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a b s t r a c t

We investigate the estimation problem of parameters in a two-sample semiparametric
model. Specifically, let X1, . . . , Xn be a sample from a populationwith distribution function
G and density function g . Independent of the Xi’s, let Z1, . . . , Zm be another random sample
with distribution function H and density function h(x) = exp[α + r(x)β]g(x), where
α and β are unknown parameters of interest and g is an unknown density. This model
has wide applications in logistic discriminant analysis, case-control studies, and analysis
of receiver operating characteristic curves. Furthermore, it can be considered as a biased
sampling model with weight function depending on unknown parameters. In this paper,
we construct minimum Hellinger distance estimators of α and β . The proposed estimators
are chosen to minimize the Hellinger distance between a semiparametric model and
a nonparametric density estimator. Theoretical properties such as the existence, strong
consistency and asymptotic normality are investigated. Robustness of proposed estimators
is also examined using a Monte Carlo study.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Semiparametricmodels have continued to receive increasing attention over the years from both practical and theoretical
point of views due in large part to the fact that semiparametric models arise frequently in many areas, primarily in
biostatistics and econometrics. The well-known semiparametric models include the Cox proportional hazard model in
survival analysis, econometric index models, regression models and errors-in-variables models, among many others. More
examples and theory on semiparametric models can be found in the monographs [1,2] and in the review articles [3,4].
In this paper, we consider the following two-sample semiparametric model: Let X1, . . . , Xn be a random sample from a

population with distribution function G and density function g . Independent of the Xi’s, let Z1, . . . , Zm be another random
sample from a population with distribution function H and density function h. The two unknown density functions g and h
are linked by an ‘‘exponential tilt’’ exp[α + r(x)β]. Thus, we have

X1, . . . , Xn
i.i.d.
∼ g(x)

Z1, . . . , Zm
i.i.d.
∼ g(x) exp[α + r(x)β],

(1.1)

where r(x) = (r1(x), . . . , rp(x)) is a 1 × p vector of functions of x, β = (β1, . . . , βp)
T is a p × 1 parameter vector, and α

is a normalizing parameter that makes g(x) exp[α + r(x)β] integrate to 1. Various choices of r(x) for some conventional
distributions are discussed in [5]. In most applications r(x) = x or r(x) = (x, x2). Note also that the test of equality of G
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and H can be regarded as a special case of model (1.1) with α = β = 0. We are interested in the estimation problem of
parameters α and β when g is unknown (nuisance parameter).
For r(x) = x, model (1.1) encompasses many common distributions, including two exponential distributions with

different means and two normal distributions with common variance but different means. Furthermore, model (1.1) with
r(x) = x or r(x) = (x, x2) has wide applications in the logistic discriminant analysis [6,7] and in case-control studies [5,8].
Model (1.1) can also be viewed as a biased samplingmodel withweight function exp[α+r(x)β] depending on the unknown
parameters α and β , see [9]. In [10], a goodness-of-fit test is considered for a logistic regressionmodel based on case-control
data by employing the maximum semiparametric likelihood estimator of G to test the validity of model (1.1) with r(x) = x.
In [11], quantiles of G are estimated under model (1.1).
In this paper, we propose MHD estimation for the two-sample semiparametric model (1.1). In fully parametric models,

MHD estimators have been shown to achieve efficiency and have excellent robustness properties such as the resistance to
outliers and robustness with respect to model misspecification, see [12,13]. Efficiency combined with excellent robustness
properties make MHD estimators appealing in practice. For a comparison between MHD estimators with the MLEs and
the balance between robustness and efficiency of estimators, see [14]. Moreover, it has been shown that MLE and MHD
estimators are members of a larger class of efficient estimators with various second-order efficiency properties [14]. MHD
estimation in fully parametric models have been investigated by various authors, including [12,15–22]. MHD estimators for
branching processes and for the mixture complexity in a finite mixture model have been studied in [23–25]. However,
MHD estimators for semiparametric models have been studied less. A MHD estimator for finite mixtures of Poisson
regression models with the distribution of covariates unknown has been investigated in [26]. Recently, a MHD estimator
of the mixture parameter for a nonparametric two-component mixture model has been obtained in [27,28]. Apart from
the preceding three articles, there has been very little work reported in the literature on the application of the MHD
methodology for semiparametric models. In this paper, we extend the implementation of the MHD approach to the two-
sample semiparametric model (1.1). Specifically, we construct minimumHellinger distance estimators of parameters α and
β in model (1.1). The proposed estimators are chosen to minimize the Hellinger distance between a semiparametric model
and a nonparametric density estimator. Asymptotic properties such as the existence, strong consistency and asymptotic
normality of the proposedMHD estimators of α and β are investigated. Robustness of proposed estimators is also examined
using a Monte Carlo study.
This paper is organized as follows. In Section 2, we investigateMHD estimators of the parameters α and β and study their

existence and strong consistency. In Section 3, we derive the asymptotic distribution of the proposed estimators. Section 4
contains a simulation study where efficiency and robustness properties of the proposed MHD estimators are studied using
a Monte Carlo study. A real data example is given in Section 5. A detailed proof of asymptotic normality of the estimators
(Theorem 3.2) is given in Section 6.

2. MHD estimators of regression parameters

Define θ = (α, βT )T , where α and β are as in (1.1). Then the model (1.1) can be written as

X1, . . . , Xn
i.i.d.
∼ g(x)

Z1, . . . , Zm
i.i.d.
∼ hθ (x),

(2.1)

where hθ (x) = g(x) exp[(1, r(x))θ ], r(x) = (r1(x), . . . , rp(x)) is a 1 × p vector of continuous functions of x on R,
β = (β1, . . . , βp)

T is a p × 1 parameter vector and α is a normalizing parameter that makes hθ (x) integrate to 1. We
assume here and in what follows that θ ∈ Θ andΘ is a compact subset of Rp+1.
We first define following kernel density estimators of g and hθ based on the data X1, . . . , Xn and Z1, . . . , Zm, respectively,

of (2.1):

gn(x) =
1
nbn

n∑
i=1

K0

(
x− Xi
bn

)
, (2.2)

hm(x) =
1
mbm

m∑
j=1

K1

(
x− Zj
bm

)
, (2.3)

where K0 and K1 are symmetric density functions, bandwidths bn and bm are positive constants such that bn → 0 as n→∞
and bm → 0 asm→∞. We can also employ adaptive kernel density estimators, which use Snbn instead of bn with Sn being
a robust scale statistic. Here we use non-adaptive kernel density estimators (2.2) and (2.3) for convenience. The results can
be easily extended for adaptive kernel density estimators with some additional conditions on Sn.
LetH be the set of all densities w.r.t. Lebesgue measure on the real line. For φ ∈ H , we define a MHD functional T0(φ)

as

T0(φ) = T
(
{hθ }θ∈Θ , φ

)
= argmin

θ∈Θ
‖h1/2θ − φ

1/2
‖. (2.4)
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If the family {hθ }θ∈Θ is identifiable, then the functional T0 is Fisher consistent, i.e., T0(hθ ) = θ for any θ ∈ Θ . Since hm defined
by (2.3) is an estimator of hθ , a MHD estimator of θ will be T0(hm). However, this estimator is not available in application
since g and hence hθ in (2.4) are unknown. Naturally, one can use the estimator gn given by (2.2) in the place of g and then
apply the plug-in rule to construct a parametric model, i.e., one replaces hθ with

ĥθ (x) = exp[(1, r(x))θ ]gn(x). (2.5)
Note that ĥθ is a parametric density function with the unknown parameter being θ . Let N = n+m be the total sample size
here and in what follows. Then our proposed MHD estimator of θ is defined as

θN = T̂ (hm) = T
(
{̂hθ }θ∈Θ , hm

)
= argmin

θ∈Θ
‖̂h1/2θ − h

1/2
m ‖, (2.6)

where hm and ĥθ are given by (2.3) and (2.5), respectively. That is, θN is the minimizer of the Hellinger distance between
the parametric density ĥθ and the nonparametric density estimator hm. This approach is in line with Beran’s [12] original
mechanism of obtaining MHD estimators. Thus, we would expect θN to have good robustness and asymptotic efficiency
properties. Since T̂ (hm) may be multiple valued, the notation T̂ (hm) is meant to indicate any one of the possible values
chosen arbitrarily. Asymptotic properties of θN are studied when n→∞ andm→∞ as N →∞.
Note that in (2.6) we are not minimizing the Hellinger distance over a subset of Θ including those θ ’s which make ĥθ

densities, i.e., over {θ ∈ Θ :
∫
ĥθ (x)dx = 1}. The reason being that, even for θ ∈ Θ such that ĥθ is not a density, it could

make hθ a density. The true parameter value θ may notmake ĥθ a density, but it is not reasonable to exclude θ as an estimate
θN of itself defined by (2.6). Nevertheless, the definition of θN is equivalent to aminimization over a smaller parameter space,
as shown in the next lemma. The proofs of lemmas and theorems stated in this section are given in [28,29].

Lemma 2.1. (i) Suppose that for any θ = (α, βT )T ∈ Θ there exists θ ′ = (α′ , βT )T ∈ Θ such that
∫
exp[α

′

+r(x)β]g(x)dx =
1. Let Θ0 = {θ ∈ Θ :

∫
exp[(1, r(x))θ ]g(x)dx ≤ 1}. Then for any φ ∈ H ,

T0(φ) = argmin
θ∈Θ
‖h1/2θ − φ

1/2
‖ = arg min

θ∈Θ0
‖h1/2θ − φ

1/2
‖.

(ii) Suppose that for any θ = (α, βT )T ∈ Θ there exists θ
′

= (α
′

, βT )T ∈ Θ such that
∫
exp[α

′

+ r(x)β]gn(x)dx = 1. Let
Θn = {θ ∈ Θ :

∫
exp[(1, r(x))θ ]gn(x)dx ≤ 1}. Then for any φ ∈ H ,

T̂ (φ) = argmin
θ∈Θ
‖̂h1/2θ − φ

1/2
‖ = arg min

θ∈Θn
‖̂h1/2θ − φ

1/2
‖,

where ĥθ is defined by (2.5).

