧw

n (u)− g(u)}  N (0, 1) as n → ∞.

Proof. (i) According to the definition of β̌
w
n ,

β̌
w
n = (X∗⊤M∗X∗)−1X∗⊤M∗(X∗β + B∗

+ ε∗
+ 3G)

= β + (X∗⊤M∗X∗)−1X∗⊤M∗ε∗
+ (X∗⊤M∗X∗)−1X∗⊤M∗3(G − ζθ)

= β + J1 + J2, say,
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where M∗
= MB∗MMB∗ ζ∗MB∗ . It is easy to see that X∗⊤M∗ε∗

= 5∗⊤M∗ε∗
+ H3M∗ε∗. Note that E(5) = 0. Similar to the

proof in Lemma A.1, we can show that

1
nT

H3M∗ε∗
= Op(n−1/2K−2).

Moreover, we have

1
nT

5∗⊤M∗ε∗
=

1
nT

5∗⊤MB∗ε∗
−

1
nT

5∗⊤MB∗PMB∗ ζ∗MB∗ε∗

=
1
nT

5∗⊤MB∗ε∗
+ op(n−1/2) =

1
n

n
i=1

5w⊤

i Mιwi
5w

i + op(n−1/2).

Let λ be a constant p-vector, and write

ℓn(λ) = λ⊤

n
i=1

5w⊤

i Mιwi
5w

i .

Obviously, ℓn(λ) is a sum of independent random variables with variance nλ⊤E(5w⊤

i Mιwi
5w

i )λ = nλT 63λ. Therefore, by
Lemma A.1, it is easy to show that

√
nT J2  N (0,6−1

3 ) as n → ∞. In addition,

1
nT

X∗⊤M∗3(G − ζθ) =
1
nT

5∗⊤M∗3(G − ζθ)+
1
nT
(H − ζθH)

⊤3M∗3(G − ζθ)

= Op(n−1/2K−2)+ Op(K−4) = op(n−1/2).

This completes the proof of (i). Parts (ii)–(iv) are standard spline series approximating results. �

Proof of Theorem 3. By the definition ofrit , for i = 1, . . . , n, t = 1, . . . , T ,

rit = A(Vit , εit)+X⊤

it (β −βn)+ G(Uit),

where A(Vit , εit) = σ(Vit)εit −T−1
t1
σ(Vit)εit ,Xit = Xit −T−1

t1
Xit1 and G(Uit) = g(Uit)−gn(Uit)−T−1

t1
{g(Uit1)−gn(Uit1)}. Therefore,σ 2

n (v) can be decomposed as

σ 2
n (v) =


i,t

ωnit(v)(v)A2(Vit , νit)+


i,t

ωnit(v){X⊤

it (β −βn)}
2
+


i,t

ωnit(v)G2(Uit)

+ 2

i,t

ωnit(v)

σ(Vit)εit −

1
T


t1

σ(Vit1)νit1


{X⊤

it (β −βn)}

+ 2

i,t

ωnit(v){X⊤

it (β −βn)}G(Uit)+ 2

i,t

ωnit(v)A(σ (Vit), νit)G(Uit)

= J1 + J2 + J3 + J4 + J5 + J6, say,

where


i,t ,


i and


t denote
n

i=1
T

t=1,
n

i=1 and
T

t=1, respectively. J1 can be further decomposed as

J1 =


i,t

ωnit(v)σ
2(Vit)ν

2
it +

1
T 2


i,t

ωnit(v)


t1

σ(Vit1)νit1

2
−

2
T


i,t

ψnit


t1

σ(Vit1)νit1

= J11 + J12 + J13, say,

where ψnit = ωnit(v)σ (Vit)νit . Following Chiou and Müller [6], we have

ωnit(v) =
1
nh


t

K

Vit − v

h


h2ς2

2 pt(v)+ O(h3)

h2ς2p2t (v)+ O(h4)+ O(h/n)
, (A.1)

where ς2 =

v2K(v)dv < ∞. Hence similar to [10], we can show that

J11 =


i,t

ωnit(v)σ
2(Vit)(ν

2
it − 1)+


i,t

ωnit(v)

σ 2(Vit)− σ 2(v)


+


i,t

ωnit(v)σ
2(v)

= σ 2(v)+ Op(h2)+ Op(n−1/2h−1/2).
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The same argument also leads to

