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The Effects of Nonnormality on Tests for Dimensionality
in Canonical Correlation and MANOVA Models
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In this paper we consider the usual test statistics for dimensionality in canonical
correlation and MANOVA models for nonnormal populations. In order to know
the effects of the null distributions of the test statistics when the populations depart
from normality, perturbation expansions for test statistics are derived. The
asymptotic expansions of the expectations of the test statistics are given under the
class of elliptical populations. Further, modified test statistics with a better chi-
squared approximation are proposed. Finally, numerical results by Monte Carlo
simulations are presented. € 1995 Academic Press, Inc.

1. INTRODUCTION

The tests for dimensionality are an important problem in multivariate
statistical analysis and have been mainly studied under the assumption of
multivariate normal populations. The distributions of test statistics have
been discussed in terms of asymptotic expansions. As for the canonical
correlation and the MANOVA models, Lawley [8] and Fujikoshi [2]
have proposed modified test statistics for the likelihood ratio statistic, etc.,
which yield better chi-squared approximations. In this paper we consider
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asymptotic behaviors of the usual test statistics for dimensionality in
canonical correlation and MANOVA models under nonnormality. In order
to know the effects of the null distributions of the test statistics when the
populations depart from normality, asymptotic chi-squared approxima-
tions for test statistics are examined by using perturbation expansions of
sample roots with multiple population roots. The asymptotic results, which
extend the work of Muirhead and Waternaux [11], are given under the
class of elliptical populations, and consequently modified test statistics with
better chi-squared approximations are proposed. In Section 2, the usual
three test statistics in the canonical correlation model are discussed. The
asymptotic results show that these tests are nonrobust. On the other hand,
it is shown in Section 3 that the test statistics in the MANOVA model are
asymptotically robust. Finally, the numerical results by Monte Carlo
simulations are presented.

2. TeEsSTS FOR DIMENSIONALITY IN THE CANONICAL CORRELATION MODEL

Let p,> - 2p, and r, > --- >r, be the population and the sample
canonical correlation coefficients based on a sample size # + 1, respectively,
which are canonical correlations between x, and x, based on p and ¢
components {p < gq), respectively. The test of dimensionality is to test the
null hypothesis that the smallest p—k population canonical correlation
coefficients are zero; that is,

Hepe>pi=-=p,=0.

We now consider the following three test statistics which have been
proposed under the normal population: that is, (1) @, = —log I'T7_, , | (1 ~rf ),
(i) @, =", ri/(1—r}), and (iii) Q,=37_,,,r;. With the assump-
tion of normal populations, Lawley [8] has shown

k
E[{n—k—%(p+q+ 1)+ Zl p; 2} Ql]zf(.%-o(n' ) 2.1
e
where f.=(p— k)(q — k). Further, Fujikoshi [2] has given the modified
test statistics for the other two statistics. Under the elliptical population it
is known (see Muirhead and Waternaux [11]) that the limiting distribu-
tion as n— + oc of nQ@, /(1 + «) is chi-squared with f, degrees of freedom

when H, is true.

We consider perturbation expansions of test statistics in order to extend
the results as in (2.1) to the nonnormal case. For this, it is fundamental to
obtain a perturbation expansion of sample roots with multiple population
roots.
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2.1. A Perturbation Expansion for Sample Roots

In this subsection, a perturbation expansion for the last p —k sample
roots of the canonical correlation is discussed under H,. Considering an
appropriate nonsingular transformation, without loss of generality we may

assume
I, P

=7 , 22

¥ i @2

where P=[diag(p,,..,p,):0] with p, ., = ... =p,=0. Similarly, let S

be partitioned as

S:[Sn S]Z:l.

