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a b s t r a c t

Expectiles are the solution to an asymmetric least squares minimization problem for
univariate data. They resemble the quantiles, and just like them, expectiles are indexed
by a level α in the unit interval. In the present paper, we introduce and discuss the main
properties of the (multivariate) expectile regions, a nested family of sets, whose instance
with level 0 < α ≤ 1/2 is built up by all points whose univariate projections lie between
the expectiles of levels α and 1 − α of the projected dataset. Such level is interpreted
as the degree of centrality of a point with respect to a multivariate distribution and
therefore serves as a depth function. We propose here algorithms for determining all
the extreme points of the bivariate expectile regions as well as for computing the depth
of a point in the plane. We also study the convergence of the sample expectile regions to
the population ones and the uniform consistency of the sample expectile depth. Finally,
we present some real data examples for which the Bivariate Expectile Plot (BExPlot) is
introduced.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Expectiles were first introduced by Newey and Powell [36] in the context of linear regression as the solution to a
inimization problem. They were so named because they resemble the quantiles of a random variable, but unlike them,

hey are based on a quadratic loss function, as it is the case of the expectation. They have received high attention in several
reas such as risk measurement because, under certain conditions, expectiles happen to be elicitable and coherent risk
easures, as it was shown by Gneiting [21], Bellini et al. [2], Ziegel [50], and Krätschmer and Zähle [27], and are now
apturing attention in data analytic fields such as multiple output M-quantile regression, see [11], or the building of
easures of skewness, see [17].
Inspired by Tukey [46], who employed the quantiles of the univariate projections of a bivariate data cloud to produce a

amily of central (depth) regions, Eilers [18], and later on Giorgi and McNeil [20], suggested to use the expectiles to build
he expectile regions of a multivariate dataset as the intersection of the halfspaces whose supporting hyperplanes are
etermined by the expectiles of univariate projections of the data. Similarly, Daouia and Paindaveine [11] have proposed
o use M-quantiles defined as hyperplanes whose independent term is an expectile of a univariate projection of a dataset.

In the past, other multivariate generalizations of the expectiles have been considered by Breckling and Chambers [3],
ho proposed a class of multivariate M-quantiles as the solution to minimization problems similar to those giving rise to
uantiles and expectiles. Since some of those M-quantiles lie out of the convex hull of the dataset they were built from, in
posterior paper Breckling et al. [4] presented an alternative definition of multivariate M-quantiles which still lack to be
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quivariant under arbitrary affine transformations. Later on, Maume-Deschamps et al. [31] adapted the aforementioned
otion of elicitability to the multivariate setting by using several vector and matrix norms. This way, they introduced
he so-called euclidean (vector-valued) and matrix expectiles. More recently, Herrmann et al. [22] introduced yet another
ultivariate version of expectiles, the geometric expectiles, as the unique solution of a convex risk minimization problem.
hey claim that the homogeneity and equivariance under orthogonal transformations properties of their geometric
xpectiles make them appealing multivariate risk measures.
The expectile regions, see [11,18,20], are a nested family of sets parametrized by a level, in the sense that the inner

egions have a greater level associated with them. The same way that Tukey’s central regions inspired the definition of
he most popular depth function, the so-called halfspace depth, see [39], the expectile regions induce the expectile depth.
e present here a simple description of the expectile depth and its properties, complementary to that of Daouia and
aindaveine [11], and based on the extensive studies of depth functions, their properties, and applications developed
y Liu et al. [30], Zuo and Serfling [51], Dyckerhoff [13], or Cascos [6]. As an application, we propose a novel exploratory
ata analytic tool, called the Bivariate Expectile Plot (BExPlot), which can be used for data visualization as an alternative
o the Bagplot, see Rousseeuw et al. [40].

The main contributions of this manuscript are: (i) the comprehensive study of the properties of the expectile regions,
ncluding the Hausdorff consistency of the sample expectile regions; (ii) the introduction of the expectile depth together
ith the study of its main properties, including the strong uniform consistency of the sample expectile depth; (iii) the
onstruction of algorithms for the exact computation of the expectile regions and depth of bivariate datasets; (iv) the
ntroduction of a new data visualization technique, called the BExPlot. It is further shown that (v) the expectiles and
xpectile regions characterize distributions with finite first moment, and (vi) some links of the expectile regions with the
heory of stochastic orderings are explored.

The paper is organized as follows: in Section 2 we review the concept of (univariate) expectile of a random variable,
hile Section 3 is devoted to multivariate expectile regions. Specifically, we introduce the expectile regions together with
heir main properties, study the consistency of the sample expectile regions with respect to the Hausdorff metric, and
haracterize the set of extreme points of the sample expectile regions in a way that will be later on used to describe an
lgorithm for its computation. In Section 4 we present the expectile depth, study the uniform consistency of the sample
xpectile depth function, and discuss the computation of its 2-dimensional empirical version. Finally, in Section 5 we
ntroduce the Bivariate Expectile Plot as an EDA tool and some D–D plots built out of expectile depths, while a final
iscussion highlighting the main contributions of the paper is included in Section 6. Two appendices are placed at the
nd of the manuscript, Appendix A contains the description of two algorithms, one for the computation of the set of
xtreme points of the expectile regions of a bivariate dataset, and the other for the computation of the expectile depth,
hile Appendix B contains the proofs of some mathematical results.

. Univariate expectiles

Given a random variable X defined on a general probability space and with finite second moment, E|X |2 < ∞, and
iven α ∈ (0, 1), the α-expectile of X was defined in Newey and Powell [36] as the minimizer of the quadratic expression

eα(X) = argmin
x

{
(1− α)E(X − x)2

−
+ αE(X − x)2

+

}
, (1)

here a+ = max{a, 0} and a− = −min{a, 0} for any a ∈ R. Observe that the α-quantile of X is the minimizer of an
xpression similar to (1), but built without squares.
Considering the first order condition obtained from (1), it is not hard to see that eα(X) is the unique solution to the

quation

− (1− α)E(X − eα(X))− + αE(X − eα(X))+ = 0 . (2)

An immediate consequence of (2) is that the expectiles are computable for random variables with the only condition
f having finite first moment.
Alternative expressions for the expectiles are presented below. Their in detail derivation from (2) is shown in

ppendix B.1, and they will be of use when interpreting and computing expectiles. It is clear from them that the α-
xpectile of a random variable X is a weighted average of the gravity centres of the lower and upper tail of X with regard
o itself such that the weight of the lower gravity centre corresponds to the weight of the upper gravity centre in a
roportion of (1− α) to α. Specifically it holds

eα(X) = EX +
2α − 1
1− α

E(X − eα(X))+ =
(1− α)

∫ FX (eα (X))
0 F−1X (t) dt + α

∫ 1
FX (eα (X))

F−1X (t) dt

α + (1− 2α)FX (eα(X))
, (3)

here FX stands for the cdf of X , while F−1X is its quantile function.
Let us describe next a geometric interpretation of the expectiles. In the light of the Choquet integral of random variables

X − e (X)) and (X − e (X)) , it follows from (2) that the α-expectile of X is the value such that the area between the
α − α +

2
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Fig. 1. The thick solid line represents the cdf of a standard normal random variable and the vertical line is established at its 0.75-expectile,
x = 0.43633. The area of the shaded region to the left of the vertical line is 0.75/(1− 0.75) = 3 times the area of the shaded region to its right.

raph of the cdf of X and the horizontal axis and to left of eα(X) is exactly α/(1 − α) times the area between the cdf of
and horizontal line y = 1 and to the right of eα(X), that is,

(1− α)
∫ eα (X)

−∞

FX (x) dx = α

∫
+∞

eα (X)
(1− FX (x)) dx.

ee [9] for the Choquet integral and Fig. 1 for a graphical representation of this geometric interpretation.

