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1. Introduction

Order statistics and those statistics having a close relation to order statistics play a prominent role in many areas of
probability and statistics. In particular, spacings are of great interest in many areas such as goodness-of-fit tests, reliability
theory, auction theory, actuarial science, life testing, operations research, information sciences, and many other areas. One
may refer to [2,3] for some goodness-of-fit tests based on functions of sample spacings. Let X;., < X5., < --- < Xj,., denote
the order statistics arising from random variables X1, X5, . . ., X;,.. Then, the k-th order statistic Xy., is just the lifetime of a
(n—k+1)-out-of-n system, which is a very popular structure of redundancy in fault-tolerant systems that have been studied
extensively. In particular, X;,., and X;.,, correspond to the lifetimes of parallel and series systems, respectively.

Due to the nice mathematical form and the unique memoryless property, the exponential distribution has widely been
used in many fields including reliability analysis. One may refer to [4,1] for an encyclopedic treatment to developments on
the exponential distribution. There are a large number of papers in the literature on stochastic comparisons of exponential
sample spacings; see, for example, [13] for a review on this topic. Recently, some researchers carried out stochastic
comparisons of sample ranges wherein one sample is homogeneous while another sample is heterogenous. Let X1, ..., X,
be independent exponential random variables with X; having hazard rate A;,i = 1,...,n. Let Yy, ..., Y, be a random
sample of size n from an exponential distribution with common hazard rate A. Then, Kochar and Rojo [8] showed, for
A >x=>1", Ai/n that

Xn:n - Xl:n >t Yn:n - Y]:na (])
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where >; denotes the usual stochastic order and the formal definitions of various stochastic orders used in this paper will
be given in Section 2. Zhao and Li [20] strengthened this result and presented the following equivalent characterization:
A= V= Xan — X1 Zst Ynn — Yoo

where

n 1/(n—1)
[Tx
o | =

A

Kochar and Xu [9] improved the result in (1) from the usual stochastic order to the reversed hazard rate order as
Xon — X1:n =1h Yoo — Y-
Recently, Genest et al. [7] proved, for A = X, that
Xion — Xt:n 21 Yaon — Y1
and
Xun — X1:n =disp Ynn — Y-
Mao and Hu [15] further presented the following equivalent characterizations:
A= h = Xpn — Xin 2 Yan = Yin <= Xon — Xin =m Yo — Yin.
IfXq, ..., X, are independent random variables with X; having survival function f'\i, i=1,...,nandYy, ..., Y,isarandom
sample with common survival distribution Fl, where A = Z'l’ Ai/n, [10] then proved that
Xon — X1:n =t Yoo — Yien-

In this paper, we will investigate the ordering properties between sample ranges arising from multiple-outlier
exponential and proportional hazard rate (PHR) models. It should be mentioned here that some researchers studied order
statistics from the multiple-outlier exponential model; see, for example, [12,19]. Let Xy, ..., X, follow the multiple-outlier
exponential model with parameters

Ay ooy Ay Ay ey A2),
p q

where p + q = n,and let Yy, ..., Y, be another set of random variables following the multiple-outlier exponential model
with parameters

(PSP LA S b9
—— S ——
p q
Under the condition A; < A7 < A5 < A,, we prove that

()&17---;)\1,)@7---;)\2) = ()\‘*7"'7)‘:,1(7)\;7"'7)\;) <:>Xn:n _Xlznzrhyn:n _len
———— N — N —_— —— —

p q p q

and
p

()\1»-”;)\1,)\27”-;)»2) = ()”*7"'5)"?7)\‘;7"'7)“;) = Xin — X1 ZstYn:n_Y]:n-
[ ————— ——

p q p q

As a matter of fact, the above results reveal a correspondence between the various stochastic orders between sample ranges
arising from multiple-outlier exponential models and majorization type orders of the vectors of hazard rates.

Let X1, Xo, ..., X, follow a PHR model with survival functions
(FIM, .. [FQOIM, [F12, ..., [Fx)]"2),
p q
where p + g = n. Let Yy, Ya, ..., Y, follow another PHR model with survival functions
(FOI, ... . [F, [FQI2, ..., [Fo2).
p q

Suppose A1 < A7 < A3 < A,, we prove that

m
sy Ay Az, s da) = (A, oo AL S, o, AY) == X — Xin =t Yo — Y-
— —— ———— —,———

p q p q
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2. Definitions

In this section, we recall some notions of stochastic orders, and majorization and related orders. Throughout this paper,
the term increasing is used for monotone non-decreasing and decreasing is used for monotone non-increasing.