Sll SZZ

Then r{ = --- > r} are the latent roots of the matrix $;,'S,S,,'S,,, or R=
S,,'*MS; "%, where M=S,,S5,'S,,. Let U= [u;]=./n(S—X) and

V Z
o[} 2]

It is easily seen that we can expand M as
M=A+n" "MV 4n "M 41 MD 41 M+ ...,
where
A =diag(p7, ... p}),
M"=ZP + PZ' —PWP’,
M2 =PW?P' —PWZ' — ZWP' + ZZ’,
M® = —PW'P' + PW3Z' + ZW?P' —ZWZ',
M@ =PW*P' —PW?Z' — ZW>P’ + ZW?Z".
Further, we can expand R as follows:
R=RO+4n "RV4n'RP+n R4+ nR¥+ ..., (2.3)
where
RO'=A,
RU=M"— 1AV~ 1VA,
R?=M?2_{MDV+ VM) + 2(AVZ+ V?A) + 1VAV,
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R(3)=M"“—%(MQ'V-FVM(Z))-F%(M“’VZ-’-VZM(“)‘F%VM'“V
~ 15 (VAV? + VZAV) — 5 (AV? + V7A),
R'4'=M(4’——%(M”’V+VM'3')+%(M‘z’vz—szM'z’)—#%VM‘Z’V
ZYMOVE 4 VIMOV) — MDYV 4 ViIM)
S

+ S (VAV  + VAV ) + 2 (AVI 4 VIA) + ZVIAV2
3 128 64

Then, by lines similar to those given by Lawley [7] and Fujikoshi [2],
we have that r} , , .., r,z, are equal to the latent roots of L such that

L=n"'LP+n L% 4n L9+ ..., (2.4)
where
L= RE-RY'O 'RYY,
L®=RY -RY'O 'RY-REO 'RIY+RYO RO RLY,
L“=RY-RYO 'RY-RI'O 'RIY-RHO 'RY
*%Ltz;R(le)@ ZR(llz)_%R‘zll)O ZRIIIZ»LQ)
+RYO 'RIVO 'RY+RY'O 'RPO 'RY
+R(221)®W[R(111)@WIR'llz"R(zll)GﬁlR(llx)er ]R'III'O lR(llz)s

and

0o 0
R(olzl: ], ®=di'dg([)12,---’p/z)a

0 0
RV R

ro=| R ReT 034
[ty wip] v )

Here we note that RY)’=0. Using the results, we derive asymptotic
expansions for the expectations of test statistics.

2.2. Test Statistics with the Correction Factor
Since rf:+ P> oo rf, are equal to the latent roots of L, we can write
nQ =L +n L +n o LY+ 3L+ 0,(n 27,
an =tr L|2| +n 12 tr L13) +n ]‘{tl‘ L(4) + tf(L(Z) )2} + O,,(n 32 ),
nQy=tr LY+ n 2 LY 4+n "r L'+ 0,(n 7,
where L'*, L, and L' are given by (2.4). In order to obtain E[nQ,;],

i=1,2,3, in terms of the cumulants of x, the following formulas are useful
(see, e.g., Kaplan [5] and Kendall and Stuart [6]):
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E(uub ) = 0’
E(uabu('(l) = m(ab’ Cd) —n ]Kah('d + O(n -2 )9
E(uyu ) =n""m(ab, cd, ef )+ O(n=>?),

E(upttoqtt gitg,) =Y, mlab, cd) m(ef, gh)+ O(n "),
3

with m(ab, cd) and m(ab, cd, ef’) given by
m(ab’ Cd) = Kaped + GucOpy + G440 pe»
m(ab’ Cd’ ef) = Kah('d({f-l- z Kahrchf_’_ Z Ka:'yxbdf+ Z Kachede’

(12) (4) (8)

i

where ;. , ; (=« 7=k, (X, .,X;)) are the cumulants of x and
the summations occur over all ways of grouping the subscripts, which are
shown in the numbers in parentheses after the summation signs.

However, it is difficult to obtain a simple and united form of the
asymptotic expansion of E[nQ;], i=1, 2,3, in terms of the cumulants of
x for a general nonnormal distribution. In the following we consider the
case when x is distributed as an elliptical distribution EL,, ,(p, A) (see,
e.g., Muirhead [10]). Then its denisty function and characteristic function
are of the form f(x;p, A)=c,, JA| " g((x—p) A~ '(x—p)) for some
function g, where ¢, , is positive constant, and ¢(t) =exp{it'p} y {t'At)
for some function i, respectively. Provided they exist, E[x]=p, E=
Cov[x]= —2¥’(0) A. Let the kurtosis parameter be x = {y*/(0)/(¢'(0))*}
—1, and let ¢ = {y*(0)/(y'(0))*} —1. Under the elliptical population,
note that k., =K 2 3) 0,04 and K 5r= (@ — 3K) 3 (15 0,450 40,7, Where
230 Ocd =CupOcq+ GuOpg+0,40,., and so on. After a good deal of
calculation, we may obtain the following theorem.

