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Abstract

The predictive distributions of the future responses and regression matrix under the multivariate
elliptically contoured distributions are derived using structural approach. The predictive distributions
are obtained as matrix-t which are identical to those obtained under matrix normal and matrix-t
distributions. This gives inference robustness with respect to departures from the reference case of
independent sampling from the matrix normal or dependent but uncorrelated sampling from matrix-t
distributions. Some successful applications of matrix-t distribution in the field of spatial prediction
have been addressed.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The predictive inference for the multivariate Gaussian regression models has been con-
sidered by various researchers: Geisser [10] and Guttman and Hougaard [12] considered the
classical approach, Zellner and Chetty [29] and Kibria et al. [17] considered the Bayesian
method while Fraser and Haq [8], and Haq [13] considered the structural relation of the
model approach to mention a few. The assumption of normality and independency for the
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error variables may not be appropriate in many practical situations, specially when the un-
derlying distributions have heavier tails. For such cases, multivariate t-errors with linear
models have been emphasized by Zellner [28] and Sutradhar and Ali [27] among others.
In the case of multivariate linear model, matrix-t errors have been considered by Kibria
and Haq [16] and Khan [14] among others. The predictive distribution remains the same
by a change in the error distribution from normal to multivariate t [28] or from normal to
elliptical distribution [9].

The literature on predictive distribution for the future regression matrix is limited. Haq
[13] used the structural relation of the model to derive the predictive distribution for the
future response and regression matrices under the matrix normal error assumption. For both
cases, he obtained predictive distributions as matrix-t with appropriate degrees of freedom.
Kibria and Haq [16] considered the predictive distribution for future responses under the
matrix-t errors and obtained the predictive distribution as a matrix-t with appropriate degrees
of freedom. Khan [14] considered the structural relation to derive the predictive distribution
of regression matrix under the matrix-t error and obtained the predictive distribution as a
matrix-t with appropriate degrees of freedom. Therefore, the distribution of future regression
matrix is unaffected by a change in the error distribution from matrix normal to matrix-t
distribution. This invariance principle suggests that the predictive distribution would be
invariant to a wide class of error distributions, namely multivariate elliptically contoured
distribution.

The class of elliptically contoured distributions includes various distributions: the mul-
tivariate normal, matrix-t, multivariate Student’s t and multivariate Cauchy (see [23]). The
class of mixture of normal distributions is a subclass of the class of elliptical distributions
as well as the class of spherically symmetric distribution [5]. Elliptically contoured distri-
butions have been discussed extensively for traditional multivariate regression model by
Anderson and Fang [1], Fang and Li [6], Fang and Zhang [7], Gupta and Varga [11] and
Kubokawa and Srivastava [19]. These distributions have also been considered by Chib et al.
[4], Kibria and Haq [15], Ng [23,24] and Kim and Mallick [18] in the context of predictive
inference for the future responses but not for the future regression matrix.

In this paper, a very general assumption is employed, namely that responses have a multi-
variate elliptically contoured distribution. It has been shown that the prediction distribution
of future response and regression matrix are obtained as matrix-t distributions. Therefore,
the assumption of normality as well as matrix-t are robust to deviation in the direction of
elliptical distribution as far as inference about the future regression matrix and prediction
are concerned. Since the predictive distributions are matrix-t, this paper will address some
applications of matrix-t distribution. A random matrix Xn×m is said to have a matrix-t dis-
tribution (in the notation of Box and Tiao [2, p. 442]) with � degrees of freedom if its joint
probability density function is expressible as

f (X) = C|In + �−1{A−1(X − �)}{(X − �)B−1}′|− �+n+m−1
2 , (1.1)

where

C = |A|−m/2|B|−n/2�n+m((� + n + m − 1)/2)

(��2)nm/2�n((� + n − 1)/2)�m((� + m − 1)/2)
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is the normalizing constant. Also �p(�) = �p(p−1)/4�(�)�(� − 1
2 ) . . . �(� − 1/2p + 1

2 )

is the multivariate gamma function and � is the shape parameter. The mean and variance
of the matrix X are, respectively, E(X) = � and V (X) = 1

�−2A ⊗ B, where ⊗ is the
Kronecker product between two matrices. We write X ∼ tm×n(�, A, B, �), where An×n

and Bm×m are positive definite matrices. The matrix-t distribution and some of its properties
are discussed in Loschi et al. [22] and Press [25] among others. The organization of this
paper is as follows. The predictive distributions for future response and regression matrices
are derived in Section 2. Some applications of matrix-t distribution are discussed in Section
3. Finally, some concluding remarks are given in Section 4.