J13 = −
2
T


i,t

ωnit(v)σ
2(Vit)ν

2
it −

2
T


i,t

ωnit(v)σ (Vit)νit

t1≠t

σ(Vit1)νit1

= −
2
T
σ 2(v)+ Op(h2)+ Op(n−1/2h−1/2)

and

J12 =
1
T 2


i,t

ωnit(v)

t1

σ 2(Vit1)ν
2
it1 +

1
T 2


i,t

ωnit(v)

t1


t2≠t1

σ(Vit1)νit1σ(Vit2)νit2

=
1
T 2


i,t

ωnit(v)

σ 2(Vit)ν

2
it +


t1≠t

σ 2(Vit1)ν
2
it1


+ Op(h2)+ Op(n−1/2h−1/2)

=
1
T 2
σ 2(v)+

1
T 2


i,t

ωnit(v)

t1≠t

σ 2(Vit1)ν
2
it1 + Op(h2)+ Op(n−1/2h−1/2)

=
1
T 2
σ 2(u)+ J121 + Op(h2)+ Op(n−1/2h−1/2),

where J121 = T−2
i,t ωnit(v)


t1≠t σ

2(Vit1)ν
2
it1
. By Eq. (A.1), J121 can be further written as

J121 =
1
T 2


t

h2ς2
2 pt(v)+ O(h3)

h2ς2p2(v)t + O(h4)+ O(h/n)


i

1
nh

K

Vit − v

h


t1≠t

σ 2(Vit1)ν
2
it1

=
(T − 1)

T 3


t

E{σ 2(Vit)}
h2ς2

2 pt(v)+ O(h3)

h2ς2p2t (v)+ O(h4)+ O(h/n)


i,t

1
nh

K

Vit − v

h



+
1
T 2


t

h2ς2
2 pt(v)+ O(h3)

h2ς2p2t (v)+ O(h4)+ O(h/n)


i

1
nh

K

Vit − v

h


t1≠t

B(Vit1 , νit1)

=

(T − 1)

t
E{σ 2(Vit)}

T 3
+ Op(h2)+ Op(n−1/2h−1/2),

where B(Vit1 , νit1) =


σ 2(Vit1)ν

2
it1

− E{σ 2(Vit1)}

. It follows that

J1 =


1 −

2
T

+
1
T 2


σ 2(v)+

T − 1
T 2


t

E{σ 2(Vit)} + Op(h2)+ Op(n−1/2h−1/2).

Therefore, in order to complete the proof, it suffices to show that

Js = Op(h2)+ Op(n−1/2h−1/2), s = 2, . . . , 6. (A.2)

Combining Theorems 1 and 2 with Lemma A.1 and Eq. (A.1) yields J2 = Op (1/n) = Op(h2)+ Op{(nh)−1/2
}, J3 = Op(K/n)+

Op(K−4) = Op(h2)+ Op{(nh)−1/2
}, J4 = Op(n−1/2) = Op(h2)+ Op{(nh)−1/2

} and J5 = Op(n−1/2){Op(
√
K/n)+ Op(K−2)} =

Op(h2)+ Op{(nh)−1/2
}. Finally for J6, we have

i,t

ψnit{g(Uit)−gn(Uit)} =


i,t

ψnit{g(Uit)− ζK⊤(u)θn}

=


i,t

ψnit{g(Uit)− ζK⊤(u)θ} +


i,t

ψnitD(ζθ − G)

+


i,t

ψnitDν +


i,t

ωnit(v)σ (Vit)εitDX(β −βn)

= Q1 + Q2 + Q3 + Q4, say,

where D = ζK⊤(u)(ζ⊤MBζ)
−1ζ⊤MB and G = (g(U11), . . . , g(UnT ))

⊤. Applying Assumption 3, Theorem 1, Lemma A.1 and
Eq. (A.1), it is not difficult to show that Q1 + Q2 + Q4 = Op(h2) + Op{(nh)−1/2

}. In addition, Assumption 4 and Bernstein’s
inequality lead to Q3 = Op(h2)+ Op{(nh)−1/2

}. Similarly, we can show that
i,t

ωnit(v)σ (Vit)νit
1
T


t1

{g(Uit1)−g(Uit1)} = Op(h2)+ Op(n−1/2h−1/2)
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and 
i,t

ωnit(v)

t1

σ(Vit1)νit1G(Uit) = Op(h2)+ Op(n−1/2h−1/2).