.1. Properties of the expectiles and the inverse expectile function

We list below the main properties of the univariate expectiles, whose proofs can be found in classical references,
pecifically Bellini et al. [2]. As presented in properties (i) to (x), the expectile of X of level α = 1/2 is the mean of X , the
expectile of X of level α is the negative of the expectile of −X of level 1 − α, expectiles are equivariant with respect to
deterministic translations, positive homogeneous, and strictly monotone in their random argument. Further, the expectiles
of levels α ≥ 1/2 are subadditive, while those of level α ≤ 1/2 are superadditive. Finally, expectiles are continuous and
strictly increasing in the parameter α (if X is a nondegenerate random variable).

(i) Most central expectile: e1/2(X) = EX;
(ii) Upper and lower expectiles: eα(X) = −e1−α(−X);
(iii) Translation equivariance: eα(X + a) = a+ eα(X), a ∈ R;
(iv) Homogeneity: eα(λX) = λeα(X), λ ≥ 0;
(v) Monotonicity: if X ≤ Y a.s., then eα(X) ≤ eα(Y );
(vi) Strict monotonicity: if X ≤ Y a.s. and Pr(X < Y ) > 0, then eα(X) < eα(Y );
(vii) Subadditivity: for 1/2 ≤ α < 1, eα(X + Y ) ≤ eα(X)+ eα(Y );
(viii) Superadditivity: for 0 < α ≤ 1/2, eα(X + Y ) ≥ eα(X)+ eα(Y );
(ix) Parameter continuity: eα is continuous in α;
(x) Strict parameter monotonicity: eα is strictly increasing in parameter α whenever random variable X is not degenerate.

The inverse of the expectile function plays a relevant role when showing that expectiles characterize distributions.
While for any fixed random variable, the expectile function, whose argument is the level α, plays a similar role to the
quantile function, Jones [24] discusses the inverse expectile function as an analogue to the cumulative distribution function
(inverse quantile). This function will become relevant when we study the expectile depth in Section 4.

Any real number in the interior of the convex hull of the support of X corresponds to one of its expectiles. After
some elementary algebraic transformations in (2), it is straightforward to see that any ess inf(X) < x < ess sup(X) is the
e−1X (x)-expectile of X with

e−1X (x) =
(
1+

E(X − x)+
)−1
=

E(X − x)−
=

x− EX + E(X − x)+
. (4)
E(X − x)− E|X − x| x− EX + 2E(X − x)+
3
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Due to the relation between upper and lower expectiles (Property (ii) in Section 2.1), the inverse expectile satisfies
e−1
−X (−x) = 1− e−1X (x). Moreover, by the strict parameter monotonicity (Property (x) in Section 2.1), the inverse expectile
function is strictly increasing whenever X is nondegenerate.

The expectile function of a random variable (with finite first moment) characterizes its distribution. This can be verified
y obtaining an explicit expression of the stop-loss function, see [34], associated with X out of (4),

E(X − x)+ =
(x− EX)(1− e−1X (x))

2e−1X (x)− 1
. (5)

he expectile function determines the inverse expectile function, together with the mean of a random variable (expectile
f level 1/2), and consequently its stop-loss function, see (5). Finally, after the relation E(X − x)+ =

∫
∞

x (1− FX (t)) dt , the
stop-loss function (sometimes called integrated survival function) characterizes the distribution of a random variable.

Stochastic orders are partial order relations (or more generally preoders) between distributions of random elements,
see [35,44] for two comprehensive introductions to them. Bellini et al. [1] introduced the expectile stochastic ordering
for random variables. Specifically, given X, Y two random variables with finite first moment, they say that X is smaller
than Y in the expectile order if eα(X) ≤ eα(Y ) for every 0 < α < 1. Such relation is equivalent to the inverse
expectile function of Y being not greater than the inverse expectile function of X , that is, e−1Y (x) ≤ e−1X (x) for every
max{ess inf(X), ess inf(Y )} < x < max{ess sup(X), ess sup(Y )}. After (4), we obtain the equivalent expression

E(X − x)+(x− EY ) ≤ E(Y − x)+(x− EX) , (6)

where the restriction on x can be omitted. See [1, Th. 8c] for an alternative derivation of (6). Arguing in terms of the
expectile function, we can show that a condition of the type eα(X) ≤ eα(Y ) for every 0 < α ≤ β < 1 holds whenever
(6) is satisfied for every x < eβ (X), while after Property (ii) in Section 2.1, eα(X) ≥ eα(Y ) for every 0 < β ≤ α < 1 holds
whenever the reverse inequality to (6) is satisfied for every x > eβ (X). That is, we have

eα(X) ≤ eα(Y ) for every 0 < α ≤ β < 1 if and only if E(X − x)+(x− EY ) ≤ E(Y − x)+(x− EX) for every x < eβ (X) ,
eα(X) ≥ eα(Y ) for every 0 < β ≤ α < 1 if and only if E(X − x)+(x− EY ) ≥ E(Y − x)+(x− EX) for every x > eβ (X) .

(7)

.2. Sample expectiles

Consider a sample of univariate observations x1, x2, . . . , xn ∈ R and 0 < α < 1. The sample α-expectile, denoted by
eα(x1, . . . , xn) or shortly en,α , is the solution to Eq. (3) for an empirical distribution, and results to be a weighted average
of the sample observations. The empirical counterparts of (3) adopt the expressions

en,α = x+
2α − 1
n(1− α)

∑
xi>en,α

(xi − en,α) =
1− α

αn+ nFn(en,α)(1− 2α)

⎛⎝nx+
2α − 1
1− α

∑
xi>en,α

xi

⎞⎠ , (8)

where, as usual, x stands for the sample mean, and Fn(·) denotes the empirical cdf.
Fortunately enough, en,α can be computed in a fast way by means of a repeated weighted averaging algorithm,

implemented as a built-in function in the R package expectreg by Sobotka et al. [45] which is available on GitHub.
For the previous univariate sample and any min xi ≤ x ≤ max xi, according to (4), x is the sample expectile at the level

given by the empirical inverse expectile function

e−1n (x) =
nx− nx+

∑
xi>x(xi − x)

nx− nx+ 2
∑

xi>x(xi − x)
. (9)

3. Expectile regions

Following Eilers [18] and the scenario set construction of Giorgi and McNeil [20], for any d-dimensional random vector
X with finite first moment E∥X∥ < ∞, its expectile region of level 0 < α ≤ 1/2, denoted by EDα(X), is the intersection
of closed halfspaces supported by hyperplanes whose constant term is determined by a univariate expectile

EDα(X) =
⋂

u∈Sd−1

{x ∈ Rd
: ⟨x, u⟩ ≤ e1−α(⟨X, u⟩)} , (10)

where Sd−1 stands for the unit sphere in Rd and ⟨·, ·⟩ represents the standard inner product in Rd.
Observe that the expectile regions adopt the expressions proposed by Dyckerhoff [13, Th. 5] when considering the

interval between the α and 1 − α expectiles or the M-quantile regions of Daouia and Paindaveine [11, Def. 3.2] for the
appropriate loss function.

In the univariate setting, for d = 1, the expectile region of level α is the closed interval of real numbers

EDα(X) = [e (X), e (X)] . (11)
α 1−α

4
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As an intersection of closed halfspaces, the expectile regions are closed convex sets, and thus characterized by their
support functions, see e.g. Schneider [43]. The support function of a closed convex non-empty set K ⊆ Rd evaluated at
u ∈ Rd is defined as

h(K , u) = sup{⟨x, u⟩ : x ∈ K }.