THEOREM 2.1.  Suppose that x is distributed as an elliptical distribution
EL, ., (p, A). Then it holds that under H,,

E[CiQi]_—_j‘('+0(n7])a i=123,

with the correction factors given by

k
=21 +x) " —1Bp+3g+11)—k+ Y p i+ (h—1)(1+x) 2
j=1
k
=m+2)(1+K) ' =2p+g+N+ Y p; i+ (h—1)(1+K)2
J=1
k
=+ +x) "= (p+qg+5)-2k+ Y p; 2 +(h—1)(1+x) 3

f=1

where f.=(p—k)g—k) and h=(p+q+4)1+ @)
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When x =0 and ¢ =0, we can see that the correction factors ¢; (i=1, 2,
3) coincide with the results in the normal case (see, e.g., Fujikoshi [2]).
Thus it is shown that the three test statistics are nonrobust when the
populations depart from normality. It may be noted that the kurtosis
parameters x and ¢ are invariant under the nonsingular linear transforma-
tion. Therefore, when the population has an elliptical distribution, we may
use x and ¢ of the original vector x instead of the transformed vector with
the covariance matrix (2.2).

3. TEeSTS FOR DIMENSIONALITY IN THE MANOVA MODEL

Suppose that we have ¢ groups with N, (j=1, .., ¢) observations drawn
from p-variate distribution with mean vector p"/’ and the same covariance
matrix I, respectively. Let Sy, and S be the usual “within groups” and
“between groups” matrix sums of squares and products in the MANOVA,
respectively: that is,

N,
Sw= Z Sj, S/': Z (XL/)~,-‘(M)(XLH__,—(U))/,

j=1 a=1

q
Sp= Y N(EV—x)(x"—x),
i=1
where x!” is the «th observation from the jth population, X'’ =
(I/NHSN  xY, x=(1/N) ¢ Nx" and N=3%% | N, Further, let
dzd,> --- >d, be the latent roots of S;S,,' and let §,> --- >6,>0 be
the corresponding population roots, i.e., the latent roots of

q
Q=x '3 v’ -pm—p) L

Jj=1

where v,;=N,/N and =3¢  v,pn"). Then the hypothesis on dimen-
sionality is defined by H,:6,>d, ,,= --- =J,=0. The hypothesis means
that the number of significant discriminant functions in multiple discrimi-
nant analysis is k. When the observations are normal, the following
statistics have been proposed: that is, (i) T,=log[17_,, (1+d,), (ii)
Ty=3"_,,d;,and (ii) Ty=37_, ,  , d /(1 +d).

Theoretical discussions related to these test statistics under normality are
to be found in Siotani e al. [13] and others. Especially, the null distribu-
tions of these test statistics are asymptotically distributed as a chi-squared
variate with f,,=(p—k)qg—1—k) degrees of freedom, and also their
refinements to the chi-squared approximation have been obtained. In this
section, we study the effects of nonnormality of their refinements.
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Without loss of generality, we can assume E=1,, and let §;/N,=1,+
V,/\/ﬁj and y‘-"zﬁ (XY —p'), Let H be an orthogonal matrix such
that Q@ =HAH’, where A =diag(d,,..,6,). Then d,> .- >d, are latent
roots of SgSy' or R=(S,/N) "2 (S,/N)S,/N) 2 where S,, HS H’
and S,=HSyH’. Further, we can write S,/N= I+V/\/]T7 and S,/N=
A+ D/\/N+ G/N, where

vzﬂ@\/?,.v_,)l{

d q
=H< Z vfy(”(llm_l_l),‘*' Z \/‘_'_,-(Il”)_l—l)y[“)ﬂ',

j=1 J=1

G=H(i (y'”—ﬁyxy“)—ﬁy)')ﬂ',

ji=1

and y=3X9_,/v;¥". Therefore, a perturbation expansin for d;, , ... d,

under H, can be obtained as a special case of (2.3). In fact, we may only
replace M) as MM =D, M@ =G, and M® =M™ =0. Thus the test
statistics in the MANOVA model can be expanded as