Remark 2.1. If
∫
exp[(1, r(x))θ ]g(x)dx < ∞ for any θ ∈ Θ and the parameter space Θ is of the form Θ = R × Θp with

R and Θp denoting the parameter spaces for α and β , then the condition in part (i) of Lemma 2.1 holds. Furthermore, if gn
is defined by (2.2) with kernel K0 compactly supported, then the condition in part (ii) of Lemma 2.1 also holds. Moreover,
if C < supβ∈Θp

∫
exp[r(x)β]g(x)dx < ∞ (or C < supβ∈Θp

∫
exp[r(x)β]gn(x)dx < ∞) for some constant C > 0, then the

condition in part (i) (or (ii)) of Lemma 2.1 holds withΘ = [−M,M] ×Θp for some finite positive valueM .
We nowdiscuss asymptotic properties of the proposedMHDestimator θN . First, some results on the functional T (·, ·) (see

(2.4)) related to the existence, consistency and asymptotic uniqueness of the MHD estimator of θ are stated. The following
condition (D1) and the lemma will be useful to prove above properties.
(D1) There exists an ε-neighborhood B(θ, ε) of θ such that ht−hθ is bounded by an integrable function for any t ∈ B(θ, ε).

Lemma 2.2. If (D1) holds for θ ∈ Θ , then d(t) = ‖h1/2t − φ1/2‖ is continuous at point t = θ for any φ ∈ H .

Theorem 2.1. Suppose that T0 and T̂ are defined by (2.4) and (2.6), respectively, and (D1) holds for all θ ∈ Θ . Then
(i) For every φ ∈ H , there exists T̂ (φ) ∈ Θ satisfying (2.6) with ĥθ and gn defined by (2.5) and (2.2), respectively, and the
kernel K0 in (2.2) compactly supported. For every φ ∈ H , there exists T0(φ) ∈ Θ satisfying (2.4).

(ii) Suppose that n → ∞ and m → ∞ as N → ∞ and θ0 = T0(φ) is unique. Then θN = T̂ (φm) → θ0 as N → ∞ for any
density sequences {φm}m∈N and {̂hθ }n∈N,θ∈Θ such that ‖φ

1/2
m − φ

1/2
‖ → 0 and supθ∈Θ ‖̂h

1/2
θ − h

1/2
θ ‖ → 0 as N →∞.

(iii) If {hθ }θ∈Θ is identifiable, then T0(hθ0) = θ0 uniquely for any θ0 ∈ Θ .

Remark 2.2. Condition (D1) holds for many families including normal distributions. Suppose that g(x) and h(x) denotes
density functions of the normal distributions N(0, 1) and N(µ, 1), respectively. It is easy to see that h(x) = hθ (x) =
exp[(1, r(x))θ ]g(x), where r(x) = x and θ = (α, β) = (−µ2

2 , µ). Thus condition (D1) holds for this example.

Remark 2.3. If
(
1, r(x)

)
are linearly independent, then {hθ }θ∈Θ is identifiable. To see this clearly, note that for hθ1 = hθ2 ,

we have (1, r(x))(θ1 − θ2) = 0, and so θ1 = θ2 when (1, r(x)) are linearly independent. Therefore, {hθ }θ∈Θ is identifiable
for any continuous density function g .
With further assumptions on the bandwidths and kernels in (2.2) and (2.3), the consistency of the MHD estimator of θ

follows from the continuity of functional T in theHellinger topology. This result is given next. First, we state a few conditions:
(D2) g and K0 in (2.1) and (2.2), respectively, have compact supports.
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(D3) supθ∈Θ supx(1, r(x))θ < +∞.
(D4) g in (2.1) has infinite support, K0 in (2.2) is a bounded symmetric density with support [−a0, a0], 0 < a0 <∞, and

there exists a sequence {αn} of positive numbers such that as n→∞, αn →∞ and

sup
θ∈Θ

∫
I{|x|>αn}hθ (x)dx→ 0, (2.7)

b2n sup
θ∈Θ

∫
I{|x|>αn}hθ (x) sup

|t|≤a0

|g(2)(x+ tbn)|
g(x)

dx→ 0, (2.8)

n−1b−1n sup
θ∈Θ

∫
I{|x|≤αn}hθ (x) sup

|t|≤a0

g(x+ tbn)
g2(x)

dx→ 0, (2.9)

b4n sup
θ∈Θ

∫
I{|x|≤αn}hθ (x) sup

|t|≤a0

[g(2)(x+ tbn)
g(x)

]2
dx→ 0, (2.10)

where g(k) denotes the kth derivative of g and IA denotes the indicator function of a set A.

Lemma 2.3. If (D4) holds, then as n→∞,

sup
θ∈Θ

∫
exp[(1, r(x))θ ][g1/2n (x)− g1/2(x)]2dx

P
→ 0.

Theorem 2.2. Let n→∞ andm→∞ as N →∞. Suppose that
(
1, r(x)

)
are linearly independent, (D1) holds for any θ ∈ Θ ,

and the bandwidths bn and bm in (2.2) and (2.3), respectively, satisfy bn, bm → 0 and nbn,mbm → ∞ as N → ∞. Further,
suppose that either (D2), (D3) or (D4) holds. Then ‖h1/2m −h

1/2
θ ‖

P
→ 0 and supθ∈Θ ‖̂h

1/2
θ −h

1/2
θ ‖

P
→ 0 as N →∞. Furthermore,

θN
P
→ θ as N →∞, where θN is defined by (2.6) with gn, hm and ĥθ given by (2.2), (2.3) and (2.5) respectively.

Remark 2.4. Condition (D3) is satisfied when g and hθ are two normal density functions with different standard deviations.
For example, assume that g(x) and h(x) denote density functions of N(0, 1) and N(µ, σ ), respectively, where 0 < σ < 1.
It is easy to see that h(x) = hθ (x) = exp[(1, r(x))θ ]g(x), where r1(x) = x, r2(x) = x2 and θ = (θ0, θ1, θ2) =

(−
µ2

2σ 2
− log σ , µ

σ 2
, 12 −

1
2σ 2
). If the parameter space Θ is such that its projection onto the third argument is to the left

of zero, then clearly condition (D3) holds.

Remark 2.5. Condition (D4) holds for many families and one such example is stated in Remark 2.2, i.e., g and h are two
normal density functions with the same standard deviation. Without loss of generality, we suppose the compact parameter
spaceΘ = [α, ᾱ] × [β, β̄] for some finite numbers ᾱ, α, β̄ and β . Then it is easy to show that (2.7)–(2.10) hold for some αn,
a log function of n, and any bandwidth bn such that bn → 0 and nbn →∞ as n→∞.

3. Asymptotic normality

In this section, we obtain the asymptotic distribution of the proposed MHD estimator θN . We first state following
conditions:
(D5) There exists B(θ, ε), an ε-neighborhood of θ for some ε > 0, such that for s = 1, 2 and i, j, k = 0, 1, . . . , p,

sup
t∈Θ∩B(θ,ε)

sup
x
exp

[
1
s
(1, r(x))t

]
|ri(x)rj(x)rk(x)| <∞,

where r0(x) = 1.
(D6) There exists B(θ, ε), an ε-neighborhood of θ for some ε > 0, such that for s = 1, 2, i, j, k = 0, 1, . . . , p, and

r0(x) = 1∫
|ri(x)rj(x)|2 exp[(1, r(x))θ ]hθ (x)dx <∞, (3.1)∫
|ri(x)rj(x)rk(x)|s sup

t∈Θ∩B(θ,ε)
exp[(1, r(x))t] sup

|t|≤a0
g(x+ tbn)dx = O(1), as n→∞, (3.2)∫

|ri(x)rj(x)|2 exp[2(1, r(x))θ ] sup
|t|≤a0

g(x+ tbn)dx = O(1), as n→∞. (3.3)

Under condition (D2), (D5) or (D6), we derive an expression for the bias term θN−θ , which is presented in the next theorem.
We denote I(θ) =

∫
(1, r(x))T (1, r(x))hθ (x)dx and assume that I(θ) is finite and nonsingular.
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Theorem 3.1. Suppose that θ ∈ int(Θ), K0 in (2.2) has compact support, and assumptions in Theorem 2.2 hold. Further suppose
that either (D2), (D5) or (D6) holds. Then, it follows that

θN − θ =
[
I−1(θ)+ µN

]
× 2

∫ {
exp

[
1
2
(1, r(x))θ

]
g1/2n (x)h1/2m (x)− exp[(1, r(x))θ ]gn(x)

}
(1, r(x))Tdx (3.4)

where θN is defined by (2.6) and µN is a (p+ 1)× (p+ 1)matrix with elements tending to zero in probability as N →∞.

Remark 3.1. An example inwhich condition (D5) holds is stated in Remark 2.4. In that example θ = (θ0, θ1, θ2)with θ2 < 0.
Therefore, one can easily prove that condition (D5) is satisfied. It is also clear that I(θ) is finite in this case. Condition (D6) is
satisfied for the example stated in Remark 2.2, i.e., two normal distributions with the same standard deviation.

In order to state the next theorem, which establishes the asymptotic distribution of the proposed MHD estimator θN of
θ , a few more conditions are required:
Let {αN} be a sequence of positive numbers such that αN →∞ as N →∞, and
(C0) g has infinite support (−∞,∞).
(C1) The second derivatives of g and hθ exist.
(C2) n/N → ρ ∈ (0, 1) as N →∞.
(C3) K0 and K1 in (2.2) and (2.3), respectively, are bounded symmetric densities with supports [−a0, a0] and [−a1, a1],

respectively, where 0 < a0, a1 <∞.
(C4) I(θ) =

∫
(1, r(x))T (1, r(x))hθ (x)dx and J(θ) =

∫
(1, r(x))T (1, r(x)) exp[(1, r(x))θ ]hθ (x)dx are finite.

(C5) The second derivative of g exists and satisfies for i = 0, 1, . . . , p,

b2n

∫
ε2Ni(x)hθ (x) sup

|t|≤a0

|g(2)(x+ tbn)|
g(x)

dx = O(1) as N →∞,

where εN(x) = (1, r(x))T I{|x|>αN } = (εN0(x), εN1(x), . . . , εNp(x))
T and g(k) denotes the kth derivative of g .