2. Predictive distributions

Ng [23] derived the predictive distribution of future response matrix for a multivariate
linear model with an elliptically contoured error distribution. He has considered both clas-
sical and Bayesian with improper prior for the derivation of the predictive distribution. This
section will discuss about the derivation of the predictive distributions of future response and
regression matrices for the model (2.2) using the structural relation of the model approach
developed by Fraser and Haq [8].

2.1. The model and some preliminaries

We consider the following multivariate linear model

Y = �X + �E, (2.2)

where Y is an m × n matrix of observed responses, � is an m × p matrix of regression
parameters, X is an p × n (n�p) known regression matrix, � is an m × m matrix of scale
parameter with |�| > 0 and E is an m × n random error matrix. We assume that E has a
spherically contoured distribution with the probability density function

f (E) ∝ g{tr(EE′)}. (2.3)

Then the response matrix Y has an elliptically contoured distribution with pdf as

f (Y |�, �) ∝ |�|− n
2 g{tr �−1(Y − �X)(Y − �X)′}, (2.4)

where ��′ = �. This is the form given in Anderson and Fang [1], where g{·} is a non-
negative function over m × m positive definite matrices such that f (Y |�, �) is a density
function. Here M ′ denotes the transpose of the matrix M and tr(M) denotes the trace of the
matrix M.

We define

BE = EX′(XX′)−1 and SE = (E − BEX)(E − BEX)′, (2.5)

as the regression matrix of E on X and the sum of squares and product (SSP) matrix,
respectively. Consider CE be a non-singular matrix such that the error SSP matrix, SE
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can be expressed as

CEC′
E = SE,

and the standardized residual matrix is

WE = C−1
E (E − BEX). (2.6)

From Eq. (2.6), we have the following relationship:

E = BEX + CEWE. (2.7)

It is clear that WEW ′
E = Im, we have

EE′ = BEXX′B ′
E + CEC′

E. (2.8)

Similarly we can define the quantities in (2.5)–(2.8) in terms of future errors, observed
and future responses. The following two subsections are devoted to deriving the predictive
distribution of future response and regression matrices, respectively.

2.2. Predictive distribution of future response matrix

Consider a set of nf future responses from the multivariate linear model defined in
(2.2) as

Yf = �Xf + �Ef , (2.9)

where Yf and Ef are the m × nf matrices of future responses and errors, respectively, and Xf
is an p×nf (nf �p) future regression matrix. It is assumed that Ef has the same realization
as E, then the joint distribution of E and Ef can be written as

f (E, Ef) ∝ g{tr(EE′ + EfE
′
f)}. (2.10)

Following Fraser and Ng [9], the relationship between volume elements of E in terms of
BE , SE and WE is given by

dE ∝ |XX′|m
2 |SE | n−p−m−1

2 dBE dSE dWE. (2.11)

Now considering (2.7) and (2.10) and taking into account the Jacobian (2.11), the joint
density of function of BE , SE and Ef is obtained as

f (BE, SE, Ef |E, X) ∝ |SE | n−p−m−1
2 g{tr(SE + BEXX′BE + EfE

′
f)}. (2.12)

Making the following transformation:

R = S
− 1

2
E (Ef − BEXf),

the Jacobian of the transformation is |SE | nf
2 , thus we have the joint density of BE , SE , R as

f (BE, SE, R|E, X, Xf) ∝ |SE | n+nf −p−m−1
2 g{tr(SE+BEXX′BE

+(S
1
2
ER+BEXf)(S

1
2
ER+BEXf)

′)}. (2.13)
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The matrix expression under trace in (2.13) can be expressed as

tr((Im + RHR′)SE + (BE + S
1
2
ERX′

fA
−1)A(BE + S

1
2
ERX′

fA
−1)′),

where H = Inf − X′
fA

−1Xf and A = XX′ + XfX
′
f . Now assume Im + RHR′ is positive

definite and Q is a non-singular matrix such that Q′Q = Im+RHR′, and make the following
transformation:

K = QSEQ′,

Z = BE + S
1
2
ERX′

fA
−1.