If h(K , · ) is a support function, then it is positively homogeneous and subadditive, while the reverse does also hold
as can be found in [43, Th. 1.7.1]. Given any positively homogeneous and subadditive function h : Rd

→ R there exists a
nique compact and convex set K ⊆ Rd such that h is its support function.
From the homogeneity and subadditivity of univariate expectiles (Properties (iv) and (vii) in Section 2.1), we know

hat for any d-dimensional random vector with finite first moment X and 0 < α ≤ 1/2 the map u ↦→ e1−α(⟨X, u⟩) is
positively homogeneous and subadditive, so it constitutes the support function of a compact and convex set, which is in
fact EDα(X). Hence, alternatively to (10), the expectile regions can be characterized in terms of its support function as

h(EDα(X), u) = sup{⟨x, u⟩ : x ∈ EDα(X)} = e1−α(⟨X, u⟩) . (12)

An important consequence of (12) is that, since e1−α(⟨X, u⟩) is the upper end-point of the (univariate) expectile region
of ⟨X, u⟩ of level α, the expectile depth satisfies the strong (also weak) projection property, see Dyckerhoff [13, Th. 3].

3.1. Properties of the expectile regions

The expectile regions fulfill the usual properties for depth regions considered by Dyckerhoff [13] and Cascos [6], that
is, if 0 < α ≤ 1/2 then, as shown in Appendix B.2:

(i) Most central point: ED1/2(X) = {EX};
(ii) Nesting: EDα(X) ⊆ EDβ (X), 0 < β ≤ α ≤ 1/2;
(iii) Convexity: EDα(X) is convex;
(iv) Compactness: EDα(X) is compact;
(v) Affine equivariance: EDα(AX + b) = AEDα(X)+ b for any matrix A ∈ Rk×d and b ∈ Rk;
(vi) Monotonicity: if X ≤ Y (componentwisely) a.s., then EDα(Y )⊕Rd

+
⊆ EDα(X)⊕Rd

+
; where the symbol ⊕ stands for

the Minkowski or elementwise set addition, i.e., given K1, K2 two subsets of Rd, we have K1 ⊕ K2 = {x + y : x ∈
K1, y ∈ K2}.

(vii) Minkowski subadditivity: EDα(X + Y ) ⊆ EDα(X)⊕ EDα(Y ).

Notice that the monotonicity and Minkowski subadditivity, which are not among the classical requirements for families
of central regions, are particularly relevant when they are used to assess the risk of multi-asset portfolios, as stressed
by Cascos and Molchanov [8].

Similarly to the expectile function, the family of expectile regions characterizes the distribution of a random vector
with finite first moment. For any d-dimensional random vector X with finite first moment, u ∈ Rd, and 0 < α ≤ 1/2, the
support function of EDα(X) evaluated on u is the (1 − α)-expectile of the linear combination of its components ⟨X, u⟩,
see (12), while EDα(−X) is EDα(X) reflected (by the affine equivariance of the expectile regions, Property (v) in Section 3.1)
and its support function evaluated on u is the negative of the α-expectile of ⟨X, u⟩ (Property (ii) in Section 2.1). After the
characterization property of the expectiles, the distribution of every ⟨X, u⟩ is thus determined by {EDα(X)}0<α≤1/2. Finally,
and according to Cramér and Wold [10], the family of all expectile regions of X characterizes its distribution.

In order to discuss the continuity of the expectile regions with respect to the level α, we need to introduce a notion of
distance for compact and convex sets. If K1, K2 ⊆ Rd are compact and convex with support functions h(K1, · ) and h(K2, · ),
the Hausdorff distance between K1, K2, see [32, H.5], is

dH (K1, K2) = sup
u∈Sd−1

|h(K1, u) − h(K2, u)|.

Proposition 1. If limn αn = α in (0, 1/2], then

lim
n

dH (EDαn (X), EDα(X)) = 0.

See Appendix B.3 for the proof of Proposition 1.
Proposition 2 will be needed in order to show the continuity of the expectile depth, which constitutes the main topic

in Section 4.

Proposition 2. If ⟨X, u⟩ is a nondegenerate random variable for every u ∈ Sd−1, then for every 0 < β < α ≤ 1/2

EDα(X) ⊆ int EDβ (X).

See Appendix B.4 for the proof of Proposition 2.
The inclusion relation between all expectile regions of two random variables of the same level characterizes the convex

stochastic order, while the one of two random vectors characterizes the linear convex stochastic order.
5
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Given two random variables X, Y with finite first moment, condition EDα(X) ⊆ EDα(Y ) for every 0 < α ≤ 1/2 holds
f eα(Y ) ≤ eα(X) for every 0 < α ≤ 1/2 and eα(X) ≤ eα(Y ) for every 1/2 ≤ α < 1, see (11), which in particular (for
= 1/2) imply EX = EY . After (7), the stop-loss functions must be ordered as E(X − x)+ ≤ E(Y − x)+ for every x ∈ R so,
fter [35, Th. 1.5.7], X is smaller than Y in the increasing convex order. Further, since EX = EY , we have that X is smaller
han Y in the convex order, see [35, Th. 1.5.3].

Consider now two random vectors X,Y with finite first moment, such that EDα(X) ⊆ EDα(Y ) for every 0 < α ≤ 1/2,
hen, for any u ∈ Rd, e1−α(⟨X, u⟩) = h(EDα(X), u) ≤ h(EDα(Y ), u) = e1−α(⟨Y , u⟩) and −eα(⟨X, u⟩) = e1−α(⟨X,−u⟩) =
(EDα(X),−u) ≤ h(EDα(X),−u) = e1−α(⟨Y , u⟩) = −eα(⟨Y , u⟩), so ⟨X, u⟩ is smaller than ⟨Y , u⟩ in the convex stochastic

order. Since the order relation is satisfied for every u ∈ Rd, after [35, Def. 3.5.1], we conclude that X is smaller than Y in
the linear convex stochastic order. The family of zonoid depth regions introduced by Koshevoy and Mosler [25] does also
characterize the linear convex order by means of inclusions, see [26,33].

3.2. Sample expectile regions

For a sample x1, x2, . . . , xn ∈ Rd and 0 ≤ α < 1/2, the sample α-expectile region is the set EDα
n whose support

function, see (12), is

h(EDα
n , u) = en,1−α(⟨x1, u⟩, . . . , ⟨xn, u⟩) , (13)

that is, it matches the (1− α)-expectile of the (univariate) sample ⟨x1, u⟩, . . . , ⟨xn, u⟩.

Remark 1. Observe that despite the support function of an empirical expectile region evaluated on any u ∈ Sd−1 is
an empirical expectile of the projected sample, and after (8), empirical expectiles are weighted averages (in this case of
the projected data), the (empirical) expectile regions are not specific instances of the weighted mean trimmed regions
proposed by Dyckerhoff and Mosler [15]. This is because the weights in the formula of the support function of the weighted
mean trimmed regions depend only on the rank of the projection of each specific data point, while expectiles are the
minimizers of a quadratic problem, and the weight that they award to each observation does also depend on the distance
to the remaining observations. An immediate consequence is that neither the (population) expectile regions belong to the
family of population weighted mean trimmed regions described in [16].

Our first result on the sample expectile regions is their consistency.

Proposition 3. Given any d-dimensional random vector X with finite first moment, the family of sample expectile regions
{EDα

n }α built from a random sample of X satisfies

sup
α∈I

dH (EDα
n , ED

α(X))
a.s.
−→ 0 ,

for any compact set I ⊆ (0, 1/2), where dH stands for the Hausdorff metric.

See Appendix B.5 for the proof of Proposition 3.
In order to compute all the extreme points of the expectile regions, we will first characterize them.

Proposition 4. The sample α-expectile region can be written as the convex hull of all linear combinations of the points from
the data sample with some prescribed weights as

EDα
n = co

⎧⎨⎩x =
α

(1− α)n+ s(2α − 1)

⎛⎝nx+
1− 2α

α

∑
πu(i)>s

xi

⎞⎠ : u ∈ Sd−1 and Gu(x) = s

⎫⎬⎭ , (14)

where co stands for the convex hull, πu is the permutation from {1, 2, . . . , n} such that ⟨xπu(1), u⟩ ≤ · · · ≤ ⟨xπu(n), u⟩, and
Gu(x) = s if and only if ⟨xπu(s), u⟩ ≤ ⟨x, u⟩ ≤ ⟨xπu(s+1), u⟩ .