(C5′) The second derivative of g exists and satisfies

N1/2b2n

∫
|εN(x)|hθ (x) sup

|t|≤a0

|g(2)(x+ tbn)|
g(x)

dx = o(1) as N →∞.

(C6)

N · P(|Z1| > αN − a1bm)→ 0 as N →∞,
N · P(|X1| > αN − a0bn)→ 0 as N →∞.

(C7)

N−1/2b−1m

∫
|δN(x)|hθ (x) sup

|t|≤a1

hθ (x+ tbm)
h2θ (x)

dx→ 0 as N →∞,

N1/2b4m

∫
|δN(x)|hθ (x) sup

|t|≤a1

[
h(2)θ (x+ tbm)
hθ (x)

]2
dx→ 0 as N →∞,

N−1/2b−1n

∫
|δN(x)|hθ (x) sup

|t|≤a0

g(x+ tbn)
g2(x)

dx→ 0 as N →∞,

N1/2b4n

∫
|δN(x)|hθ (x) sup

|t|≤a0

[
g(2)(x+ tbn)
g(x)

]2
dx→ 0 as N →∞,

where δN(x) = (1, r(x))T I{|x|≤αN } = (δN0(x), δN1(x), . . . , δNp(x))
T .

(C8)

N1/2b2m

∫
|δN(x)|hθ (x) sup

|t|≤a1

|h(2)θ (x+ tbm)|
hθ (x)

dx→ 0 as N →∞,

N1/2b2n

∫
|δN(x)|hθ (x) sup

|t|≤a0

|g(2)(x+ tbn)|
g(x)

dx→ 0 as N →∞.

(C9)

sup
|x|≤αN

sup
|t|≤a1

hθ (x+ tbm)
hθ (x)

= O(1) as N →∞,

sup
|x|≤αN

sup
|t|≤a0

g(x+ tbn)
g(x)

= O(1) as N →∞.
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(C10) r(x) is differentiable and satisfies for i = 0, 1, . . . , p,

b2m

∫
I{|x|≤αN }hθ (x) sup

|t|≤a1

(
r (1)i (x+ tbm)

)2
dx→ 0 as N →∞,

b2n

∫
I{|x|≤αN }g(x) sup

|t|≤a0

[∂ri(y) exp[(1, r(y))θ ]
∂y

|y=x+tbn

]2
dx→ 0 as N →∞.

(C11)

N−1/2b−1m

∫
|δN(x)| exp

[
1
2
(1, r(x))θ

]
dx→ 0 as N →∞,

N1/2b4m

∫
|δN(x)| exp

[
1
2
(1, r(x))θ

]
dx→ 0 as N →∞.

Theorem 3.2. Suppose that θN defined by (2.6) satisfies (3.4). Further suppose that conditions (C0)–(C10) and (C5′) hold. Then
the asymptotic distribution of N1/2(θN − θ) is normal with mean 0 and varianceΣ , whereΣ is defined by

Σ = I−1(θ)
[
1
ρ
Σ0 +

1
1− ρ

Σ1

]
I−1(θ) (3.5)

with

Σ0 =

∫
(1, r(x))T (1, r(x)) exp[(1, r(x))θ ]hθ (x)dx−

∫
(1, r(x))Thθ (x)dx

∫
(1, r(x))hθ (x)dx (3.6)

and

Σ1 =

∫
(1, r(x))T (1, r(x))hθ (x)dx−

∫
(1, r(x))Thθ (x)dx

∫
(1, r(x))hθ (x)dx. (3.7)

The proof of Theorem 3.2 is given in Section 6 below. In the next few remarks, we discuss the conditions (C0)–(C11) and
examine their validity in some examples.

Remark 3.2. Conditions (C0), (C1) and (C4) are typical assumptions on the distributions, and (C3) is also a typical condition
on kernels. Conditions (C5)–(C11) and (C5′) basically require that there exists a sequence αN that controls the tails of the
underlying densities. For example, one can easily choose the sequence αN such that

G(αN) = 1+ o(N−1), G(−αN) = o(N−1),
Hθ (αN) = 1+ o(N−1), Hθ (−αN) = o(N−1),

then condition (C6) holds, where G and Hθ are the cumulative distribution functions of densities g and hθ , respectively.
Conditions (C0)–(C11) and (C5′) hold for families such as normal distributions.
Condition (C0) requires that g possesses a support (−∞,∞). However the results in Theorem 3.2 can be easily applied

to any type of infinite support. For example, the exponential distributions have an infinite support [0,∞). Consider two
exponential distributions with densities ḡ(x) = e−x and h̄(x) = λe−λx with λ > 1 as an example. Then it is easy to see
that log Xi and log Zi are distributed as g(x) = exp{x − ex} and h(x) = λ exp{x − λex}, respectively. Both g and h have the
support (−∞,∞), and h can be represented as hθ (x) = exp{(1, r(x))θ}g(x) with r(x) = ex and θ = (log λ, 1 − λ)T . Now
if we choose bn = O(N−r) with 1/8 < r < 1/4 and αN = o(logN), then conditions (C0)–(C11) and (C5′) are satisfied, see
Remark 3.3 below for detailed calculation of a simpler example.

Remark 3.3. Consider the example stated in Remark 2.2 again. It is easy to see that conditions (C0), (C1) and (C4) hold. We
can easily choose bandwidths bn, bm and kernels K0, K1 satisfying conditions (C2) and (C3). Since for k = 0, 1, 2,∫

|x|khθ (x) sup
|t|≤a0

|g(2)(x+ tbn)|
g(x)

dx = O(1) as N →∞,

conditions (C5) and (C5′) hold if Nb4n = O(1) as N →∞. Note that as N →∞,

N
∫
∞

αN

exp[−x2/2]dx ≤ N
∫
∞

αN

x exp[−x2/2]dx = N exp[−α2N/2].

Thus, if N exp[−α2N/2] → 0 as N →∞, then condition (C6) holds. Since for i = 0, 1 and j = 1, 2,∫
|x|ihθ (x) sup

|t|≤a1

∣∣∣∣∣h(2)θ (x+ tbm)hθ (x)

∣∣∣∣∣
j

dx = O(1) as N →∞
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and ∫
|x|ihθ (x) sup

|t|≤a0

∣∣∣∣g(2)(x+ tbn)g(x)

∣∣∣∣j dx = O(1) as N →∞,
(C8) and the second and fourth expressions in (C7) hold if Nb4n → 0 as N → ∞. If bnαN → 0 and N−1/2b−1n α

2
N → 0 as

N →∞, then for i = 0, 1 as N →∞,

N−1/2b−1m

∫ αN

−αN

|x|ihθ (x) sup
|t|≤a1

hθ (x+ tbm)
h2θ (x)

dx = N−1/2b−1m

∫ αN

−αN

|x|i sup
|ε|≤a1bm

exp
[
−εx+ εµ−

ε2

2

]
dx

≤ 2 exp[a1bm|µ|] · N−1/2b−1m

∫ αN

0
|x|i exp[a1bmx]dx

≤
2
a1
exp[a1bm|µ|] · N−1/2b−2m α

i
N

(
exp[a1bmαN ] − 1

)
= O

(
N−1/2b−1m α

i+1
N

)
→ 0,

and therefore the first expression in (C7) holds. Similarly, for i = 0, 1 as N →∞,

N−1/2b−1n

∫ αN

−αN

|x|ihθ (x) sup
|t|≤a0

g(x+ tbn)
g2(x)

dx = N−1/2b−1n

∫ αN

−αN

|x|i exp
[
µx−

µ2

2

]
sup
|ε|≤a0bn

exp
[
−εx−

ε2

2

]
dx

≤ N−1/2b−1n α
i
N

∫ αN

0
exp[(µ+ a0bn)x]dx

+N−1/2b−1n α
i
N

∫ 0

−αN

exp[(µ− a0bn)x]dx

= N−1/2b−1n α
i
N(µ+ a0bn)

−1(exp[(µ+ a0bn)αN ] − 1)
+N−1/2b−1n α

i
N(µ− a0bn)

−1(1− exp[−(µ− a0bn)αN ])
=

{
O
(
N−1/2b−1n α

i
N exp[|µ|αN ]

)
if µ 6= 0,

O
(
N−1/2b−1n α

i+1
N

)
if µ = 0.

Therefore, if N−1/2b−1n αN exp[|µ|αN ] → 0 as N →∞, then the third expression in (C7) holds. If bnαN = O(1) as N →∞,
then (C9) holds. It is easy to check that (C10) is satisfied. Note that as N →∞,∫ αN

−αN

exp
[
1
2
(1, r(x))θ

]
dx =

{
O
(
exp[|µ|αN/2]

)
if µ 6= 0,

O
(
αN
)

if µ = 0,

and ∫ αN

−αN

|x| exp
[
1
2
(1, r(x))θ

]
dx =

{
O
(
αN exp[|µ|αN/2]

)
if µ 6= 0,

O
(
α2N
)

if µ = 0.

So if N−1b−2m α
2
N exp[|µ|αN ] → 0 and Nb4mα

2
N exp[|µ|αN ] → 0 as N →∞, then (C11) hold. In summary, if we choose

bn = O
(
N−r

)
, 1/4 < r < 1/2

and

αN = O
(
(logN)q

)
, 1/2 < q < 1,

then conditions (C0)–(C10) and (C5′) are satisfied. Also by Remarks 2.2, 2.5 and 3.2, (3.4) holds. As a result, (3.5) holds by
Theorem 3.2.

Remark 3.4. We discuss the same example studied in Remark 3.3 here again. Simple calculation yields that the asymptotic
variance for our proposed estimator θN of θ is

Σ =
1
ρ

[
µ4 exp[µ2] − µ2 exp[µ2] + exp[µ2] − 1 −µ3 exp[µ2]

−µ3 exp[µ2] µ2 exp[µ2] + exp[µ2]

]
+

1
1− ρ

[
µ2 −µ
−µ 1

]
. (3.8)

Zhang [11] estimated θ = (α, β) using the maximum semiparametric likelihood method for model (1.1). He derived the
asymptotic variance, say Σ , of his estimator of θ . It is somewhat difficult to give an explicit expression for the asymptotic
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variance Σ in this example. Thus, here we compare asymptotic variances in the simplest case when µ = 0. If µ = 0 then
the asymptotic variance of our proposed estimator θN is

Σ =

0 0

0
1

ρ(1− ρ)

 ,
which is exactly the same asΣ . More detailed comparison ofΣ withΣ is given in Section 4 below.