Then the Jacobian of the transformation J (BE, SE, R) → (Z, K, R) equals to |Q|−(m+1),
and we obtain the joint density function of Z, K and R is as follows:

p(Z, K, R|E, X, Xf)∝|Im+RHR′| n+nf −p

2 |K| n+nf −m−p−1
2 g{tr(K)+tr(ZAZ′)}. (2.14)

Integrating (2.14) with respect to Z and K yields the density function of R as∫
K

∫
Z

p(R, K, Z|E, X, Xf) dZ dK ∝ |Im + RHR′| n+nf −p

2 .

It can be shown that,

R = S
− 1

2
E (Ef − BEXf) = S

− 1
2

Y (Yf − BY Xf).

Finally, the pdf of Yf for given data is obtained as

p(Yf |Y, X, Xf)∝|Im+S−1
Y (Yf−BY Xf)(Inf −X′

fA
−1Xf)(Yf−BY Xf)

′| n+nf −p

2 . (2.15)

From (1.1) and (2.15), it follows that Yf has a matrix-t density. Thus the predictive distri-
bution of the future responses for given data is an m × nf dimensional matrix-t distribution
with (n − p − m + 1) degrees of freedom. That is

Yf ∼ tm×nf (BY Xf , (Inf − X′
fA

−1Xf)
−1, SY , n − p − m + 1).

This result coincides with that of Haq [13], where he considered the normal error and af-
ter little modification with that of Kibria and Haq [16], where they considered matrix-t
error. Thus the predictive distribution is unaffected by departures from normality or de-
pendent but uncorrelated assumptions to elliptically contoured distribution. This result also
coincides with that of Ng [23], where he obtained the predictive distribution of future re-
sponses for elliptically contoured distribution under both classical and Bayesian approaches
with improper prior distribution. Thus, it can be concluded that the predictive distribution
for multivariate linear model with elliptically contoured distribution under the improper
Bayesian, classical and structural approaches are the same.

2.3. Predictive distribution of future regression matrix

Haq [13] and Khan [14] derived the predictive distributions of future regression matrix
for a multivariate linear model using the matrix normal and matrix-t error, respectively.
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Both considered the structural relation of the model to derive the predictive distributions
and obtained predictive distributions as matrix-t with appropriate degrees of freedom. This
section will consider the derivation of predictive distributions for future regression matrix
and sum of squares and product matrix using structural relation of the model when the error
of the model have elliptically contoured distribution. Following Fraser and Ng [9] and Khan
[14], the joint density function of error statistics BE , SE , BEf and SEf is obtained as

p(BE, SE, BEf , SEf |E, X, Xf) ∝ |SE | n−m−p−1
2 |SEf |

nf −m−p−1
2 g{tr(BEXX′B ′

E

+SE+BEf XfX
′
fB

′
Ef

+SEf )}. (2.16)

The structural relation of the model (2.2) yields

BE = �− 1
2 (BY − �) and SE = �−1SY ,

where BY is the regression matrix of Y on X, and SY = (Y − BY )(Y − BY )′ is the
Wishart matrix. The Jacobian of the transformation J {[BE, SE] → [�, �]} is equal to

|SY |m+1
2 |�|−(

p
2 +m+1). Then the joint density of �, �, BEf , and SEf is obtained as

p(�, �, BEf , SEf |E, X, Xf) ∝ |SEf |
nf −m−p−1

2 |�|− n+m+1
2 g{tr �−1((B − �)XX′(B − �)′

+S + BEf XfX
′
fB

′
Ef

+ SEf )},
where BY = B = (b1, b2, . . . , bm)′ and SY = S for notational convenience. Similarly, the
structural relation of the model (2.9) yields

BEf = �− 1
2 (BYf − �) and SEf = �−1SYf ,

where BYf = (bf1, bf2, . . . , bfm)′ is the regression matrix of Yf on Xf , and SYf is the
Wishart matrix for the future responses. The Jacobian of the transformation J {[BEf , SEf ] →
[Bf , Sf ]} is equal to |�|− p+m+1

2 . Then the joint density function of �, �, Bf , and Sf is
obtained as

p(�, �, Bf , Sf |Y, X, Xf) ∝ |Sf |
nf −m−p−1

2 |�|− n+nf +m+1
2 g{tr(�−1[(B − �)XX′(B − �)′

+S + (Bf − �)XfX
′
f(Bf − �)′ + Sf ])}, (2.17)

where BYf = Bf and SYf = Sf .
The joint density function of �, Bf and Sf is obtained from (2.17) as

p(�, Bf , Sf |Y, X, Xf) ∝ |Sf |
nf −m−p−1

2

∫
�

|�|− n+nf +m+1
2 g{tr(�−1[(B − �)XX′(B − �)′

+S + (Bf − �)XfX
′
f(Bf − �)′ + Sf ])} d�. (2.18)

To evaluate the integral in (2.18), we let, �−1 = �, then

d� = |�|−(m+1) d�.
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Therefore, we obtain,

p(�, Bf , Sf |Y, X, Xf) ∝ |Sf |
nf −m−p−1

2

∫
�

|�| n+nf −m−1
2 g{tr(�[(B − �)XX′(B − �)′

+S + (Bf − �)XfX
′
f(Bf − �)′ + Sf ])} d�.