The proof of Proposition 4 follows directly applying (8) to all possible sortings of the dataset. Most of the points
omputed in (14) are not extreme ones, but inner points of EDα

n instead.
Proposition 4 contains the description of all possible extreme points of the expectile regions, but a brute force algorithm

ased on it would have complexity O(n!n2), where n! is the number of permutations of the data points, and it is multiplied
imes n because of the position that the expectile might occupy, and again times n because of the sums involved in the
omputation of the extreme points. Instead, in Appendix A.1, we use a circular sequence routine to obtain all extreme
oints with complexity O(n2 log n). Specifically, the algorithm moves efficiently through the

(n
2

)
sortings of the univariate

rojections of the data points. For the initial order (x-coordinates in ascending order), we compute the expectile of the
irst coordinates and the position it occupies inside the sample (of x-coordinates). Then we apply (14) to obtain the first
xtreme point and check whether it is possible to obtain another extreme point for the same sorting (which corresponds
o projections determined by a u lying in an arc of the circumference S1) but such that it occupies another position in the
orted projected sample. Once we have all extreme points for that given sorting, we consider the next possible sorting of
6
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Fig. 2. Contours of the expectile regions of levels 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.45 of two datasets.

he data points in the circular sequence routine. This is done for all possible sortings and positions. Each time we move
rom one possible extreme point to the next, the number of operations we do is at most two (the position of two points is
nterchanged) in order keep the computational complexity as low as possible. Notice that the first steps of the algorithm
n Appendix A.1 are the standard ones in any circular sequence routine, such as those in [41] for the halfspace regions, [12]
or the zonoid regions, and [5] for the expected convex hull regions, all of them with complexity O(n2 log n).

As an illustration of the expectile regions introduced in this section, Fig. 2 shows the contours of some expectile regions
f two datasets. On the left, we present a scatterplot of the level of antibodies for SARS-CoV-2 built for data taken from
atients and staff of Chinese hospitals available at [49]. Axis Y corresponds to the logarithm of the level of IgG antibodies,
hile axis X corresponds to the logarithm of the level of IgM antibodies. Each antibody level is computed as the ratio of
he chemiluminescence signal over the cutoff value, and thus the dotted horizontal and vertical lines represent the cutoff
alues of antibody levels. The positive correlation between the variables is captured by the expectile regions, which also
apture the enlarged variability of each of the variables, when the other one assumes high values.
In Fig. 2 right, we present the scatterplot of a simulated banana-shaped dataset together with some of its expectile

egions. Specifically, 2000 observations were simulated with regard to the bivariate distribution with conditional normal
istributions described by Gelman and Meng [19] (with parameters A = 0.5, B = 0, C1 = C2 = 3). Unlike the level sets of

the joint density and the support of the empirical distribution which are banana-shaped, the expectile regions are convex.
Nonetheless, these regions contain valuable information about the data cloud. In fact they characterize it.

These regions could be used in statistical process control for the monitorization of the location parameter of
multivariate processes taking the sample mean as monitoring statistic. As in [7], the expectile region of some given level
would be interpreted as the in-control region for a control chart built for the sample mean, which we recall serves as
monitoring statistic. Due to the convexifying effect of averaging, the expectile regions fit reasonably well to the distribution
of the sample mean. Clearly, evaluating the centrality of each observation in terms of the level of the expectile region it
belongs to, as suggested by Liu [29] on her seminal work on control charts based on notions of data depth might not be
the best option here, since the regions do not truly capture the shape of the distribution of the data, but a convexified
version of it instead.

4. Expectile depth function

Following the classical introduction of depth functions from central regions [see 5,12,13,41,46,51] and alike [11, Def.
4.1], we propose the expectile depth as the degree of centrality of a point y ∈ Rd with respect to the distribution of a
d-dimensional random vector X in terms of its expectile regions. Specifically, the expectile depth of y with respect to X
is

ED(y;X) = sup{0 < α ≤ 1/2 : y ∈ EDα(X)} . (15)

This way, the expectile region of level α can be rewritten as the set of all the points whose depth is at least α,
EDα(X) = {y : ED(y;X) ≥ α}, and thanks to the weak projection property, the expectile depth of a point with respect to
a random vector can be computed as the infimum of the depths of the univariate projections of the point with respect to
the projected random vector, that is,

ED(y;X) = inf ED(⟨y, u⟩; ⟨X, u⟩).

u∈Sd−1

7
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An immediate consequence is that the expectile depth with respect to a random variable X (for d = 1) is written in
erms of the inverse expectile as ED(y; X) = min{e−1X (y), e−1

−X (−y)}.
The expression for the expectile depth derived in Proposition 5 will turn out to be crucial when explicitly computing

mpirical expectile depths.

roposition 5. For any y ∈ Rd, the expectile depth function satisfies

ED(y;X) =
(
2− inf

u∈Sd−1

⟨EX − y, u⟩
E⟨X − y, u⟩+

)−1
.

See Appendix B.6 for the proof of Proposition 5.
The sample expectile depth function is the empirical counterpart of (15), which is obtained by replacing the expectile

regions of random vector X by sample expectile regions. Given any point y ∈ Rd and a sample {x1, . . . , xn} ⊆ Rd, it is
clear from Proposition 5 that the sample expectile depth is

EDn(y) =
(
2− inf

u∈Sd−1

∑
⟨xi − y, u⟩∑
⟨xi − y, u⟩+

)−1
. (16)

The sample expectile depth is a uniformly consistent estimator of the population expectile depth.

Proposition 6. Given any d-dimensional random vector X with finite first moment and such that ⟨X, u⟩ is a nondegenerate
random variable for every u ∈ Sd−1, the sample expectile depth function EDn satisfies:

sup
y∈Rd
|EDn(y)− ED(y;X)|

a.s.
−→ 0.

See Appendix B.7 for the proof of Proposition 6.

4.1. Properties of the expectile depth

The expectile depth function satisfies the following properties that can be immediately derived from those of the
expectile regions presented in Section 3.1:

(i) Affine invariance, the expectile depth is independent of the coordinate system. For any matrix A ∈ Rd×d and b ∈ Rd

ED(Ay + b; AX + b) = ED(y;X) ;

(ii) Continuity, if ⟨X, u⟩ is a nondegenerate random variable for every u ∈ Sd−1, the mapping y ↦→ ED(y;X) is continuous
by Proposition 2 and Dyckerhoff [14, Th. 3.1];

(iii) Maximality at centre, the expectile depth attains its unique maximum at the mean, EX , in fact ED(EX;X) = 1/2;
(iv) Quasiconcavity, as a consequence of the convexity of the expectile regions,

ED(λx+ (1− λ)y;X) ≥ min{ED(x;X), ED(y;X)}, 0 ≤ λ ≤ 1 ;

(v) Vanishing at infinity. The expectile depth of a point y goes to zero as ∥y∥ → ∞.

Furthermore, the expectile depth is strictly monotone in the sense of Dyckerhoff [14].

Proposition 7. Strict monotonicity of the expectile depth.

(i) The expectile depth is strictly monotone in rays from the centre of the distribution.
(ii) For 0 < α < 1/2 it holds EDα(X) = cl{y : ED(y;X) > α}.

See Appendix B.8 for the proof of Proposition 7.