NT,=tr L@ 4 N "2 r L+ N {tr LW — Lir(L?) }+0 —ay,
NT,=tt LA+ N2 L+ N 'or L@+ 0, (N —3?),
NT;=tr LD+ N tr LY+ N ' {tr L — tr(L'® )2} + O, (N ~2),

where the latent roots of L in the form of (24) are d, , ¢, ..., d,,.

In the following we assume that x{’ is distributed as the elliptical
distribution EL,(p*",1,). Then the joint density function of V, and y'/’ is
given by

f(V,., y(i)) — (2n)*l’(/}+3)s“4|El - 12 (1 + K)fp(p - 1)/4

1 1
(/)'-~1 (1) (/) ) () i}
XGXpli 2{\/ +]+k vy +y y }]

x [T+ {g,(V,, y/) = LE VPN, 24+ 0N, 1)),
where

gV, ¥y =w tr V4w, (tr V,)* + wytr V?

Fwatr Var Vi4owsyyUr V4w y 1V y ),
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and
— () — . " »
V,=[v) E=2(1+x)1,+x1,1,,
G — () iy G — (i) ptd) ) ‘
v —(b“,...,b,,p), vy —(L,z,b,},...,tp ,‘p).

The coefficients w; (i=1, ..., 6) are given by

wo=—@{stdp+1—4p WY+ 02Ep+3+4p 1)}

1

+ri{stQ2p— 1)+ 2CGp+3)—1Ep+ 1) =2st(p+1=2p ")—4i*p !,
wo=0(Es% T—s(p "+4p D+ E+p THip 7Y
+r{stp ‘=P G+p Y +ESp P—4stp P45

wy=3(1+09)s’,

wy={—45p '+57@p '+ 1) —ksTt—4s’p ' +astp 1),

ws=k{—sp '+1(3+p ")},
We = KS,

where s={2(1 +x)} 'and 1= {(p+2)k+2} ' The joint density can be
obtained by slightly modifying the result of Wakaki [14]. Using the joint
density, the expectations of the expanded test statistics can be calculated in
a straightforward method. The following theorem may be obtained after a
good deal of calculation.

THEOREM 3.1.  Suppose that x''' are distributed as the elliptical distribu-
tion EL,(p"", A). Then it holds that under H,

E[mT,)=f,+0o(N ") i=1,2,3,

with the correction factors given by

nzlzN—{%(p+q+2)— 2 5f‘+(17~k+2)'<—€}»

=1

X
mz=N—{p+q—k+lﬂ Y 4, '+(p—k+2)1c—e},

i=1

k
m;=N—{k+le 5i‘+(p_k+2),\-_€},

i=1
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where

Jm=(p—k)Ng—k—1),
e=(pk+2k+2)[w,g+3w,pq(px + 2Kk +2) +3wsg(prk + 2k +p + 1)
+wg{(p+2)2k+p>+p+4} +ws(pg+2)+weq]
+2we{(p—k+2)k+p—k+1}.

When k=0 and ¢ =0, we can see that the m, (i =1, 2, 3) coincide with
the results in the normal case (see, e.g., Fujikoshi [27]). As for the result
above, it may be noted that the test statistics in the MANOVA model are
asymptotically robust, since the effect of nonnormality appears in the terms
of O(N™1). In the case of the MANOVA model, we may also use the
kurtosis parameter k and the ¢ based on the original vector x when the
population has an elliptical distribution.

4, MONTE CARLO SIMULATIONS

In this section, we investigate the accuracy of chi-squared approxima-
tions of the test statistics, including the modified test statistics for the
canonical correlation and MANOVA models by Monte Carlo simulations.
The results also show how much these test statistics are affected by
departures from normality. A simulation study of the likelihood ratio test
statistic for the canonical correlation model under elliptical populations has
been reported by Muirhead and Waternaux [11]. On the other hand, for
the MANOVA model, for example, Ito [4] and Olson [12] have also
examined the robustness of the test statistics for testing a linear hypothesis
by Monte Carlo simulations. A simulation study related to several tests of
dimensionality under normal populations has been reported by Backhouse
and McKay [1].