Thus J6 = Op(h2)+ Op{(nh)−1/2
}. Now all equations in Eq. (A.2) hold, hence the proof is complete. �

Proof of Theorem 4. By the same argument as the proof of Theorem 3, we have

ζn =
1
nT


i,t


σ(Vit)νit −

1
T


t1

σ(Vit1)νit1

2

+ Op(n−1/2)

=
1
T


1 −

1
T


t

E{σ 2(Vit)} + Op(n−1/2).

Combining this with Theorem 3 completes the proof of Theorem 4. �

Proof of Theorem 5. According to the definition ofβw
n , we have

√
nT (βw

n − β) =
√
nT (β̌

w
n − β)+ (Xw⊤MwXw)−1(Xw⊤Mw3G − X∗⊤M∗3G)

+ {(Xw⊤MwXw)−1
− (X∗⊤M∗X∗)−1

}Xw⊤Mw3G

+ (Xw⊤MwXw)−1(Xw⊤Mwεw
− X∗⊤M∗ε∗)

+ {(Xw⊤MwXw)−1
− (X∗⊤M∗X∗)−1

}Xw⊤Mwεw,

whereMw
= MBwMMBw ζwMBw . Therefore by Lemma A.3(i), it suffices to show that

1
nT
(Xw⊤MwXw

− X∗⊤M∗X∗) = op(1), (A.3)

1
nT
(Xw⊤Mw3G − X∗⊤M∗3G) = op(n−1/2) (A.4)

and

1
nT
(Xw⊤Mwεw − X∗τM∗ε∗) = op(n−1/2). (A.5)

By the proof of Lemma A.1, the left side of Eq. (A.3) is equal to

1
nT


i

(5w⊤

i Mιwi
5w

i − 5∗⊤

i Mι∗i
5∗

i )+ op(1)

=
1
nT


i

(5w⊤

i 5w
i − 5∗⊤

i 5∗

i )+
1
nT


i

(5w⊤

i Pιwi
5w

i − 5∗⊤

i Pι∗i
5∗

i )+ op(1)

= J11 + J12 + op(1), say.

It follows from Theorem 3 that

J11 = (nT )−1

i,t

5⊤

it 5it{σ 2
n (Vit)− σ 2(Vit)} = Op


h2

+ n−1h−1
= op(1).

Similarly,

J12 =
1
nT


i

(5w⊤

i − 5∗⊤

i )Pιwi
5w

i +
1
nT


i

5∗⊤

i Pι∗i
(5w

i − 5∗

i )+
1
nT


i

5∗⊤

i (Pιwi
− Pι∗i

)5w
i

= Op


h2

+
1
nh


+

1
nT


i

5∗⊤

i (ιwi − ι∗i )(ι
w⊤

i ιwi )
−1ιw⊤

i 5w
i

+
1
nT


i

5∗⊤

i ι∗i {(ι
w⊤

i ιwi )
−1

− (ι∗⊤

i ι∗i )
−1

}ι∗⊤

i 5w
i +

1
nT


i

5∗⊤

i ι∗i (ι
∗⊤

i ι∗i )
−1(ιw⊤

i − ι∗⊤

i )5w
i

= op(1).

This proves Eq. (A.3). Furthermore, by Theorem 3 and the proof of Lemma A.3, we get

1
nT

Xw⊤Mw3G =
1
nT

Xw⊤Mw3(G − ζξ) = op(n−1/2)



110 J. Hu et al. / Journal of Multivariate Analysis 154 (2017) 96–111

and

1
nT

X∗⊤M∗3G =
1
nT

X∗⊤M∗3(G − ζξ) = op(n−1/2).

Thus Eq. (A.4) follows. It remains to prove Eq. (A.5). By Theorem 3 and the proof of Lemma A.3, the left side of Eq. (A.4) is
equal to

1
nT


i

(5w⊤

i Mιwi
εw
i − 5∗⊤

i Mι∗i
ε∗

i )+ op(n−1/2)

=
1
nT


i

(5w⊤

i εw
i − 5∗⊤

i ε∗

i )+
1
nT


i

(5w⊤

i − 5∗⊤

i )Pιwi
εw
i

+
1
nT


i

5∗⊤

i (ιwi − ι∗i )(ι
w⊤

i ιwi )
−1ιw⊤

i εw
i +

1
nT


i

5∗⊤

i ι∗i

(ιw⊤

i ιwi )
−1

− (ι∗⊤

i ι∗i )
−1 ι∗⊤

i εw
i

+
1
nT


i

5∗⊤

i ι∗i (ι
∗⊤

i ι∗i )
−1(ιw⊤

i − ι∗⊤

i )εw
i

= J21 + J22 + J23 + J24 + J25, say.