4.2. Computation of the bivariate expectile depth

Our goal now is to compute the empirical expectile depth function with respect to the sample {x1, . . . , xn} ⊆ R2. For
the sake of simplicity, we assume that the point y whose depth is to be assessed is the origin (otherwise, the depth can
be computed after centring the sample at the given point). The sample expectile depth of the origin is

EDn(0) =
(
2− inf

u∈Sd−1

∑
⟨xi, u⟩∑
⟨xi, u⟩+

)−1
. (17)

We assume further that the sample average, x, lies on the negative part of the vertical axis (rotate the sample if needed)
and write u ∈ S1 as u = (cos γ , sin γ ) for some γ ∈ [0, 2π ).
8
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The infimum in EDn(0) turns into

inf
u

∑
⟨xi, u⟩∑
⟨xi, u⟩+

= inf
γ

∑
⟨xi, (cos γ , sin γ )⟩∑
⟨xi, (cos γ , sin γ )⟩+

= min
i

∥x∥
∥x(γi)∥

inf
{
⟨(0,−1), (cos γ , sin γ )⟩

⟨(cosβ, sinβ), (cos γ , sin γ )⟩
: γi + π/2 < γ < γi+1 + π/2

}
= min

i

∥x∥
∥x(γi)∥

inf
{
− sin γ

cos(γ − β)
: γi + π/2 < γ < γi+1 + π/2

}
,

where γi is the angle between the positive horizontal semiaxis and the ray from the origin containing xi, and x(γ ) =
∥x(γ )∥(cosβ, sinβ) is the sum of the sample points in the halfspace with inner normal (cos(γ + π/2), sin(γ + π/2))
ivided by n.
The function to minimize over the interval (γi + π/2, γi+1 + π/2) is f (γ ) = − sin γ /cos(γ − β), whose monotonicity

s explained by the sign of its derivative f ′(γ ) = − cosβ/cos2(γ − β), which is positive or negative depending on β , and
e have:

if
π

2
< β <

3π
2

, the minimizer is γ ∗ = γi +
π

2
;

if −
π

2
< β <

π

2
, the minimizer is γ ∗ = γi+1 +

π

2
.

(18)

In Appendix A.2, we describe an algorithm to compute the bivariate expectile depth that takes advantage of the fact
that the angle γ for which u = (cos γ , sin γ ) is the minimizer of expression (17) is π/2 radians distant from the angle that
forms the positive horizontal semiaxis and the ray from the origin containing a data point. All such angles are considered
and the minimum of the ratio of the sums is transformed as suggested in (17) to obtain an expectile depth. Consequently,
and in a similar way to [38] for the algorithms of the halfspace and simplicial depths, see [28], the algorithm described
in Appendix A.2 proceeds over the projection of the data cloud on a circumference centred on the point whose depth is
evaluated attaining a computational complexity equal to O(n log n).

5. The Bivariate Expectile Plot (BExPlot), E–E plots, and D–D plots

The α-expectile of a univariate standard normal random variable Z can be computed after (3) and the explicit
expression of its stop-loss function. It turns out to be the unique solution to the equation

φ(eα(Z))
eα(Z)

+Φ(eα(Z)) =
α

2α − 1
, α ̸= 1/2 , (19)

here φ is the standard normal density and Φ the standard normal cdf, while e0.5(Z) = 0 . See Fig. 3 for the representation
f the expectile function, together with the quantile function of a standard normal random variable. Observe that the
.15-expectile of a standard normal random variable approximately matches its 0.25-quantile, and the same occurs with
he 0.85-expectile and the 0.75-quantile. From the equivariance properties of the expectiles, the former assertions can be
eneralized to any normal random variable.

.1. The BExPlot and the eboxplot

We describe next the BExPlot, a bivariate data visualization tool based on the expectile regions. It was inspired on the
agplot of Rousseeuw et al. [40], so we start with a brief description of it.
The Bagplot is a bivariate generalization of the classical quantile-boxplot built from Tukey’s halfspace depth. Its

entremost point is the barycentre of the deepest region (with regard to the halfspace depth). A bag consisting in the
mallest halfspace region containing 50% of the observations is plotted. This bag is dilated from the centremost point by a
actor of 3 in order to obtain an unplotted fence. Points out of the fence are considered as outliers, while a loop is plotted
s the contour of the convex hull of all points inside the fence.
Given a univariate dataset, the expectile-boxplot (eboxplot) is similar to the classical quantile-boxplot (qboxplot), see

op and right margins of Figs. 4 and 5. It represents a box ranging between the 0.15-expectile and the 0.85-expectile with
mark on the average value (0.5-expectile). Possible outliers to either side of the box are identified as those points located
t a distance from the nearest end-point of the box farther than 3 times the distance between the 0.5-expectile and such
nd-point. They are highlighted with a bullet, while whiskers are represented at the largest and smallest observations
xcluding those highlighted as possible outliers. The reason to take the 0.15- and 0.85-expectiles is that, as explained
bove, for a normal distribution, they approximately coincide with its first and third quartiles, see Fig. 3. Consequently,
he eboxplot looks very similar to a qboxplot when the underlying distribution is normal.

The Bivariate Expectile Plot (BExPlot) is a graphical representation for bivariate data that consists of a bullet located at
he sample mean (singleton representing the 0.5-expectile region), a shaded bag representing the 0.15-expectile region,
nd a convex barrier enclosing all data points that are contained inside the bag after expanding it from the sample mean
y a factor of 4. The points outside the barrier (if any) are marked as possible outliers.
9



I. Cascos and M. Ochoa Journal of Multivariate Analysis 184 (2021) 104757
Fig. 3. Quantile function of a standard normal random variable, represented as a solid line, and expectile function of a standard normal random
variable, represented as a dashed line.

Fig. 4. BExPlot and Bagplot for the 200 metres and long jump of the (women’s) Heptathlon in the Barcelona 1992 Olympic Games.

There are two main differences between the BExPlot and the Bagplot. The first one is that the reference point (centre)
for the BExPlot is the sample mean, while for the Bagplot it is a bivariate median. The second is that if an observation
is flagged as a possible outlier in the BExPlot, there is some univariate projection of the data for which that observation
would be also flagged as a possible outlier in an eboxplot. This is because the expectile depth satisfies the strong projection
property, see (12) and the comment below, together with the fact that in the eboxplot and BExPlot possible outliers are
found dilating either the box (eboxplot) or the bag (BExPlot) by a factor of 4 from the centre. Conversely, and unlike in
the Bagplot, all points marked as possible outliers in the eboxplot of one of the marginals, will be marked as possible
outliers in the BExPlot.

Fig. 4 left represents the BExPlot of the time in the 200m race (horizontal axis) and the distance of the long jump
(vertical axis) for the 26 female athletes that took part in the Heptathlon of the 1992 Barcelona Olympic Games. At margins
we represent the eboxplots of the times at the 200m race and the long jump. The shaded region in the BExPlot is the
0.15-expectile region, whose horizontal and vertical projections are the boxes of the eboxplots presented at margins. Only
one point is out of the barrier and appears marked as possible outlier. It corresponds to an athlete marked as possible
outlier in the long jump eboxplot.
10
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Fig. 5. BExPlots with confidence regions for the AFH antigen versus activity in Hemophilia A carriers (+) and non-carriers (×).

The Bagplot of the Barcelona92 dataset plotted with [48], is represented in Fig. 4 right. In this chart, two points are
arked as possible outliers and the plots at margins are the qboxplots of the 200m race and the long jump.
The source code for the BExPlot in R is available on the GitHub repository https://github.com/icascos/expdepth. Two

unctions for it can be found there, BExPlot plots a fast approximation of the BExPlot, while exactBExPlot plots it with
xact expectile regions computed with the algorithm described in Appendix A.1.