Remark 3.5. AMHD estimator could be defined similarly for multivariate observations X1, . . . , Xn, Z1, . . . , Zm ∈ Rd as well.
In themultivariate case, one needs to use themultivariate version of the kernel density estimators defined in (2.2) and (2.3):

gn(x) =
1
nbdn

n∑
i=1

d∏
j=1

K0

(
xj − Xij
bn

)
,

hm(x) =
1
mbdm

m∑
i=1

d∏
j=1

K1

(
xj − Zij
bm

)
.

For simplicity here we used common bandwidths for each of the d components. To obtain an asymptotic result as in
Theorem3.2, one needs somehigher-order convergence rates involvingαN , a sequence of positive numbers inRd. Conditions
(C5), (C5′), (C7), (C8) and (C10) hold for each partial derivatives of the underlying distributions, g or hθ . For example,
condition (C5) now becomes, for j, k = 1, 2, . . . , d,

b2n

∫
ε2Ni(x)hθ (x) sup

|t1|,|t2|≤a0

|g(jk)(x+ t1ej + t2ek)|
g(x)

dx = O(1) as N →∞,

where g(jk)(x) = ∂2g(x)
∂xj∂xk

and ej is a d × 1 vector with 1 for the jth component and 0 for others. Furthermore, conditions of

(C7) hold with b−1m and b
−1
n replaced by b

−d
m and b

−d
n , respectively.

Remark 3.6. For the model (1.1), to test whether the two samples come from the same population is equivalent to testing
hypotheses H0 : θ = 0 vs H1 : |θ | > 0, or simply test H0 : β = 0 vs H1 : |β| > 0 since α is a function of β . A test statistic
could be easily constructed using the asymptotic result in Theorem 3.2 with an appropriate estimate of the asymptotic
variance. More specifically, one may use N1/2θNΣ̂−1/2 as a test statistic which is approximately normally distributed for
large N , where Σ̂ is an estimate of Σ defined by (3.5) with g , hθ , ρ and θ replaced by gn, hm, n/N and θN respectively. A
corresponding confidence interval for θ would then be (θN − z∗N−1/2Σ̂1/2, θN + z∗N−1/2Σ̂1/2) with z∗ being the z-value
corresponding to the confidence level. For the example given in Section 5 below,

Σ =

[
107.779 −2.246
−2.246 0.047

]
,

and 95% individual confidence intervals for β and α are (0.05, 0.13) and (−6.67,−2.61), respectively. A more detailed
discussion on hypothesis testing under model (2.1) will be presented in a separate paper that is under preparation.
It is well-known that Wilcoxon’s two-sample test can be used to compare two populations. However, the preceding

test is not capable of detecting differences in the two underlying distributions g and hθ completely. For instance, when
g and hθ differ only in variation but with same means, Wilcoxon’s test will conclude that the two populations are the
same. On the other hand, the test based on the MHD estimator proposed above can detect any difference in g and hθ .
Specifically, a polynomial function can be employed to approximate the logarithm of the ratio hθ/g , and then by letting
r(x) be a polynomial function, one can model any difference in g and hθ .

Remark 3.7. For numerical calculation of the proposed MHD estimator, one may use Newton–Raphson iteration method.
For an initial value of θ , one can use (1, r(z))θ to fit the points log hm(Zj)/gn(Zj), j = 1, . . . ,m. The precedingmethod can also
be used to obtain a rough idea about the domainΘ of the parameter θ . Alternatively, maximum semiparametric likelihood
estimatormay be implemented as an initial value of θ . If an empirical parameter spaceΘ is available, then theminimization
will be much easier and one has to simply employ the traversal method for small parameter spaceΘ . To the best of authors’
knowledge, there are no free codes available to test the MHD method. For simplicity, we used Θ = [−10, 10]p+1 in our
simulation and C/C ++ programming.

4. Simulation studies

In this section, we report the results of a Monte Carlo study. In particular, we plan to demonstrate numerically that the
proposed MHD estimator θN defined in (2.6) has good robustness and efficiency properties.
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Table 1
The asymptotic variance matrixes Σ and Σ of θN and θ̃ defined in (2.6) and [11], respectively, when g and h are the densities of N(0, 1) and N(µ, 1),
respectively.

ρ µ = 0.1 µ = 0.5 µ = 1
Σ Σ Σ Σ Σ Σ

1/6
[
0.01 −0.13
−0.13 7.32

] [
0.01 −0.12
−0.12 7.22

] [
0.56 −1.56
−1.56 10.83

] [
0.33 −0.73
−0.73 7.74

] [
11.51 −17.51
−17.51 33.82

] [
1.74 −2.33
−2.33 9.70

]
2/6

[
0.02 −0.15
−0.15 4.56

] [
0.02 −0.15
−0.15 4.52

] [
0.50 −1.23
−1.23 6.32

] [
0.41 −0.88
−0.88 5.01

] [
6.65 −9.65
−9.65 17.81

] [
2.02 −2.54
−2.54 6.67

]
3/6

[
0.02 −0.20
−0.20 4.04

] [
0.02 −0.20
−0.20 4.02

] [
0.59 −1.32
−1.32 5.21

] [
0.53 −1.13
−1.13 4.50

] [
5.44 −7.44
−7.44 12.87

] [
2.55 −3.05
−3.05 6.09

]
4/6

[
0.03 −0.30
−0.30 4.53

] [
0.03 −0.30
−0.30 4.52

] [
0.81 −1.74
−1.74 5.41

] [
0.78 −1.63
−1.63 5.01

] [
5.58 −7.08
−7.08 11.15

] [
3.62 −4.13
−4.13 6.67

]
5/6

[
0.06 −0.60
−0.60 7.22

] [
0.06 −0.60
−0.60 7.22

] [
1.55 −3.19
−3.19 7.93

] [
1.54 −3.14
−3.14 7.74

] [
8.06 −9.26
−9.26 12.52

] [
6.78 −7.37
−7.37 9.70

]

In this simulation study, we considered the example discussed in Remark 2.2. We assumed that g(x) and h(x) denote
density functions of the normal distributions N(0, 1) and N(µ, 1), respectively. Thus h(x) = hθ (x) = exp[(1, r(x))θ ]g(x),
where r(x) = x and θ = (α, β) = (−

µ2

2 , µ). For different µ and ρ values, Table 1 compares Σ defined in (3.5) with the
asymptotic variance matrixΣ of the maximum semiparametric likelihood estimator θ̃ = (̃α, β̃) of [11]. From Table 1, it is
easily seen that smaller values ofµ result in smaller variance of the estimator θN = (̂α, β̂). The correlations are all negative
since α = − β2

2 . For µ = 0, the asymptotic variance of θN is exactly the same as that of θ̃ (3.8), and for µ = 0.1, the
asymptotic variance of θN is almost the same as that of θ̃ for all different values of ρ. On the other hand, for large values of
µ, the asymptotic variance of θN is larger than that of θ̃ . In fact, this behavior can be seen from the expression of asymptotic
variance derived in (3.8). However, it will be evident from our simulation of Section 4 below that θN may possesses smaller
bias and mean squared error (MSE) than those of θ̃ for finite sample sizes and, at the same time, θN would be much more
robust than θ̃ .
We now compare the performance of theMHD estimator θN defined at (2.6) with Zhang’s [11]maximum semiparametric

likelihood estimator θ̃ = (̃α, β̃) by examining their biases, MSEs and α-IFs. In our simulation, we let µ = 0.5 be fixed and
therefore θ = (α, β) = (−0.125, 0.5). For each pair (n,m), we generated 500 independent sets of combined random
samples of size N = n + m = 60 from the N(0, 1) and N(µ, 1) distributions. Here the pair (n,m) takes varying values
(10, 50), (20, 40), (30, 30), (40, 20) and (50, 10). For each pair considered, we obtained estimates of the bias and MSE as
follows:

B̂ias =
1
Ns

Ns∑
i=1

(γ̂i − γ )

and

M̂SE =
1
Ns

Ns∑
i=1

(γ̂i − γ )
2,

where Ns is the number of replications (Ns = 500 in our case), and γ̂i denotes an estimate of γ for the ith replication.
Here γ = α or β , and γ̂ denotes either the proposed MHD estimators α̂ and β̂ in (2.6), or the maximum semiparametric
likelihood estimators α̃ and β̃ of [11]. The bandwidths bn and bm in (2.2) and (2.3), respectively, were taken to be hn = n−2/5
and hm = m−2/5. We used Epanechnikov kernel function given by

K(x) =
3
4

(
1− x2

)
I[−1,1](x), (4.1)

for both K0 and K1. As discussed in Remark 3.3, the above choices of kernels and bandwidths satisfy conditions (C0)–(C10)
and (C5′), and therefore Theorem 3.2 holds. Our simulation results are summarized in Table 2. From Table 2, it is clear that
for (n,m) values (40, 20) and (50, 10), α̂ is better than α̃ when estimated biases and MSEs are compared. For (20, 40), β̂
has a smaller estimated bias than that of β̃ .
In our simulation, we also examined the behavior of theMHD estimatorwhen data-driven bandwidths are employed.We

considered the adaptive kernel density estimators mentioned in Section 2, i.e., bn and bm are replaced with Snbn and Smbm,
respectively, where Sn and Sm are some robust scale statistics. We used the following robust scale estimators proposed
by [30],

Sn = 1.1926 medi
(
medj(|Xi − Xj|)

)
Sm = 1.1926 medi

(
medj(|Zi − Zj|)

)
.
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Table 2
Estimates of the biases and MSEs of θN = (̂α, β̂) and θ̃ = (̃α, β̃) defined in (2.6) and [11], respectively, when g and h are the densities of N(0, 1) and
N(0.5, 1), respectively.