4.1. The Canonical Correlation Model

We consider the Monte Carlo simulation in the same setup as that used
in the Muirhead and Waternaux [117]. The simulation study was done for
several elliptical populations: multivariate normal, multivariate ¢ (d.f.
v=2_8), and contaminated normal (¢= 0.1, 6 =3). For each population we
consider the following cases: p=3; g=4; k=0,1; N=50; « =025, 0.10,
0.05, 0.01; and two covariance matrices (i) Z=1I, when k=0 and (ii)
=1, X,=1,, P=[diag(0.8, 0, 0):0] when k=1 Note that x =
¢ =0 for a normal population, and for the multivariate ¢ population (d.f.
v=8),k=2/(v—4)=0.5,and o= (v—2)*/{(v—4)(v—6)} — 1 =35, for the

683;/52/2-12
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contaminated normal distribution (¢ =0.1, 6 =3), k= {1 +&(a* —1)}/{1 +
e(6>—1)}"—1=178 and o= {1+&(c®—1)}/{l +e(a®—1)}*—1=1165.
In practical use, we must estimate x and ¢, since k and ¢ are unknown.
Note here that an estimate of k, which is a proper consistent estimate, has
been use in Muirhead and Waternaux [11]. Extending the estimation
method, we can estimate k and ¢ as follows. Let y,, and y, be the
ith canonical variables (i=1, .., p), and let R*=37_, . (v} +y%). Then,
we have E(R*)=ri, E(R*)=r(r+2)(14+x)i% E(R*)=r(r+2)r+4)
x (14 ¢) A°, where r=2(p—k), and A and 3x are variance and kurtosis
parameters, respectively. Thus x and ¢ satisfy

r E(R%Y) (14 0)= r’ E(R%)
r+2 {E(R)Y I D+ TER)

(1+x)=

Then the consistent estimates by the moment method are given by

r M4 l P r2 M6
rraM: 0 T+ M

k= 1, (4.1)

where

N P J
My=N B Z < Z J"?la'*‘.Vizu)a j=1223.
x=1 Ni=k+1

Further, we may use the estimate 3;_, r;? instead of 3_¥_, p % It may be
noted that more efficient estimates could be found. For the present,
however, the simulation results based on the estimates (4.1} are given in
Table L. In the Monte Carlo simulation, the number of times which are
over the a percentile of the X(zp tg & out of 200 simulations is calculated.
This process is repeated 100 times to obtain 100 estimates, and the
averages for 100 estimates are given. Their values for »,Q;, n.Q,/(1 + &),
and é,Q; are summarized in Table I for the selected parameters. Further,
the standard deviations for 100 estimates are given. It can be seen from
simulation results that the test statistics are nonrobust when the popula-
tions depart from normality and that the modified test statistics yield better
chi-squared approximations under the class of elliptical populations. In
addition, it may be noted that the modified test statistics with the estimates
¥ and ¢ give considerably better chi-squared approximations. Thus the use
of test statistics needs special care under nonnormality, and we recommend
the use of modified tests statistics if the population has the class of elliptical
distributions including normal distributions.

42. The MANOVA Model

In the Monte Carlo simulation, there is no loss of generality in assuming
that the covariance matrix £ =1. The simulation study was done for the
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TABLE 1

Simulation Results for the Canonical Correlation Model (N = 50)