.2. BExPlots with confidence regions

In order to provide a better impression of the data distribution, the contour of an expectile region that serves as an
pproximate confidence region on the mean, and whose level has been obtained under the assumption of normality, can
e incorporated to the BExPlot. Together with it, approximate confidence intervals on the mean can be represented in
he eboxplots at margins as notches in the boxes. Similarly, a confidence region on the halfspace depth median (deepest
oint with respect to the halfspace depth) was incorporated to the Bagplot in [40].
The approximate confidence region on the mean that we consider is the empirical expectile region of a level α(β, n, d)

hat depends on the confidence level β , sample size n, and dimension (d = 2 for the BExPlot and d = 1 for the eboxplot),
ut not on the data. Specifically, we compute the level of the region whose coverage probability for the sample mean of
normal sample of size n is the desired confidence level, that is, Pr

(
(X1 + · · · + Xn)/n ∈ EDα(β,n,d)(X)

)
= β , where X is

ny normal d-variate random vector and X1, . . . ,Xn a random sample of size n taken from it.
In order to obtain the desired level, observe that the radius of the ball centred at the origin and containing the sample

ean of n independent d-variate standard normal random vectors with probability β is r =
(
F−1d (β)/n

)1/2
, where F−1d is

he quantile function of a chi-squared random variable with d degrees of freedom. Finally, it matches the expectile region
hose level α is the solution to the equation built from (19) substituting eα(X) by −r ,

φ(−r)
−r

+Φ(−r) =
α

2α − 1
.

otice that since the level of the expectile regions ranges between 0 and 1/2, we must consider the negative of the radius.
For d = 1, we compute this way the level α that determines the notches in the eboxplot, while for d = 2, the level α that
determines the approximate (bivariate) confidence region presented together with the BExPlot is computed.

In Fig. 5 we present a BExPlot for the Hemophilia dataset from Pokotylo et al. [37]. The dataset contains data of AHF
activity (variable x) and AHF antigen (variable y) on the blood of two groups of women, 45 of them being Hemophilia A
carriers (marked as + in the chart) and 30 being non-carriers of Hemophilia A (marked as × in the chart).

The notches in the eboxplots at margins represent approximate 95% confidence intervals on the respective means,
while each one of the dark grey regions in the two BExPlots is the respective approximate 95% confidence region on
11
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Fig. 6. (a) Scatterplot of two simulated datasets with their respective expectile regions of level 0.05; (b) E–E plots of first and second components
of the two datasets; (c) expectile depth D–D plot of the two datasets.

the bivariate mean computed as described above. The dot marked as a possible outlier at both, the BExPlot and the
eboxplot of variable AHF antigen (y), corresponds to a non-carrier of Hemophilia A. The two confidence regions are well
separated. In fact, both samples can be assumed to have been drawn from normal populations (the respective p-values
at the multivariate normality test in [47] are 0.7565 and 0.9586) whose means are not equal, since the p-value of the
Hotelling’s two-sample T -squared test on the equality of means is approximately 1.562× 10−12.

5.3. E–E plots and D–D plots

Schnabel and Eilers [42] proposed E–E (expectile–expectile) plots as a graphical technique to compare a univariate
sample with a theoretical distribution. They claim that E–E plots constitute a less noisy alternative to the classical Q–Q
plots, which is due to the continuity of the expectiles on the parameter α, see Property (ix) in Section 2.1. A multivariate
depth-based extension of the Q–Q plots was proposed by Liu et al. [30] under the name of D–D (depth–depth) plots. These
D–D plots serve to compare two multivariate samples by plotting the depth of each data point of the pooled dataset with
respect to one sample versus the depth with respect to the other sample. When both samples have been drawn from the
same distribution, all the points of the D–D plot lie close to the bisector of the first quadrant. Next we use E–E plots to
compare two univariate samples and D–D plots built for the expectile depth.

We have simulated two samples of 100 observations each from bivariate normal distributions with standard normal
marginals, and respective correlations equal to 0.85 and −0.85. The scatterplot of the simulated data is presented in
Fig. 6(a), where the sample of positively correlated data is marked as + and that of negatively correlated data as ×. The
contour of the expectile region of level 0.05 of each dataset is also presented. In Fig. 6(b) the E–E plots of the first (and
second) components of the two samples are presented. Since both first components (and both second components) follow
the same distribution (standard normal), their E–E plots adjust well to the straight line through the origin with slope 1.
Finally, Fig. 6(c) represents the D–D plot (for the expectile depth, obtained using the algorithm in Appendix A.2) with the
200 observations. Despite there is some observation which is central with regard to both clouds, showing a high value for
both depths, the D–D plot does not adjust to the straight line through the origin with slope 1, showing that the samples
do not share the same distribution.

In Fig. 7 we have represented the E–E plots of the AHF activity (a) and AHF antigen (b) of carriers versus non-carriers
in the Hemophilia dataset. The E–E plot in Fig. 7(a) lies below the straight line through the origin with slope 1, because the
non-carriers have greater AHF activity values than the carriers. As for AHF antigen, see Fig. 7(b), carriers exhibit greater
values than non-carriers, and thus the E–E plot lies above the reference line. Finally, the D–D plot in Fig. 7(c) shows that
the joint distribution of AHF activity and antigen in carriers is different from the one in non-carriers. Observe that there
are many points close to both of the axes, representing observations with low depth with respect to one of the samples,
despite some of them are somehow central with respect to the other sample.

6. Highlights and conclusions

The main achievement in this paper is the comprehensive introduction of a new notion of depth, namely the expectile
one and the construction of algorithms for its computation on bivariate datasets. The paper starts with a review of the
concept of the univariate expectile function and a summary of its main properties. Some emphasis is placed on the inverse
expectile function and the empirical expectiles and inverse expectiles.

Expectile regions are defined as intersections of halfspaces determined by univariate expectiles. Due to the fact that
expectiles are positively homogeneous and subadditive functions for specific values of their level α, we present expectile
regions as compact convex sets whose support functions are given in terms of expectiles of univariate projections of the
12
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Fig. 7. (a) E–E plot of AHF activity (carriers vs. non-carriers); (b) E–E plot of AHF antigen (carriers vs. non-carriers); (c) expectile depth D–D plot of
the Hemophilia dataset (carriers vs. non-carriers).

ata. Some basic properties of the expectile regions are discussed, and it is shown that the family of expectile regions
haracterizes a distribution. Together with the population expectile regions, we present their empirical counterparts, with
n algorithm to determine their extreme points in the bivariate setting, and show their consistency.
Along with the concept of expectile regions, the expectile depth is introduced in a natural way. We discuss the main

roperties of the expectile depth function and remark the relevance of some of those properties to the topology of the
xpectile regions. We present next the sample expectile depth function and show its uniform consistency. A second
lgorithm, this one to compute the expectile depth of a point with respect to a multivariate dataset, is presented.
Finally, we introduce the BExPlot as a practical tool for data visualization and outlier detection in bivariate datasets

hich can be used to represent the bivariate interactions of higher dimensional data. The BExPlot is centred at the
ean of a dataset and we represent an approximate confidence region on the mean together with it based on normality
ssumptions. We understand that it can be useful to illustrate the Hotelling’s T -squared test on the comparison of two
ultivariate means or classical MANOVA procedures to compare means under normality assumptions, with the obvious
aution that it represents an approximate confidence region on each individual mean.
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ppendix A. Algorithms

.1. Algorithm for computing the extreme points of the bivariate expectile regions

(R source code available on the GitHub repository https://github.com/icascos/expdepth as function exactexp)

• Input: Data points xi = (xi,1, xi,2) ∈ R2, i = 1, . . . , n and depth level 0 < α ≤ 1/2.
• Output: Extreme points of EDα

n supported by half-planes with outer normal (cosβ, sinβ) with 0 ≤ β ≤ π (northern
boundary).

Step 1. Store all data points in an n× 2-array and sort them according to the following rule:

xi < xj if and only if (xi,1 < xj,1) or (xi,1 = xj,1 and xi,2 > xj,2).

Step 2. Initialize an n-array called R such that Ri = i for all i. Entry Ri will represent the relative position of point xi for
the ordering given by the one-dimensional projection under consideration (in each iteration of the main loop,
Steps 7. to 11.).
13
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Step 3. Compute the angle γi,j of the line defined by each pair of points xi, xj and the positive horizontal axis. Sort the
angles in an increasing way in a matrix called ANG with

(n
2

)
rows and 3 columns. The rth row of ANG contains

the rth smallest angle γi,j, value i, and value j. All rows with the same first entry (angle) are ordered in terms
of their second entries (i, index of the first point that defines the angle), and all rows with the same first and
second entries are ordered in terms of their third entries (j, index of the second point that defines the angle).