Stochastic orders

Definition 2.1. For two random variables X and Y with densities fx and fy, and distribution functions Fx and Fy, respectively,
let Fx = 1 — Fx and Fy = 1 — Fy be the corresponding survival functions. Then:

(i) X is said to be smaller than Y in the likelihood ratio order (denoted by X <. Y) if fy (x) /fx (x) is increasing in x;
(ii) X is said to be smaller than Y in the hazard rate order (denoted by X <, Y) if Fy (x)/Fx (x) is increasing in x;
(iii) X is said to be smaller than Y in the reversed hazard rate order (denoted by X <, Y) if Fy (x) /Fx (x) is increasing in x;
(iv) X is said to be smaller than Y in the stochastic order (denoted by X < Y) if Fy (x) > Fx (x);
(v) Xissaidtobe smaller than Y in the mean residual life order (denoted by X <4 Y)ifEX; < EY;,whereX; = (X—t|X > t)
is the residual life at age t > 0 of the random lifetime X;

—_ e

It is known that likelihood ratio order implies both usual stochastic order and hazard rate order, but neither usual
stochastic order nor hazard rate order implies the other; see [17].

Majorization and related orders

The notion of majorization is quite useful in establishing various inequalities. Let x;;y < --- < X(;, be the increasing
arrangement of the components of the vector X = (x1, ..., Xp).
Definition 2.2. (i) A vector X = (x1,...,x,) € R" is said to majorize another vectory = (y1,...,Yyn) € R" (written as
m
x > y)if

J J
ZX@ < Zy(i) forj=1,...,n—1,
i=1 i=1

and 3L, xo) = 2o Yoy
w
(ii) A vector x € N" is said to weakly majorize another vectory € i" (written as X > y) if

Jj Jj
ZX(,‘) < ZY(j) fOI'j =1,...,1m
i=1 i=1

(iii) A vector x € 0} is said to be p-larger than another vectory € %’ (written asx > y)if
J J
1_[X(i) < 1—[_]/(,') fOI‘jZ 1,...,n.
i=1 i=1

p
Obviously, x Q y implies x ; y, and x > y is equivalent to log(x) % log(y), where log(x) is the vector of logarithms
p
of the coordinates of x. Note that x g y implies x > y for any X,y € J'}. The converse is, however, not true. For example,

p
(1,5.5) > (2, 3), but clearly the majorization order does not hold between these two vectors.

For more details on majorization and p-larger orders and their applications, one may refer to [14,5]. Zhao and
Balakrishnan [ 18] recently introduced a new partial order, called reciprocal majorization order.

m
Definition 2.3. The vector x € 9} is said to reciprocal majorize another vectory € %!} (writtenasx > y)if

J J
1 1
- > -
;Xm ;Ym
forj=1,...,n
It is known from [11] that
w p m
X>y=—X>y—X2xzYy

. rm . p
for any two non-negative vectors X and y. On the other hand, the > order does not imply the > order. For example, from the

definition of the ré" order, it follows that (1, 4) FQ (4/3, 2), but clearly the 2 order does not hold between these two vectors.
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3. Reversed hazard rate ordering

In this section, we carry out stochastic comparisons between sample ranges in terms of the reversed hazard rate order
in exponential multiple-outlier models. The following several lemmas will be used to establish the main results.

Lemma 3.1. The functions
1—e* xe ¥ x%e™*
and —————
X 1—e* (1 —e*)2

are all decreasinginx € M.

Lemma 3.2. The function

e*(1—x—e™)
isincreasinginx € M.
Proof. Denote

. e *(1—x—e™)

fx) = A= x> 0.
Taking the derivative of f (x) with respect to x gives rise to
F@E[—e*Q-x—e+e (=1+eM]1—e™? -2 %1 —e (1 —x—e)

= e x—24+2e1—-e =21 —e (1 —x—e)
=Z x—24+2e0 - -2 —x—¢7
= xe " 4+2F+x—-2
= g().
Taking the derivative of g(x) with respect to x, we have
gx) =—xe*—e*+1,
and we then have
g’(x) =xe* > 0.
It is easy to see that, for any x € R,
g0 20=g®=2g0)=0=frFgn =0 =0,
which implies that f (x) is increasinginx € 9i,.. O

Lemma 3.3 ([14]). Let I C R be an open interval and let ¢ : I" — N be continuously differentiable. Then, ¢ is Schur-convex
[Schur-concave] on I" if and only if ¢ is symmetric on I" and for all i # j,

0 a
(z—2) [a;‘“” - azj‘f’("')] > [<10 forallz e l",

where %q&(z) denotes the partial derivative of ¢(z) with respect to its i-th argument.
1

We are now ready to present our main results.