Following Ng [23], we consider G to be a non-singular matrix of order m such that

G′G = [(B − �)XX′(B − �)′ + S + (Bf − �)XfX
′
f(Bf − �)′ + Sf ].

The transformation, W = G�G′ has the Jacobian of the transformation as |G′G|− m+1
2 .

Then integrating the above with respect to W yields the joint density of �, Bf and Sf as,

p(�, Bf , Sf |Y, X, Xf) ∝ |Sf |
nf −m−p−1

2 [(B−�)XX′(B−�)′+S+(Bf−�)XfX
′
f(Bf−�)′

+Sf ]−
n+nf

2

∫
�

g{tr(W)}|W | n+nf −m−1
2 dW

∝ |Sf |
nf −m−p−1

2 [(B−�)XX′(B−�)′

+S+(Bf−�)XfX
′
f(Bf−�)′+Sf ]−

n+nf
2 . (2.19)

The density function in (2.19) can further be expressed as

p(�, Bf , Sf |Y, X, Xf) ∝ |Sf |
nf −m−p−1

2 [(� − FA−1)A(� − FA−1)′ + S

+(Bf − B)M−1(Bf − B)′ + Sf ]−
n+nf

2 , (2.20)

where F = BXX′ + BfXfX
′
f , A = XX′ + XfX

′
f and M = [XX′]−1 + [XfX

′
f ]−1.

The joint density function of Bf and Sf is obtained by integrating out � using matrix-t
argument (see [25, p. 139]) from (2.20) as

p(Bf , Sf |Y, X, Xf) ∝
∫
�
p(�, Bf , Sf |Y, X, Xf) d�

∝ |Sf |
nf −m−p−1

2

∫
�
[(� − FA−1)A(� − FA−1)′

+S + (Bf − B)M−1(Bf − B)′ + Sf ]−
n+nf

2 d�

∝ |Sf |
nf −m−p−1

2 [S+(Bf−B)M−1(Bf−B)′+Sf ]−
n+nf −p

2 . (2.21)

Finally, the predictive distribution of the future regression matrix Bf is obtained as

p(Bf |Y, X, Xf)= �m(n/2)|H |m
2

�mp/2�m((n−p)/2)
|S|− p

2 |Im+S−1(Bf−B)M−1(Bf−B)′|− n
2 ,

(2.22)

which is a matrix-t density. Thus the predictive distribution of the future regression matrix
for given data is an m × p dimensional matrix-t distribution with (n − p − m + 1) degrees
of freedom. That is

Bf ∼ tm×nf (B, M, SY , n − p − m + 1).
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This result coincides with that of Haq [13], where he considered the matrix normal error and
that of Khan [14], where he considered the matrix-t error. Thus the predictive distribution
of future regression matrix is also unaffected by departures from normality or dependent
but uncorrelated assumptions to elliptically contoured distribution.

Note that, if we integrate out Bf from (2.21), we obtain the predictive distribution of
future sum of squares and product (SSP), which is a generalized Beta density with degrees
of freedom (nf − p) and (n − p). Then the result will coincide with that of Khan [14],
where he considered the matrix-t distribution for the multivariate linear model. Thus the
predictive distribution of future SSP matrix is also unaffected by departures from matrix-t
assumptions to elliptically contoured distribution.

3. Application of matrix-t distribution

In this section, we will discuss about the application of matrix-t distribution, which will
also be applicable to the predictive distribution of future response as well as future regression
matrices.