Step 4. Compute the univariate expectile of the x-coordinates of the data, eα(x1,1, . . . , xn,1), and take s as the sum of
those xi,1’s that are less than the expectile.

Step 5. Initialize an array called EXT to store the extreme points and establish 0 as the first angle to be considered. The
first row in ANG has thus entries ANG0,1 = 0 (the angle), while entries ANG0,2 and ANG0,3 (the point indices)
are left blank.

Step 6. First iteration of the main loop, set k = 1.
Step 7. Compute the candidate to extreme point x for the data sorting given by the array R (data points ordered with

respect to the univariate projection given by their scalar product times ( cosANGk−1,1, sinANGk−1,1)) and the
natural number s as in (14). Observe that the first time we go through this step, the extreme point supported by
the halfplane {(x, y) : x ≤ eα(x1,1, . . . , xn,1)} is obtained. Every other time a new candidate is computed, only one
point is added to the sum in (14) when s decreases by one unit, while one point is subtracted when s increases
by one unit. If a new data sorting is considered (iteration k+1) only one pair of points interchanges their relative
positions in the R array, and thus, depending on s, at most one point is subtracted, while another is added in the
sum in (14).

Step 8. Check if the point computed in Step 7. is indeed an extreme point for that s and data sorting. It will be an extreme
point as long as its univariate projection through (cosβ, sinβ) for some ANGk−1,1 ≤ β ≤ ANGk,1 is the expectile
of the corresponding univariate projection of the dataset. This will hold as long as the univariate projection of
the candidate through (cosβ, sinβ) lies between the univariate projections of the sth and the (s + 1)-th data
points in the current data sorting.

Step 9. Consider consecutive values of s and check if there are other extreme points for the same data sorting and such
values of s. That is, go to Step 7. with s′ = s + 1 and while the candidate results as an extreme in Step 8., try
s′ + 1 in Step 7. Do the same with s′ = s− 1 and s′ − 1.

tep 10. Consider the angle between the line through the mean and each extreme point and the x-axis. Append the
extreme points in increasing way with regard to those angles in the array EXT. Update s as the value that
corresponds to the last point in EXT.

tep 11. In the array R, interchange the values at positions ANGk,2 and ANGk,3.
tep 12. While k <

(n
2

)
, set k← k+ 1 and go to Step 7.

Remember that current algorithm was designed to obtain the extreme points supported by halfplanes with outer
normal of the form (cosβ, sinβ) with 0 ≤ β ≤ π (the northern boundary). In order to get the remaining points (the
southern boundary) transform all data points by reflecting them with respect to the line y = 0, apply the algorithm to
the transformed data points, and finally reverse the reflection process.

In order to discuss the complexity of the algorithm notice that:

(i) Computing and ordering the
(n
2

)
angles of all the pairs of points in Step 3. requires O(n2 log n) operations.

(ii) The first computation of a univariate expectile, performed in Step 4., can be done using (8) as an alternative to the
repeated weighted averaging numerical algorithm. It would require sorting all the x-coordinates of the data points,
which is done in O(n log n) operations. If all the possible values of for the empirical cdf evaluated on the expectile
were to be considered, the complexity would increase at most up to n2.

(iii) The main loop (Steps 7. to 11.) is run
(n
2

)
times, but the number of operations at each iteration does not depend on

the sample size n because only one point is being added or subtracted. Since s varies in a bounded set of the form
s±p for some value p (in all of our numerical experiments we found that 0 ≤ p ≤ 3), then the complexity remains
O(n2 log n).

A.2. Algorithm for computing the bivariate expectile depth

(R source code available on the GitHub repository https://github.com/icascos/expdepth as function expdepth)

• Input: Data points xi ∈ R2, i = 1, . . . , n and point y ∈ R2 whose expectile depth is to be computed.
• Output: Depth EDn(y) of y with respect to the dataset {x1, . . . , xn}.

Step 1. Centre all data points with respect to point y.
Step 2. Compute the sum of all observations and store it in bivariate vector sdata whose first component is the sum of

all first components and the second component is the sum of the second components of the data points.
Step 3. For each data point xi compute the angle γi between the positive horizontal semiaxis and the ray from the origin

containing x .
i
14
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Step 4. Reflect through the origin those points whose angles are between π
2 and 3π

2 by subtracting π to all the angles, so
that the range of angles is [− π

2 , π
2 ] and the algorithm runs only on a semi-circle. The reflected points are tagged

with value −1, the rest with value +1.
Step 5. Store all data points in an n × 4 array called ANG whose entries are the two coordinates of each point, the

corresponding angle and the corresponding tag, respectively. Sort array ANG with regard to the angles.
Step 6. Compute bivariate vectors spos and sneg as the sums of data points that respectively lie in the halfplane with

inner and outer normal (cos(γ1 + π/2), sin(γ1 + π/2)) and set i = 1.
Step 7. Set u = (cos(γi + π/2), sin(γi + π/2))
Step 8. Compute the minimum between ⟨sdata, u⟩/⟨spos, u⟩ and ⟨sdata,−u⟩/⟨sneg,−u⟩ store this value in an array

called MIN.
Step 9. While i < n, set i→ i+ 1 and update u = (cos(γi + π/2), sin(γi + π/2)) together with spos and sneg. Observe

that the latter vectors are updated by adding or subtracting the point whose coordinates are (ANGi,1,ANGi,2),
according to the tag in the fourth column of matrix ANG and go to Step 7.

tep 10. With the minimum of those values stored in MIN compute (2−minMIN)−1 as in (17) and return that value.

The sorting of the n angles in Step 5. has complexity O(n log n). The main loop (Steps 7. to 9.) is repeated n times, but
each updating of spos and sneg involves at most the addition and subtraction of two points, so its complexity is O(n) and
oes not affect the overall complexity of the current algorithm, which remains O(n log n).

ppendix B. Mathematical proofs

.1. Derivation of Eq. (3)

The expectile can be extracted form (2) in order to obtain an expression for it that depends on the mean of the random
ariable and the expectation of the positive part of X − eα(X),

eα(X) = EX +
2α − 1
1− α

E(X − eα(X))+ = EX +
2α − 1
1− α

∫ 1

FX (eα (X))

(
F−1X (t)− eα(X)

)
dt

= EX +
2α − 1
1− α

[∫ 1

FX (eα (X))
F−1X (t) dt − eα(X)

(
1− FX

(
eα(X)

))]
.

bserve that since the expectile of X appears in both of the left and the right hand side of the expression above, it can
e cleared, leaving the cdf of X evaluated at it on the right-hand side,

eα(X) =
(1− α)EX + (2α − 1)

∫ 1
FX (eα (X))

F−1X (t) dt

α + (1− 2α)FX (eα(X))
=

(1− α)
∫ FX (eα (X))
0 F−1X (t) dt + α

∫ 1
FX (eα (X))

F−1X (t) dt

α + (1− 2α)FX (eα(X))
.

B.2. Proof of the general properties of the expectile regions in Section 3.1

(i) States that the most central expectile region is the singleton formed by the expectation. This follows from the
linearity of the expectation and the fact that the expectile of level 1/2 is the mean (Property (i) in Section 2.1).
In fact, for any random vector X with finite first moment and u ∈ Rd, e1/2(⟨X, u⟩) = E⟨X, u⟩ = ⟨EX, u⟩, and the
only intersection point of all halfspaces {x ∈ Rd

: ⟨x, u⟩ ≤ ⟨EX, u⟩} is EX .
(ii) The nesting property follows from the parameter monotonicity of the expectiles (Property (x) in Section 2.1).