(n,m) B̂ias(̂α) M̂SE(̂α) B̂ias(β̂) M̂SE(β̂) B̂ias(̃α) M̂SE(̃α) B̂ias(β̃) M̂SE(β̃)

(10, 50) 0.086 (0.089) 0.023 (0.024) −0.036 (−0.050) 0.117 (0.112) 0.060 0.022 0.034 0.105
(20, 40) 0.046 (0.048) 0.012 (0.013) −0.036 (−0.044) 0.091 (0.090) 0.013 0.011 0.046 0.085
(30, 30) 0.033 (0.035) 0.009 (0.009) −0.050 (−0.056) 0.075 (0.074) 0.006 0.010 0.015 0.066
(40, 20) 0.012 (0.013) 0.016 (0.016) −0.042 (−0.044) 0.094 (0.094) −0.019 0.018 0.033 0.087
(50, 10) −0.009 (−0.007) 0.020 (0.020) −0.065 (−0.068) 0.132 (0.129) −0.031 0.024 −0.010 0.126

For the same samples used to produce Table 2, the corresponding estimates of α̂ and β̂ are also presented in Table 2: the
values in the brackets in each cell are MHD estimates when adaptive kernels are employed. It appears that the adaptive
kernel density estimators have not much improved the performance of the MHD estimators, and the conclusion reached
from the Monte Carlo study has not impacted by bandwidth choice.
In order to examine the robustness of the estimators θN and θ̃ , we examined their behaviors in the presence of a single

outlying observation. For this purpose, the α-IF given in [12] is a suitable measure of change in estimators. Here we have
used the adapted version of the α-IF applied by [26], among many others. Note that the outlier may arise from either g(x)
or h(x). We only considered the case that the outlying value is from h(x), and similar results apply to the other case as well.
After drawing two data sets of the specified sizes n and m, we replaced the last observation obtained from density h(x) by
an integer between−9 and 11. The contamination rate is then 1/60 and the α-IFs are calculated by averaging the function

IF(x) =
W
(
(Xi)ni=1, (x, Zi)

m−1
i=1

)
−W

(
(Xi)ni=1, (Zi)

m
i=1

)
1/60

,

over 500 replications, whereW represents any functional (estimator of θ ) based on the data sets from g(x) and h(x). In the
present situation,W is either θN or θ̃ . For 500 replications, the α-IFs for different pairs of (n,m) are displayed in Fig. 1. The
preceding figure is a clear evidence of better robustness properties of θN than θ̃ in the sense of resistance to a single outlying
observation.
It can be seen from Fig. 1 that as the outlier increases in its absolute value, the α-IFs of θN (solid and dashed lines) appear

to converge to constants. In fact, the absolute values of the α-IFs of θN reach their peakswhen outlying observation is around
−1 and then slide down to 0 baseline on both directions with a constant outside the interval [−5, 5]. For θ̃ , however, its α-IF
increases dramatically in absolute value when the outlying observation moves to left from −1. When the outlier is bigger
than−1, θN and θ̃ are competitive but θ̃ still has larger α-IF in absolute value than θN . The behavior of the α-IF of θ̃ could be
expected from the fact that the semiparametric likelihood is proportional in some sense to the quantity

∏m
i=1

exp[α+βZi]
n+m exp[α+βZi]

.
Without an outlying observation, β̃ should be a value around β = 0.5. When the outlying observation x is a positive large
value, exp[̃α+β̃x]

n+m exp[̃α+β̃x]
is not an extremely small value and therefore β̃ is notmuch affected. If x is a negative valuewith |x| large

enough, then exp[̃α+β̃x]
n+m exp[̃α+β̃x]

will be extremely small and hence the maximizing process will tend to assign β̃ a negative value
with a large absolute value. Therefore, when x is negative with |x| large enough, then the α-IF will be negative with large
absolute values as shown in Fig. 1.

5. An example

On the basis of data from 100 participants, [31] studies the relationship between age and coronary disease status. Table 3
lists the values for age (X) and presence of evidence of significant heart disease (Y = 1: ‘‘Yes’’, Y = 0: ‘‘No’’). Then the sample
data (Xi, Yi), i = 1, . . . , 100, can be thought of as being drawn independently and identically from the joint distribution of
(X, Y ). The proposedMHD estimate can be applied to this data set with n = 57 andm = 43. The bandwidthswere chosen as
hn = n−2/5 and hm = m−2/5 and the Epanechnikov kernel function defined in (4.1) is employed for the two kernels K0 and K1
in (2.2) and (2.3), respectively. By fitting the model (1.1), we obtained the estimates for θ as θN = (̂α, β̂) = (−4.64, 0.09).
When compared with the estimates given in [11], (̃α, β̃) = (−5.03, 0.11), our estimates seemmore conservative, i.e., they
are smaller in absolute values than those in [11].
To compare the robustness of the MHD estimator, θN , and the maximum semiparametric likelihood estimator, θ̃ , we

contaminated the data and observed the change in behavior of θN and θ̃ . Two observations were replaced: (20, 0) by (10, 1)
and (69, 1) by (99, 0). The resultingMHDestimates remained unchanged,whereas themaximumsemiparametric likelihood
estimates were significantly affected and ended up with θ̃ = (̃α, β̃) = (−3.16, 0.07). Thus, in this example, the MHD
estimator is clearlymore robust. This is another evidence of the fact that theMHDestimator ismore resistant against outliers
than the maximum semiparametric likelihood estimator.

6. Proof of asymptotic normality

To prove Theorem 3.2, we first state a series of lemmas that are employed in the proof.
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(a) (n,m) = (10, 50). (b) (n,m) = (20, 40).
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(c) (n,m) = (30, 30). (d) (n,m) = (40, 20).
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(e) (n,m) = (50, 10).

Fig. 1. The α-influence functions for α̂ (solid), β̂ (dashed), α̃ (dotted) and β̃ (dot-dashed) with respect to single outlier, where θN = (̂α, β̂) and θ̃ = (̃α, β̃)
are defined in (2.6) and [11], respectively.
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Table 3
Age and coronary heart disease status (CHD) of 100 subjects.

AGE CHD AGE CHD AGE CHD AGE CHD AGE CHD AGE CHD AGE CHD

20 0 30 1 37 0 43 0 48 1 55 1 60 0
23 0 32 0 37 1 43 0 48 1 56 1 60 1
24 0 32 0 37 0 43 1 49 0 56 1 61 1
25 0 33 0 38 0 44 0 49 0 56 1 62 1
25 1 33 0 38 0 44 0 49 1 57 0 62 1
26 0 34 0 39 0 44 1 50 0 57 0 63 1
26 0 34 0 39 1 44 1 50 1 57 1 64 0
28 0 34 1 40 0 45 0 51 0 57 1 64 1
28 0 34 0 40 1 45 1 52 0 57 1 65 1
29 0 34 0 41 0 46 0 52 1 57 1 69 1
30 0 35 0 41 0 46 1 53 1 58 0
30 0 35 0 42 0 47 0 53 1 58 1
30 0 36 0 42 0 47 0 54 1 58 1
30 0 36 1 42 0 47 1 55 0 59 1
30 0 36 0 42 1 48 0 55 1 59 1

Lemma 6.1. Suppose that (C3)–(C6) hold. Then as N →∞,

N1/2
∫
εN(x) exp

[
1
2
(1, r(x))θ

]
g1/2n (x)h1/2m (x)dx

P
→ 0, (6.1)

N1/2
∫
εN(x) exp

[
1
2
(1, r(x))θ

]
h1/2θ (x)g1/2n (x)dx

P
→ 0. (6.2)

Proof. By Cauchy–Schwarz Inequality,

N · E
[∫

εNi(x) exp
[
1
2
(1, r(x))θ

]
g1/2n (x)h1/2m (x)dx

]2
≤ N · E

[∫
ε2Ni(x) exp[(1, r(x))θ ]gn(x)dx

]
· E
[∫
I{|x|>αN }hm(x)dx

]
= N ·∆1 ·∆2, say.

Note that by a Taylor expansion and using assumptions (C4) and (C5)

|∆1| =

∫ ∫
ε2Ni(x) exp[(1, r(x))θ ]

1
bn
K0

(
y− x
bn

)
g(y)dydx

=

∫
ε2Ni(x) exp[(1, r(x))θ ]

∫ a0

−a0
K0(t)g(x+ tbn)dtdx

=

∫
ε2Ni(x) exp[(1, r(x))θ ]

∫ a0

−a0
K0(t)

(
g(x)+ g(1)(x)tbn +

1
2
g(2)(ξ)t2b2n

)
dtdx

≤

∫
r2i (x)hθ (x)dx+

1
2
b2n

∫
ε2Ni(x)hθ (x) sup

|t|≤a0

|g(2)(x+ tbn)|
g(x)

dx
∫ a0

−a0
t2K0(t)dt

= O(1),

i.e.,∆1 is bounded. On the other hand,

|∆2| =

∫ ∫
I{|x|>αN }

1
bm
K1

(
y− x
bm

)
hθ (y)dydx

=

∫ ∫
I{|x|>αN }K1(t)hθ (x+ tbm)dtdx

=

∫ a1

−a1
K1(t)

∫
|z−tbm|>αN

hθ (z)dzdt

≤

∫ a1

−a1
K1(t)dt

∫
|z|>αN−a1bm

hθ (z)dz

= P(|Z1| > αN − a1bm). (6.3)

By assumption (C6) we have that N · E
[∫
εNi(x) exp[ 12 (1, r(x))θ ]g

1/2
n (x)h1/2m (x)dx

]2
→ 0, i.e., (6.1) holds.
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By Cauchy–Schwarz Inequality and using a similar argument as in (6.3),

N · E
[∫

εNi(x) exp
[
1
2
(1, r(x))θ

]
h1/2θ (x)g1/2n (x)dx

]2
≤ N ·

∫
r2i (x) exp[(1, r(x))θ ]hθ (x)dx · E

[∫
I{|x|>αN }gn(x)dx

]
= N ·

∫
r2i (x) exp[(1, r(x))θ ]hθ (x)dx ·

∫ ∫
I{|x|>αN }

1
bn
K0

(
y− x
bn

)
g(y)dydx

≤ N ·
∫
r2i (x) exp[(1, r(x))θ ]hθ (x)dx · P(|X1| > αN − a0bn),

and by assumptions (C4) and (C6) we have that (6.2) holds. �

Lemma 6.2. Suppose that (C0)–(C3) and (C7) hold. Then as N →∞,

N1/2
∫
|δN(x)|

(
h1/2m (x)− h1/2θ (x)

)2
dx

P
→ 0, (6.4)

N1/2
∫
|δN(x)| exp[(1, r(x))θ ]

(
g1/2n (x)− g1/2(x)

)2
dx

P
→ 0. (6.5)

Proof. Note that

N1/2
∫
|δN(x)|

(
h1/2m (x)− h1/2θ (x)

)2
dx ≤ N1/2

∫
|δN(x)|h−1θ (x)

(
hm(x)− hθ (x)

)2
dx

≤ 2
[
N1/2

∫
|δN(x)|h−1θ (x)

(
hm(x)− Ehm(x)

)2
dx

+N1/2
∫
|δN(x)|h−1θ (x)

(
Ehm(x)− hθ (x)

)2
dx
]

= 2(A1N + A2N), say.