3.1. Application in spatial prediction

Risk assessment of air pollution often require to estimate concentration levels at locations
where monitoring data are not available, using the data observed at other monitoring sites
and possibly at different time periods. This is called the spatial interpolation problem. In
this area, the successful application of matrix-t distribution has been found in Sun et al.
[26], where the authors considered the method developed by Le et al. [20] and obtained
the predictive distribution for the unobserved pollution concentrations (nitrogen dioxide,
sulphur dioxide, ozone and sulfate ion) in a spatial filed in the province of Ontario, Canada.
They concluded that matrix-t distribution performed well in predicting both concentration
level and temporal pattern since the pollutants tend to have high spatial correlation. Their
empirical study indicated that the heavier tailed predictive matrix-t distribution is required
for the pollutant sulphur dioxide. Le et al. [21] developed a Bayesian approach for spatial
and temporal interpolation for the stair case structured monitoring situation for a univariate
case or single pollutant. They assumed a Gaussian Generalized Inverted Wishart (GIW)
model developed by Brown et al. [3] and obtained the predictive distribution as matrix-t.
This GIW prior allows different degrees of freedom to be fitted for individual steps by taking
into account the available information from sites at the different steps in the staircase. The
theory of Le et al. [21] has been demonstrated by application of the spatial prediction to
the ambient ozone field for the Southwestern region of British Columbia. Kibria et al. [17]
extended the univariate theory of Le et al. [21] to the multivariate case and thereby obtained
an empirical hierarchical Bayesian method for temporal and spatial interpolation using all
available “staircase” data. They assumed the responses follow a Gaussian distribution and
the corresponding covariance follows a GIW prior distribution. The predictive distribution
was obtained as a matrix-t with appropriate parameters. Since the predictive distribution has
exact matrix-t, Kibria et al. [17] developed a method of moments approach as an alternative
to the much more computationally intensive EM algorithm. Their methodology has been
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demonstrated by mapping PM2.5 field for Philadelphia during the period of May 1992–
September 1993. The application of matrix-t distribution has also appeared in the work of
Zidek et al. [30, references therein], by predicting average hourly concentration of ambient
PM10 in Vancouver, British Columbia. Their multivariate approach provide predictions for
any given hour to borrow strength through its correlation with adjoining hours. Therefore,
matrix-t distribution has significant contributions to interpolate the air pollutants and thereby
in the field of environmental risk analysis.

3.2. �-expectation tolerance region for Yf

Following Kibria and Haq [16], we will construct �-expectation tolerance regions for
future response matrix Yf as well as future response vector yf . Suppose, U1 = ZZ′ with
Z = T (Yf − BY Xf)K , where T is such that T ′T = S−1

Y and K is such that KK ′ =
Inf − X′

fA
−1Xf . Then U = (I + U1)

−1U1 has a generalized Beta distribution with nf and
n − m degrees of freedom. We note that

RY = {U |U < U1−�}, (3.23)

is a �-expectation tolerance region for the central 100�% of the matrix-t distribution being
sampled, where U1−� is the point exceeded with probability 1 − � when using Beta distri-
bution with nf and n − m degrees of freedom. That is RY is a tolerance region if U1−� is
such that

1

Bp(nf/2, (n − m)/2)

∫ U1−�

0
|U | nf −p−1

2 |I − U | n−m−p−1
2 dU = �.

Note that for m = 1, we obtain the predictive distribution of regression model

yf = �Xf + �ef ,

which is a multivariate Student t distribution with n − p degrees of freedom, location
parameter vector b = yX′(XX′)−1 and scale parameter matrix s2H , where s2 is the residual
sum of squares of the following regression model:

y = �X + �e.

Then following Kibria and Haq [15], one can construct the � expectation tolerance region
for the future response vector yf . Furthermore, from a multivariate Student t distribution,
the univariate predictive distribution for a particular future response can be obtained. Then
using t distribution, a (1−�)×100% confidence band can be constructed for any particular
response.

4. Concluding remarks

We derived the predictive distribution of future response, regression and SSP matrices
under the assumptions of multivariate elliptically contoured distributions that cover various
well-known and practically applicable distributions. It has been shown that the predictive
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distributions under elliptically contoured distributions are identical to those obtained under
independent normal errors or matrix-t errors. This gives inference robustness with respect
to departures from matrix normal or matrix-t to elliptically contoured distributions. This
result also coincides with that of Ng [23], where the author obtained the predictive distri-
bution of future responses for elliptically contoured distribution under both classical and
improper Bayesian approaches. Thus, it can be concluded that the predictive distributions
for multivariate linear model with elliptically contoured distribution under the improper
Bayesian, classical and structural approaches are the same. Some real life applications of
matrix-t distribution in the field of spatial prediction have been discussed which indicate
that matrix-t distribution has significant contributions in the field of environmental risk
analysis.
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