We can decompose J21 as

J21 =
1
nT


i,t

5itεit{σ−2
n (·)− σ−2(·)}

=
1
nT


i,t

5itεit{σ 2
n (·)− σ 2(·)}σ−4(·)+

1
nT


i,t

5itεit{σ 2
n (·)− σ 2(·)}{σ−2

n (·)− σ−2(·)}σ−2(·)

= J211 + J212, say,

where · denotes Vit . Furthermore,

J211 =
1
nT


i,t

5itεit

σ 4(Vit)


a2T


σ̃ 2
n (v)−

1
T
ζn− σ 2(Vit)



=
1
nT


i,t

5itεit

σ 4(Vit)


a2T


i1,t1

ωni1t1(Vit)r2i1t1 −
1

nT 2


i1,t1

r2i1t1


− σ 2
n (Vit)



=
1
nT


i,t

5itεit

σ 4(Vit)


a2T

i1,t1


ωni1t1(Vit)−

1
nT 2

r2i1t1 − σ 2
n (Vit)



=
1
nT


i,t

5itεit

σ 4(Vit)


a2T

i1,t1


ωni1t1(Vit)−

1
nT 2


ε∗2
i1t1 − σ 2

n (Vit)



+
1
nT


i,t

a2T5itεit

σ 4(Vit)


i1,t1


ωni1t1(Vit)−

1
nT 2


∇i1t1 −

1
T


t2

∇i1t2

2

+
1
nT


i,t

a2T5itεit

σ 4(Vit)


i1,t1


ωni1t1(Vit)−

1
nT 2


∇i1t1 −

1
T


t2

∇i1t2


ε∗

i1t1

= J1211 + J1212 + J1213, say,

where ε∗

it = εit − T−1
t1
εit1 , aT = T/(T − 1) and ∇it = X⊤

it (β −βn)+ g(Uit)−gn(Uit). Combining Lemma 2 in Gao [11]
with Lemma A.1 and the proof of Theorem 3, we get

J1211 =
1
nT


i,t

5itεit

i1,t1


ωni1t1(Vit)−

1
nT 2


{ε∗2

i1t1 − E(ε∗2
i1t1)}Op(1)

+
1
nT


i,t

5itεit


a2T

i1,t1


ωni1t1(Vit)−

1
nT 2


E(ε∗2

i1t1)− σ 2
n (Vit)


= op(n−1/2).
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By Theorems 1 and 2 we can show that J1212 = op(n−1/2). In follows from Theorems 1 and 2 together with Lemma A.1 and
the proof of Theorem 3 that

max
1≤i≤n
1≤t≤T


i1,t1


ωni1t1(Vit)−

1
nT 2


∇i1t1 −

1
T


t2

∇i1t2


ε∗

i1t1


≤ max

1≤i≤n
1≤t≤T



i1,t1


ωni1t1(Vit)−

1
nT 2


Xi1t1 −

1
T


t2

Xi1t2

⊤

(βn − β)ε∗

i1t1


+ max

1≤i≤n
1≤t≤T


i1,t1


ωni1t1(Vit)−

1
nT 2

gn(Ui1t1)− g(Ui1t1)−
1
T


t2

{gn(Ui1t2)− g(Ui1t2)}


ε∗

i1t1


= op(n−1/2),

which implies J1213 = Op(n−1/2) and so J211 = Op(n−1/2). By Theorem 3,

|J212| ≤ O(k)


max
1≤i≤n
1≤t≤T

{σ 2
n (Vit)− σ 2(Vit)}

2
1
nT


i,t

∥5itεit∥ = op(n−1/2).

It follows that J21 = op(n−1/2). By the same arguments we can show that J2s = op(n−1/2) for s = 2, 3, 4, 5 as well. Hence
Eq. (A.5) holds, and the proof of Theorem 5 is complete. �

Proof of Theorem 6. This follows from the same arguments as in the proof of Theorem 5. �

Proof of Theorem 7. It follows from Theorem 4, Lemma A.2 and the proof of Theorem 5. �
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