By conditions (C0), (C2), (C3) and (C7) as N →∞,

E|A1N | = N1/2
∫
|δN(x)|h−1θ (x)E

(
hm(x)− Ehm(x)

)2
dx

≤ N1/2
∫
|δN(x)|h−1θ (x)

1
mb2m

∫
K 21

(
y− x
bm

)
hθ (y)dydx

= N1/2m−1b−1m

∫
|δN(x)|

∫ a1

−a1
K 21 (t)hθ (x+ tbm)h

−1
θ (x)dtdx

≤ N1/2m−1b−1m

∫
|δN(x)| sup

|t|≤a1

hθ (x+ tbm)
hθ (x)

dx
∫ a1

−a1
K 21 (t)dt

→ 0,

i.e., A1N
P
→ 0 as N →∞. By a Taylor expansion and using conditions (C1) and (C7),

|A2N | = N1/2
∫
|δN(x)|h−1θ (x)

[∫ a1

−a1
K1(t)

(
hθ (x+ tbm)− hθ (x)

)
dt
]2
dx

≤
1
4
N1/2b4m

∫
|δN(x)|h−1θ (x)

[
sup
|t|≤a1
|h(2)θ (x+ tbm)|

∫ a1

−a1
t2K1(t)dt

]2
dx

≤
1
4
N1/2b4m

∫
|δN(x)|hθ (x) sup

|t|≤a1

[
h(2)θ (x+ tbm)
hθ (x)

]2
dx
(∫ a1

−a1
t2K1(t)dt

)2
→ 0.

Hence (6.4) holds. Proof of (6.5) is similar to that of (6.4). �

Lemma 6.3. Suppose that (C0)–(C7) hold. Then the asymptotic distribution of

N1/2
∫
(1, r(x))T exp

[
1
2
(1, r(x))θ

]
g1/2n (x)

(
h1/2m (x)− h1/2θ (x)

)
dx (6.6)
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is the same as that of

N1/2
∫
δN(x)h

1/2
θ (x)

(
h1/2m (x)− h1/2θ (x)

)
dx.

Proof. From Lemma 6.1,

N1/2
∫
εN(x) exp

[
1
2
(1, r(x))θ

]
g1/2n (x)

(
h1/2m (x)− h1/2θ (x)

)
dx

P
→ 0,

and as a result the asymptotic distribution of (6.6) is the same as that of

N1/2
∫
δN(x) exp

[
1
2
(1, r(x))θ

]
g1/2n (x)

(
h1/2m (x)− h1/2θ (x)

)
dx.

By Cauchy–Schwarz Inequality{
N1/2

∫
δNi(x) exp

[
1
2
(1, r(x))θ

] (
g1/2n (x)− g1/2(x)

)(
h1/2m (x)− h1/2θ (x)

)
dx
}2

≤ N1/2
∫
|δNi(x)| exp[(1, r(x))θ ]

(
g1/2n (x)− g1/2(x)

)2
dx N1/2

∫
|δNi(x)|

(
h1/2m (x)− h1/2θ (x)

)2
dx,

which is oP(1) by Lemma 6.2. Hence the result follows. �

Remark 6.1. In fact, the asymptotic distribution of (6.6) is the same as that of

N1/2
∫
(1, r(x))Th1/2θ (x)

(
h1/2m (x)− h1/2θ (x)

)
dx.

The reason being that as N →∞,

N1/2
∫
εN(x)h

1/2
θ (x)

(
h1/2m (x)− h1/2θ (x)

)
dx

P
→ 0

under conditions (C3), (C4) and (C6). The proof is similar to that of Lemma 6.1 and is therefore omitted.

Remark 6.2. Instead of condition (C7), if hθ and g have bounded second derivatives and conditions (C9) and (C11) hold, then
Lemma 6.3 still holds. Since{

N1/2
∫
δNi(x) exp

[
1
2
(1, r(x))θ

] (
g1/2n (x)− g1/2(x)

)(
h1/2m (x)− h1/2θ (x)

)
dx
}2

≤ N1/2
∫
|δNi(x)| exp

[
1
2
(1, r(x))θ

] (
g1/2n (x)− g1/2(x)

)2
dx

×N1/2
∫
|δNi(x)| exp

[
1
2
(1, r(x))θ

] (
h1/2m (x)− h1/2θ (x)

)2
dx,

similar arguments as in the proof of Lemmas 6.2 and 6.3 give above conclusion.

Lemma 6.4. Suppose that (C4) and (C6) hold. Then as N →∞,

N1/2
∫
|εN(x)|hθ (x)dx→ 0,

N1/2 ·
1
m

m∑
i=1

εN(Zi)
P
→ 0,

N1/2 ·
1
n

n∑
i=1

εN(Xi) exp[(1, r(Xi))θ ]
P
→ 0.

Proof. By Cauchy–Schwarz Inequality,

N1/2
∫
|εNi(x)|hθ (x)dx ≤

[
N
∫
I{|x|>αN }hθ (x)dx

]1/2 [∫
r2i (x)hθ (x)dx

]1/2
=

[
NP(|Z1| > αN)

]1/2 [∫
r2i (x)hθ (x)dx

]1/2
→ 0.
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As a result,

E

∣∣∣∣∣N1/2 · 1m
m∑
i=1

εN(Zi)

∣∣∣∣∣ ≤ E

[
N1/2 ·

1
m

m∑
i=1

|εN(Zi)|

]
= N1/2

∫
|εN(x)|hθ (x)dx

→ 0,

E

∣∣∣∣∣N1/2 · 1n
n∑
i=1

εN(Xi) exp[(1, r(Xi))θ ]

∣∣∣∣∣ ≤ E

[
N1/2 ·

1
n

n∑
i=1

|εN(Xi)| exp[(1, r(Xi))θ ]

]
= N1/2

∫
|εN(x)|hθ (x)dx

→ 0,

and hence the results follow. �

Lemma 6.5. Suppose that (C0)–(C4) and (C8)–(C10) hold. Then as N →∞,

N1/2
∫
δN(x)hm(x)dx− N1/2

1
m

m∑
i=1

δN(Zi)
P
→ 0,

N1/2
∫
δN(x) exp[(1, r(x))θ ]gn(x)dx− N1/2

1
n

n∑
i=1

δN(Xi) exp[(1, r(Xi))θ ]
P
→ 0.

Proof. We give only the proof for the second convergence, and the proof for the first convergence is similar. Let DNi =
N1/2

∫
δNi(x) exp[(1, r(x))θ ]gn(x)dx− N1/2 1n

∑n
i=1 δNi(Xi) exp[(1, r(Xi))θ ], i = 0, 1, . . . , p. Then by (C8)

|E[DNi]| = N1/2
∣∣∣∣∫ δNi(x) exp[(1, r(x))θ ]E[gn(x)]dx−

∫
δNi(x)hθ (x)dx

∣∣∣∣
= N1/2

∣∣∣∣∫ δNi(x) exp[(1, r(x))θ ]
∫ a0

−a0
K0(t)

(
g(x+ tbn)− g(x)

)
dtdx

∣∣∣∣
≤ N1/2b2n

∫
|δNi(x)|hθ (x) sup

|t|≤a0

|g(2)(x+ tbn)|
g(x)

dx
∫ a0

−a0
t2K0(t)dt

→ 0.

Note that

Var[DNi] ≤
N
n
E
[∫

δNi(x) exp[(1, r(x))θ ]
1
bn
K0

(
x− X1
bn

)
dx− δNi(X1) exp[(1, r(X1))θ ]

]2
=
N
n
E
[∫ a0

−a0
K0(t)

(
δNi(X1 + tbn) exp[(1, r(X1 + tbn))θ ] − δNi(X1) exp[(1, r(X1))θ ]

)
dt
]2

=
N
n
E
[∫ a0

−a0
K0(t)ri(X1 + tbn) exp[(1, r(X1 + tbn))θ ]

(
I{|X1+tbn|≤αN } − I{|X1|≤αN }

)
dt

+

∫ a0

−a0
K0(t)I{|X1|≤αN }

(
ri(X1 + tbn) exp[(1, r(X1 + tbn))θ ] − ri(X1) exp[(1, r(X1))θ ]

)
dt
]2

≤
2N
n

{
E
[∫ a0

−a0
K0(t)ri(X1 + tbn) exp[(1, r(X1 + tbn))θ ]

(
I{|X1+tbn|≤αN } − I{|X1|≤αN }

)
dt
]2

+ E
[∫ a0

−a0
K0(t)I{|X1|≤αN }

(
ri(X1 + tbn) exp[(1, r(X1 + tbn))θ ] − ri(X1) exp[(1, r(X1))θ ]

)
dt
]2}

=
2N
n
(BNi + CNi), say.