Take any 0 < α ≤ 1/2, if x ∈ EDα(X), then for every u ∈ Rd, ⟨x, u⟩ ≤ e1−α(⟨X, u⟩). Take now 0 < β < α, then
1−β > 1−α, and e1−α(⟨X, u⟩) ≤ e1−β (⟨X, u⟩). Since the inequalities hold for every u ∈ Rd, we have x ∈ EDα(Y ).

(iii),(iv) The convexity and closedness of the expectile regions follow from their construction as intersection of closed
halfspaces in (10). In order so show their compacity, it is enough to check that EDα(X) is bounded, which holds
true since it is contained in the d-dimensional parallelotope EDα(X) ⊆ {x ∈ Rd

: eα(Xi) ≤ xi ≤ e1−α(Xi)}, where
x = (x1, . . . , xd) and X = (X1, . . . , Xd).

(v) The affine equivariance of the expectile regions follows from the translation equivariance of the expectiles
(Property (iii) in Section 2.1) and their characterization in terms of ther support function, see (12). Consider any
A ∈ Rk×d and b ∈ Rk, h(EDα(AX+b), u) = e1−α(⟨AX+b, u⟩) = e1−α(⟨AX, u⟩)+⟨b, u⟩ = e1−α(⟨X,A⊤u⟩)+⟨b, u⟩ =
h(EDα(X),A⊤u)+ ⟨b, u⟩ = h(AEDα(X), u)+ ⟨b, u⟩ = h(AEDα(X)+ b, u) .

(vi) The monotonicity of the expectile regions follows from the monotonicity of the univariate expectiles (Property
(v) in Section 2.1). If X ≤ Y componentwisely, then for every u ∈ Rd

+
it holds ⟨X, u⟩ ≤ ⟨Y , u⟩, or equivalently,

⟨X, u⟩ ≥ ⟨Y , u⟩ for every u ∈ Rd
−
. Hence, for 0 < α ≤ 1/2 and u ∈ Rd

−
we have h(EDα(X), u) = e1−α(⟨X, u⟩) ≥

e1−α(⟨Y , u⟩) = h(EDα(Y ), u), or equivalently EDα(Y )⊕ Rd
+
⊆ EDα(X)⊕ Rd

+
.

(vii) The subadditivity of the expectile regions follows from the subadditivity of the univariate expectiles (Property
(vii) in Section 2.1). If z ∈ EDα(X + Y ) for some 0 < α ≤ 1/2, then for all u ∈ Sd−1 it holds ⟨z, u⟩ ≤
e1−α⟨X + Y , u⟩ ≤ e1−α⟨X, u⟩ + e1−α⟨Y , u⟩ = h(EDα(X), u) + h(EDα(Y ), u) = h(EDα(X) + EDα(Y ), u), so
z ∈ EDα(X)+ EDα(Y ) . □
15
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.3. Proof of Proposition 1

Fix u ∈ Sd−1 and consider a sequence αn such that limn αn = α for some 0 < α ≤ 1/2, since the expectiles are
ontinuous with respect to the parameter α, see Property (ix) in Section 2.1, then we have that

lim
n

e1−αn (⟨X, u⟩) = e1−α(⟨X, u⟩).

Now, according to Schneider [43, Th. 1.8.12], the pointwise and uniform convergence of support functions on Sd−1 are
equivalent, thus limn dH (EDαn (X), EDα(X)) = 0. □

B.4. Proof of Proposition 2

Since the expectile regions are nested, we have that if α > β , then EDα(X) ⊆ EDβ (X). Assume now that the assertion
e want to prove is not valid, that is, there exists y ∈ EDα(X) such that it does not belong to the interior of EDα(X), so it

ies on its boundary, y ∈ ∂EDβ (X). As a consequence there is a sequence {yn}n completely contained in the complement
f EDβ (X) such that limn yn = y.
Since each yn does not lie in EDβ (X) and by the strict parameter monotonicity of expectiles, see Property (x) in

ection 2.1, it holds

⟨yn, u⟩ > e1−β (⟨X, u⟩) > e1−α(⟨X, u⟩) for some u ∈ Sd−1,

nd therefore for such u,

⟨y, u⟩ = lim
n
⟨yn, u⟩ ≥ e1−β (⟨X, u⟩) > e1−α(⟨X, u⟩),

hich contradicts the fact that y ∈ EDα(X). □

B.5. Proof of Proposition 3

Following Holzmann and Klar [23, Th. 2], for any fixed u ∈ Sd−1 and α ∈ (0, 1/2), the (sequence on n of) sample
expectiles e1−α(⟨x1, u⟩, . . . , ⟨xn, u⟩) converge a.s. to e1−α(⟨X, u⟩). In terms of the support functions of the expectile regions,
{h(EDα

n , u) : n ≥ 1} converge a.s. to h(EDα(X), u).
According to Molchanov [32, Prop. 1.8.17] the almost sure pointwise (on u) convergence of support functions of random

compact convex sets to the support function of a deterministic set implies the almost sure convergence of the random sets
to the deterministic one in the Hausdorff metric. In conclusion, {EDα

n : n ≥ 1} converges a.s. to EDα(X) in the Hausdorff
metric.

Following Dyckerhoff [14, Th. 4.7], the strict monotonicity condition of the expectile depth shown in part (b) of
Proposition 7 and the almost sure convergence of {EDα

n : n ≥ 1} in the Hausdorff metric for any fixed α imply the almost
sure uniform convergence of {EDα

n : n ≥ 1} in the Hausdorff metric on a compact set α ∈ I ⊆ (0, 1/2). In conclusion,

sup
α∈I

dH (EDα
n , ED

α(X))
a.s.
−→ 0. □

B.6. Proof of Proposition 5

An explicit expression for the expectile depth can be obtained from its definition as a supremum, the formula for the
inverse expectile function in (4), and elementary algebra,

ED(y;X) = sup {α : y ∈ EDα(X)} = sup
{
α : ⟨y, u⟩ ≤ e1−α(⟨X, u⟩) for all u ∈ Sd−1}

= sup
{
α : e−1

⟨X,u⟩(⟨y, u⟩) ≤ 1− α for all u ∈ Sd−1
}
= inf

u∈Sd−1

(
1− e−1

⟨X,u⟩(⟨y, u⟩)
)

= inf
u∈Sd−1

(
1−

E⟨y − X, u⟩ + E⟨X − y, u⟩+
E⟨y − X, u⟩ + 2E⟨X − y, u⟩+

)
=

(
2+ sup

u∈Sd−1

⟨y − EX, u⟩
E⟨X − y, u⟩+

)−1
=

(
2− inf

u∈Sd−1

⟨EX − y, u⟩
E⟨X − y, u⟩+

)−1
. □

B.7. Proof of Proposition 6

After Property (ii) in Section 4.1, the map y ↦→ ED(y;X) is continuous. Together with Proposition 3, Dyckerhoff [14, Th.
4.6] has shown that this implies the almost sure uniform convergence of the sequence of depths {ED ( · ;X) : n ≥ 1} . □
n
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B
.8. Proof of Proposition 7

(i) Without loss of generality, consider a random vector centred at the origin, EX = 0, any x ∈ Rd, and 0 < λ < 1, we
just have to show that ED(λx;X) > ED(x;X).
After the strong projection property, α = ED(x;X) = ED(⟨x, u⟩, ⟨X, u⟩) for some u ∈ Sd−1, now the strict
monotonicity of the inverse expectile function guarantees that ED(⟨λx, u⟩, ⟨X, u⟩) > α. Finally, ED(⟨λx, u⟩, ⟨X, u⟩) is
a lower bound for ED(λx;X).

(ii) As shown in [14, Th. 3.2], part (ii) is equivalent to the continuity of the map α ↦→ EDα(X) with respect to the
Hausdorff metric proved in Proposition 1. □
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