% 0.25 0.10 0.05 0.01
Expected: 50 20 10 2
1w Ih T Ih oo Yo Xh
M.N. nQ, 59 65 26 30 14 16 3 4
20, 1 +R) 57 66 5 31 13 17 3 4
60, 45 sl 18 20 9 10 2 2
nQ, 67 81 33 44 20 29 6 10
nQ5/(1 +R) 65 82 31 45 19 29 6 10
60, 6 19 23 10 13 3 4
nQs 51 48 20 16 9 7 1
nQ5 /(1 + ) 49 50 18 17 8 7 1 1
6,0, 45 49 16 17 7 7 1
M.T. nQ, % 118 57 76 8 54 14 23
nQ, /(1 + ) 51 62 2 27 114 2 3
0, 45 55 17 2 8 11 2 2
nQ, 104 132 67 9 48 75 2 @
nQ,/(1 +#) 61 83 0 46 18 30 6 11
60, 45 56 19 26 10 14 3 5
n0, 88 100 46 54 2703 710
nQy /(1 + R) 41 39 13 1 6 4 1 0
640, 45 52 15 17 6 7 1 1
CN. nQ, 152 180 121 159 100 143 61 107
nQ, /(1 +R) 52 47 20 15 0 7 2 1
60, 53 53 20 18 10 8 2 1
nQ, 157 185 130 170 12 158 7 131
nQ, /(1 + ) 69 85 35 46 21 29 711
60, 52 54 24 03 1313 4 4
nQ, 146 172 109 143 85 121 43 7
nQ, /(1 + R) 416 10 2 3 1 0 0
6,0, 52 48 17 1 7 4 1 0

¢4 M.N., multivariate normal; M.T.: multivariate ¢ (d.f. 8); C.N,, contaminated normal
(¢=0.1, 6=13).

same elliptical populations as in the canonical correlation model case:
multivariate normal, multivariate ¢ (d.f. =5, 8), and contaminated normal
(¢e=0.1, 0=3). For parameters, we set them as follows: p=3; g=4;
N,=10 (N=40); k=0, 1; and a = 0.25, 0.10, 0.05, 0.01, where p"? = 0; that
is, NA =diag(0,0,0) for k=0 and p"/’ = (\/?J/_Sj, 0,0), j=1,..,4, that is,
NA =diag(30, 0, 0) for k=1, which corresponds to the matrices of non-



TABLE II

Simulation Results for the MANOVA Model (N = 40)

k=0
x$ 0.25 0.10 0.05 0.01
Expected: 50 20 10 2
M.N.® M.T. C.N. M.N. M.T C.N. M.N. M.T CN. M.N. M.T. CN.
NT, 68 67 67 31 30 31 18 16 17 4 4 4
(6.44) (7.08) (7.61) (4.78) (4.55) (5.42) (3.91) (4.00) (4.28) (1.86) (1.76) (2.13)
m, T, 49 48 49 20 18 19 10 8 9 2 i 2
(5.67) (6.74) (6.26) (4.21) (3.98) (4.39) (3.13) (2.83) (3.08) (1.32) (1.13) (1.22)
NT, 82 83 82 46 45 46 30 28 30 12 10 11
(6.63) (6.88) (7.69) (5.34) (6.16) (6.33) (5.05) (4.58) (5.21) (3.36) (3.30) (3.27)
m.T 50 49 50 23 21 22 13 12 12 4 3 3
(5.68) (6.79) (6.56) (4.56) (4.11) (4.79) (3.58) (3.61) (3.47) (1.80) (1.66) (1.96)
NT, 51 49 51 19 16 17 8 6 7 1 1 1
(5.47) (6.80) (6.33) (4.29) (4.05) (4.29) (2.84) (242) (2.95) (0.99) (0.85) (0.94)
Ty 47 45 47 16 14 15 7 s 6 1 0 |
(5.64) (6.44) (5.94) (3.84) (3.82) (4.13) (2.67) (2.26) (2.50) (0.87) (0.66) (0.79)

7 M.N.. multivariate normal; M.T., multivariate ¢ (d.f. 5); C.N., contaminated normal (¢=0.1, 6 =3).

1133
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centrality parameters. The simulation results which calculated the number
of times that 7; and m, T, (i=1,2, 3) exceed x;, .y, _:. 1 () out of 200
are given in Table II for the selected parameters. It can be seen from
simulation results that the test statistics in the MANOVA model are
asymptotically robust, and the results for three elliptical populations are
much the same. It may be noted that the tests for dimensionality in the
MANOVA model do not have much effect on nonnormality. Simulation
results also show that the modified test statistics yield better chi-squared
approximations under the class of elliptical populations, though the
magnitude of improvement is small.
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