By Cauchy–Schwarz Inequality,

BNi ≤ E
∫ a0

−a0
K0(t)r2i (X1 + tbn) exp[2(1, r(X1 + tbn))θ ]

(
I{|X1+tbn|≤αN } − I{|X1|≤αN }

)2
dt
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=

∫ a0

0
K0(t)

[∫
−αN

−αN−tbn
r2i (y+ tbn) exp[2(1, r(y+ tbn))θ ]g(y)dy

+

∫ αN

αN−tbn
r2i (y+ tbn) exp[2(1, r(y+ tbn))θ ]g(y)dy

]
dt

+

∫ 0

−a0
K0(t)

[∫
−αN−tbn

−αN

r2i (y+ tbn) exp[2(1, r(y+ tbn))θ ]g(y)dy

+

∫ αN−tbn

αN

r2i (y+ tbn) exp[2(1, r(y+ tbn))θ ]g(y)dy
]
dt. (6.7)

Note that r2i (x) exp[(1, r(x))θ ]hθ (x) is bounded by (C4) and therefore by (C9)∫ a0

0
K0(t)

∫
−αN

−αN−tbn
r2i (y+ tbn) exp[2(1, r(y+ tbn))θ ]g(y)dy

=

∫ a0

0
K0(t)

∫
−αN+tbn

−αN

r2i (y) exp[2(1, r(y))θ ]g(y− tbn)dydt

≤ sup
|x|≤αN

sup
|t|≤a0

g(x+ tbn)
g(x)

∫ a0

0
K0(t)

∫
−αN+tbn

−αN

r2i (y) exp[(1, r(y))θ ]hθ (y)dydt

= O
(
bn

∫ a0

0
tK0(t)dt

)
→ 0,

as N → ∞, and other three terms on the r.h.s. of (6.7) go to zero using similar arguments. Thus BNi → 0 as N → ∞. For
CNi, by Cauchy–Schwarz inequality and (C10) we have

CNi ≤ E
[∫ a0

−a0
K0(t)I{|X1|≤αN }

(
ri(X1 + tbn) exp[(1, r(X1 + tbn))θ ] − ri(X1) exp[(1, r(X1))θ ]

)2
dt
]

=

∫ a0

−a0
K0(t)

∫
I{|x|≤αN }

(
ri(x+ tbn) exp[(1, r(x+ tbn))θ ] − ri(x) exp[(1, r(x))θ ]

)2
g(x)dxdt

≤ b2n

∫
I{|x|≤αN }g(x) sup

|t|≤a0

[∂ri(y) exp[(1, r(y))θ ]
∂y

|y=x+tbn

]2
dx
∫ a0

−a0
t2K0(t)dt

→ 0.

Thus Var[DNi] → 0 as N →∞. This yields that E[D2Ni] = Var[DNi] + (E[DNi])
2
→ 0, and therefore DNi

P
→ 0 as N →∞. �

Proposition 6.1. Suppose that (C0)–(C10) hold. Then the asymptotic distribution of (6.6) is N
(
0, 1
4(1−ρ)Σ1

)
with Σ1 defined

by (3.7).

Proof. In view of Lemma 6.3, we only need to give the asymptotic distribution of N1/2
∫
δN(x)h

1/2
θ (x)

(
h1/2m (x)− h1/2θ (x)

)
dx.

Applying the following algebraic expression, with b ≥ 0, a > 0,

b1/2 − a1/2 =
b− a
2a1/2

−

(
b1/2 − a1/2

)2
2a1/2

, (6.8)

we have that as N →∞,

N1/2
∫
δN(x)h

1/2
θ (x)

(
h1/2m (x)− h1/2θ (x)

)
dx

=
1
2
N1/2

∫
δN(x)

(
hm(x)− hθ (x)

)
dx−

1
2
N1/2

∫
δN(x)

(
h1/2m (x)− h1/2θ (x)

)2
dx

=
1
2
N1/2

∫
δN(x)

(
hm(x)− hθ (x)

)
dx+ oP(1) (by Lemma 6.2)

=
1
2
N1/2

[
1
m

m∑
i=1

δN(Zi)−
∫
δN(x)hθ (x)dx

]
+
1
2
N1/2

[∫
δN(x)hm(x)dx−

1
m

m∑
i=1

δN(Zi)

]
+ oP(1)
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=
1
2
N1/2

[
1
m

m∑
i=1

δN(Zi)−
∫
δN(x)hθ (x)dx

]
+ oP(1) (by Lemma 6.5)

=
1
2
N1/2

[
1
m

m∑
i=1

(1, r(Zi))T −
∫
(1, r(x))Thθ (x)dx

]
+ oP(1) (by Lemma 6.4).

Obviously the asymptotic distribution ofm1/2
[ 1
m

∑m
i=1(1, r(Zi))

T
−
∫
(1, r(x))Thθ (x)dx

]
is N

(
0,Σ1

)
. Hence the result. �

Lemma 6.6. Suppose that (C0)–(C7) and (C5′) hold. Then the asymptotic distribution of

N1/2
∫
(1, r(x))T exp[(1, r(x))θ ]g1/2n (x)

(
g1/2n (x)− g1/2(x)

)
dx (6.9)

is the same as that of

N1/2
∫
δN(x) exp[(1, r(x))θ ]g1/2(x)

(
g1/2n (x)− g1/2(x)

)
dx.

Proof. Note that by Cauchy–Schwarz Inequality, a Taylor expansion, (C5′) and Lemma 6.4,

E
∣∣∣∣N1/2 ∫ εNi(x) exp[(1, r(x))θ ]gn(x)dx

∣∣∣∣
≤ N1/2

∫
|εNi(x)| exp[(1, r(x))θ ]

∫ a0

−a0
K0(t)g(x+ tbn)dtdx

≤ N1/2
∫
|εNi(x)| exp[(1, r(x))θ ]

∫ a0

−a0
K0(t)

(
g(x)+ g(1)(x)tbn +

1
2
t2b2n sup

|t|≤a0
|g(2)(x+ tbn)|

)
dtdx

≤ N1/2
∫
|εNi(x)|hθ (x)dx+

1
2
N1/2b2n

∫
|εNi(x)|hθ (x) sup

|t|≤a0

|g(2)(x+ tbn)|
g(x)

∫ a0

−a0
t2K0(t)dt

→ 0.

Thus N1/2
∫
εN(x) exp[(1, r(x))θ ]gn(x)dx

P
→ 0. Combined with the result in Lemma 6.1, we therefore have

N1/2
∫
εN(x) exp[(1, r(x))θ ]g1/2n (x)

(
g1/2n (x)− g1/2(x)

)
dx

P
→ 0,

and so the asymptotic distribution of (6.9) is the same as that of

N1/2
∫
δN(x) exp[(1, r(x))θ ]g1/2n (x)

(
g1/2n (x)− g1/2(x)

)
dx

P
→ 0.

The result now follows from Lemma 6.2. �

Proposition 6.2. Suppose that (C0)–(C10) and (C5′) hold. Then the asymptotic distribution of (6.9) is N
(
0, 14ρΣ0

)
with Σ0

defined by (3.6).

Proof. Similar to that of Proposition 6.1.
Again in view of Lemma 6.6, we only need to give the asymptotic distribution of N1/2

∫
δN(x) exp[(1, r(x))θ ]g1/2(x)

(
g1/2n

(x)− g1/2(x)
)
dx. Applying the algebraic expression (6.8) we have that as N →∞,

N1/2
∫
δN(x) exp[(1, r(x))θ ]g1/2(x)

(
g1/2n (x)− g1/2(x)

)
dx

=
1
2
N1/2

∫
δN(x) exp[(1, r(x))θ ]

(
gn(x)− g(x)

)
dx+

1
2
N1/2

∫
δN(x) exp[(1, r(x))θ ]

(
g1/2n (x)− g1/2(x)

)2
dx

=
1
2
N1/2

∫
δN(x) exp[(1, r(x))θ ]

(
gn(x)− g(x)

)
dx+ oP(1) (by Lemma 6.2)

=
1
2
N1/2

{1
n

n∑
i=1

δN(Xi) exp[(1, r(Xi))θ ] −
∫
δN(x)hθ (x)dx

}
+
1
2
N1/2

{∫
δN(x) exp[(1, r(x))θ ]gn(x)dx−

1
n

n∑
i=1

δN(Xi) exp[(1, r(Xi))θ ]
}
+ oP(1)
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=
1
2
N1/2

{1
n

n∑
i=1

δN(Xi) exp[(1, r(Xi))θ ] −
∫
δN(x)hθ (x)dx

}
+ oP(1) (by Lemma 6.5)

=
1
2
N1/2

{1
n

n∑
i=1

(1, r(Xi))T exp[(1, r(Xi))θ ] −
∫
(1, r(x))Thθ (x)dx

}
+ oP(1) (by Lemma 6.4).

Obviously the asymptotic distribution of n1/2
[ 1
n

∑n
i=1(1, r(Xi))

T exp[(1, r(Xi))θ ] −
∫
(1, r(x))Thθ (x)dx

]
is N

(
0,Σ0

)
. Hence

the result. �

Proof of Theorem 3.2. Note that by Lemmas 6.3 and 6.6

N1/2
∫ {

exp
[
1
2
(1, r(x))θ

]
g1/2n (x)h1/2m (x)− exp[(1, r(x))θ ]gn(x)

}
(1, r(x))Tdx

= N1/2
∫
(1, r(x))T exp

[
1
2
(1, r(x))θ

]
g1/2n (x)

(
h1/2m (x)− h1/2θ (x)

)
dx

−N1/2
∫
(1, r(x))T exp[(1, r(x))θ ]g1/2n (x)

(
g1/2n (x)− g1/2(x)

)
dx

= N1/2
∫
δN(x)h

1/2
θ (x)

(
h1/2m (x)− h1/2θ (x)

)
dx− N1/2

∫
δN(x) exp[(1, r(x))θ ]g1/2(x)

(
g1/2n (x)− g1/2(x)

)
dx+ oP(1)

and the first two terms on the r.h.s. of the preceding expression are independent. Then by Propositions 6.1 and 6.2 and
Slutsky’s theorem, the result follows. �
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Appendix

Proof of Theorem 3.1. From Theorem 2.2 we have that θN
P
→ θ as N → ∞. Since t = θN ∈ Θ minimizes the Hellinger

distance between ĥt and hm, θN maximizes
∫
ĥ1/2t (x)h1/2m (x)dx −

∫ 1
2 ĥt(x)dx. Also since K0 has compact support, we have

0 =
∫

∂
∂t [̂h

1/2
t (x)h1/2m (x)− 1

2 ĥt(x)]|t=θNdx, i.e.,∫
exp

[
1
2
(1, r(x))θN

]
g1/2n (x)h1/2m (x)(1, r(x))Tdx−

∫
exp[(1, r(x))θN ]gn(x)(1, r(x))Tdx = 0. (A.1)

We will prove in the following that under condition (D2), (D5) or (D6), (A.1) will reduce to∫ {
exp

[
1
2
(1, r(x))θ

]
g1/2n (x)h1/2m (x)− exp[(1, r(x))θ ]gn(x)

}
(1, r(x))Tdx

−

[
1
2

∫
hθ (x)(1, r(x))T (1, r(x))dx+ cN

]
(θN − θ) = 0, (A.2)

where cN is a (p+ 1)× (p+ 1)matrix with elements tending to zero in probability as N →∞, i.e., (3.4) holds.
(i) Suppose that (D2) or (D5) holds. Then for any t ∈ Θ ∩ B(θ, ε),∣∣∣∣∫ ri(x)rj(x)rk(x) exp[(1, r(x))t]gn(x)dx∣∣∣∣ ≤ C ∫ gn(x)dx = C∣∣∣∣∫ ri(x)rj(x)rk(x) exp [12 (1, r(x))t

]
g1/2n (x)h1/2m (x)dx

∣∣∣∣ ≤ C(∫ gn(x)dx)1/2 (∫ hm(x)dx)1/2
= C

for some positive constant C . Therefore, by a Taylor expansion of θN at θ , one obtains with θt = tθ + (1 − t)θN for some
0 < t < 1,∫

exp
[
1
2
(1, r(x))θN

]
g1/2n (x)h1/2m (x)(1, r(x))Tdx

http://www.ssc.ca/main/about/awards/awards2008_e.html#Robillard
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=

∫ {
exp

[
1
2
(1, r(x))θ

]
+
1
2
exp

[
1
2
(1, r(x))θ

]
(1, r(x))(θN − θ)

+
1
8
exp

[
1
2
(1, r(x))θt

]
(θN − θ)

T (1, r(x))T (1, r(x))(θN − θ)
}
g1/2n (x)h1/2m (x)(1, r(x))Tdx

=

∫
exp

[
1
2
(1, r(x))θ

]
g1/2n (x)h1/2m (x)(1, r(x))Tdx

+
1
2

∫
exp

[
1
2
(1, r(x))θ

]
g1/2n (x)h1/2m (x)(1, r(x))T (1, r(x))dx(θN − θ)+ aN(θN − θ), (A.3)∫

exp[(1, r(x))θN ]gn(x)(1, r(x))Tdx =
∫ {
exp[(1, r(x))θ ] + exp[(1, r(x))θ ](1, r(x))(θN − θ)

+
1
2
exp[(1, r(x))θt ](θN − θ)T (1, r(x))T (1, r(x))(θN − θ)

}
gn(x)(1, r(x))Tdx

=

∫
exp[(1, r(x))θ ]gn(x)(1, r(x))Tdx+

∫
exp[(1, r(x))θ ]gn(x)(1, r(x))T (1, r(x))dx(θN − θ)+ bN(θN − θ), (A.4)

where aN and bN are (p + 1) × (p + 1) matrixes with elements tending to zero in probability as N → ∞ by the fact that
θN → θ . From (A.1), (A.3) and (A.4), we obtain

0 =
∫ {

exp
[
1
2
(1, r(x))θ

]
g1/2n (x)h1/2m (x)− exp[(1, r(x))θ ]gn(x)

}
(1, r(x))Tdx

+

{
1
2

∫
exp

[
1
2
(1, r(x))θ

]
g1/2n (x)h1/2m (x)(1, r(x))T (1, r(x))dx

−

∫
exp[(1, r(x))θ ]gn(x)(1, r(x))T (1, r(x))dx

}
(θN − θ)+ [aN − bN ](θN − θ). (A.5)

Since either (D2) or (D5) holds,∣∣∣∣∫ exp [12 (1, r(x))θ
] {
g1/2n (x)h1/2m (x)− g1/2(x)h1/2θ (x)

}
(1, r(x))T (1, r(x))dx

∣∣∣∣
≤ C

{∫
g1/2n (x)|h1/2m (x)− h1/2θ (x)|dx+

∫
h1/2θ (x)|g1/2n (x)− g1/2(x)|dx

}
≤ C

{[∫
(h1/2m (x)− h1/2θ (x))2dx

]1/2
+

[∫
(g1/2n (x)− g1/2(x))2dx

]1/2}
with the r.h.s. of the preceding inequality goes to zero in probability using the results in Theorem 2.2. Thus,∫

exp
[
1
2
(1, r(x))θ

]
g1/2n (x)h1/2m (x)(1, r(x))T (1, r(x))dx

P
→

∫
hθ (x)(1, r(x))T (1, r(x))dx. (A.6)

Similarly∣∣∣∣∫ exp[(1, r(x))θ ](gn(x)− g(x))(1, r(x))T (1, r(x))dx∣∣∣∣ ≤ C ∫ |(g1/2n (x)− g1/2(x))(g1/2n (x)+ g1/2(x))|dx

≤ C
[∫

(g1/2n (x)− g1/2(x))2dx
]1/2[∫

(g1/2n (x)+ g1/2(x))2dx
]1/2

≤ 2C
[∫

(g1/2n (x)− g1/2(x))2dx
]1/2

P
→ 0,

i.e., ∫
exp[(1, r(x))θ ]gn(x)(1, r(x))T (1, r(x))dx

P
→

∫
hθ (x)(1, r(x))T (1, r(x))dx. (A.7)

As a result, (A.6) reduces to (A.2).
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(ii) Suppose (D6) holds. Then by (3.2),

E
∣∣∣∣∫ |ri(x)rj(x)rk(x)| sup

t∈Θ∩B(θ,ε)
exp[(1, r(x))t]gn(x)dx

∣∣∣∣ = ∫ |ri(x)rj(x)rk(x)| sup
t∈Θ∩B(θ,ε)

exp[(1, r(x))t]E[gn(x)]dx

=

∫
|ri(x)rj(x)rk(x)| sup

t∈Θ∩B(θ,ε)
exp[(1, r(x))t]

∫ a0

−a0
K0(t)g(x+ tbn)dtdx

≤

∫
|ri(x)rj(x)rk(x)| sup

t∈Θ∩B(θ,ε)
exp[(1, r(x))t] sup

|t|≤a0
g(x+ tbn)dx

= O(1). (A.8)

Therefore,
∫
|ri(x)rj(x)rk(x)| supt∈Θ∩B(θ,ε) exp[(1, r(x)θt)]gn(x)dx = OP(1) and thus (A.5) holds. Similarly,

E
[∫
|ri(x)rj(x)rk(x)| sup

t∈Θ∩B(θ,ε)
exp

[
1
2
(1, r(x))t

]
g1/2n (x)h1/2m (x)dx

]2
≤ E

[∫
|ri(x)rj(x)rk(x)|2 sup

t∈Θ∩B(θ,ε)
exp[(1, r(x))t]gn(x)dx

∫
hm(x)dx

]
=

∫
|ri(x)rj(x)rk(x)|2 sup

t∈Θ∩B(θ,ε)
exp[(1, r(x))t]E[gn(x)]dx

≤

∫
|ri(x)rj(x)rk(x)|2 sup

t∈Θ∩B(θ,ε)
exp[(1, r(x))t] sup

|t|≤a0
g(x+ tbn)dx

= O(1)

and hence (A.3) holds. As a result (A.5) holds. By (3.1), (3.2) and a similar argument as in (A.8),∣∣∣∣∫ ri(x)rj(x) exp [12 (1, r(x))θ
] {
g1/2n (x)h1/2m (x)− g1/2(x)h1/2θ (x)

}
dx
∣∣∣∣

≤

∫
|ri(x)rj(x)| exp

[
1
2
(1, r(x))θ

]
g1/2n (x)|h1/2m (x)− h1/2θ (x)|dx

+

∫
|ri(x)rj(x)| exp

[
1
2
(1, r(x))θ

]
h1/2θ (x)|g1/2n (x)− g1/2(x)|dx

≤

[∫
|ri(x)rj(x)|2 exp[(1, r(x))θ ]gn(x)dx

]1/2[∫ (
h1/2m (x)− h1/2θ (x)

)2
dx
]1/2

+

[∫
|ri(x)rj(x)|2 exp[(1, r(x))θ ]hθ (x)dx

]1/2[∫ (
g1/2n (x)− g1/2(x)

)2
dx
]1/2

= OP

([∫ (
h1/2m (x)− h1/2θ (x)

)2
dx
]1/2)

+ O
([∫ (

g1/2n (x)− g1/2(x)
)2
dx
]1/2)

and thus (A.6) holds. By (3.1), (3.3) and using a similar argument as in (A.8),∣∣∣∣∫ ri(x)rj(x) exp[(1, r(x))θ ](gn(x)− g(x))dx∣∣∣∣2
≤

[∫
|ri(x)rj(x)| exp[(1, r(x))θ ]

∣∣(g1/2n (x)− g1/2(x))(g1/2n (x)+ g1/2(x))
∣∣ dx]2

≤

∫
|ri(x)rj(x)|2 exp[2(1, r(x))θ ](g1/2n (x)+ g1/2(x))2dx

∫
(g1/2n (x)− g1/2(x))2dx

≤ 2
[∫
|ri(x)rj(x)|2 exp[2(1, r(x))θ ]gn(x)+

∫
|ri(x)rj(x)|2 exp[(1, r(x))θ ]hθ (x)dx

]
·

∫
(g1/2n (x)− g1/2(x))2dx

= O
(∫

(g1/2n (x)− g1/2(x))2dx
)

P
→ 0,

i.e. (A.7) holds. As a result, (A.5) reduces to (A.2). �
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