Theorem 3.4. Let X1, X5, ..., X, be independent exponential random variables such that X; has failure rate i fori=1,...,p
and, X; has failure rate A forj =p+1,...,n,wherep > landq = n — p > 1. Let Y1, Y,,..., Y, be independent exponential
random variables such that Y; has failure rate A, for i = 1,...,p and, Y; has failure rate A for j = p + 1, ..., n. Suppose

A > max(X\1, Ay). Then, the sufficient and necessary condition for X,., — X1.n =th Yon — Y1in is A1 < Aol

Proof. According to [6, p. 26], the distribution function of R(X) = X,., — X1., can be written as

R Wt (LSl

t>0. )

Freoy (8) = (1 e Mt ] _ M pA1+qA
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Actually, the formula in (2) can also be deduced from Theorem 4.1 in [ 16]. Thus, its reversed hazard rate function is given by

. d[In Frexy (£)]
Troo (8) = —a
p)ﬁe*)hlf gaZe M
_ p)qe_)‘lt q)\.e_kt _ (1—e=*16)2 (1—e—*t)2 £>0
T 1—e Mt 1— e M DA + qr ’ -
]7e—)\.‘lt 1—e— At

Necessity. Suppose that X,,., — X1.n >n Yn.n — Y1.n and then it holds that X;,., — X1., >4 Yi.n — Y1.n. From (2), it follows that

N

T—e ™t ' 1—e M pi1+qh T—e 2t 1—eX phy + g2

’

which is equivalent to

( P X )h(l—e"l)p5< P & )'(1_8)(2)1’

1—e™ 1—e* px1 + gx 1—e™ 1—e* pxo +qx

where x; > 0,x, > 0 and x > max(x, X). Denote
X X 1—e ™)’
Py = (P ) )
1—e™ 1—e* px1 + gx
Taking the derivative with respect to x;, we have
X X e *1(1 — e )P~ 1(px; + gx) — p(1 — e™X1)P
Flx;) = M4 pe( )P~ (px1 + %) — p( )
1l—e™  1—ex (px1 + qx)?
p(1—e™ —xe7™) (1 —e™)P

_|_

(1—e™)? px1 +qx
sgn 1 — e~ —xe™ PX1 qx e M (px1+qgx) — (1 —e™)
- 1—e™ +<1—e*’<1 l—e*">. pX1 + qx
1= —xe™ pxie DXq gxe ™ qx 1—e™
1—e™ l—efxl_pxl—i-qx 1—e*’<_px1+qx.l—e*’<
_ qx (p — Dxe™ gxe ™ qx 1—e™
T opx1 4 gx 1—ex T—e™ pxi+gx 1—e>
_ qx e —e™  (p— Dxe™ gxe ™
Topxitgx 1—eX 1—e 1—ex

It can be readily seen that F’(x;) > 0 due to x > max(xq, X), and hence F(x;) is increasing in x; € [0, x]. Thus, we have

X1 < Xy, or equivalently, A; < A,.
Sufficiency. Denote by 7.y (t) the reversed hazard rate function of Y., — Y1.,. It suffices to show rrx)(t) > Trey)(t) for

A> Xy > A >0,1le,

pﬁe*hf ghe M pA%e*lzf gr2e M

—aqt —ot i
preT™  GoeinZ T a—eTh? | PR el T (e T
— p—At |28 qir - _ p—Apt j 29 qir ’
1—e 1—e 1t + 1—e— M 1—e 1—e %2t + 1—e—

which is actually equivalent to showing that the function

2,—X] 2
X1 pxie gx“e™™
Fxy) pxi€ (1—e *1)2 (1—e%)2
1) = -
— ox X1 ax
1 e 1—e ™1 + 1—e™%

is decreasing in x; € [0, x] under the condition that x > x, > x; > 0. Taking the derivative of f (x;) with respect to x;, we
have

p(1—e 1 —xje7*1)

f’(X]) — pei)ﬂ(l — X1 — efxl) N W ' px%ef)(] qX267X
(] — e*x1)2 Pxg ax (‘l — €7X1)2 (-l _ efx)z
T T ime
p . e_xl (1 — X1 — e—X‘]) ' X1 x167X1 ' 1— ef)q _ X]€7X1
1f:lX1 + 1—q:—x (1 —e1)2 1—e™ 1—e™ (1—e*1)2
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400 T T T
— — — reversed hazard rate function of Xn_n—X1_n

380 |- reversed hazard rate functionof Y Y,
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Fig. 1. Plot of Tg(x) (t) and Ty, (t) whenp = 2,g = 3,1; = 0.4,A, =2and A = 6.

After some simplification, it can be obtained that

f/(xl)_< P )2

p T—e™ T1—e*
_eM(1—x —e™) PXq g\’ pe™(1—x; —e™) X2
(1 —e*1)2 1—e™ 1—eX (1 —e*1)2 (1 —e™)2
_ge(1—xy —e ™) X1X N ge ™ (1—e™ —x;e™) x?
(1—e™1)? (I—e™)(1—e™) (1—e™1)? (1—e™)?
ge (1 —e™ — x1e71) X1X
(1—e™)2 (1—e)(1—e™)
_pp—DeM(1—xi—e™) X2 e ™ (1 —x; —e™) ' x?
B (1—e)? (1—e)? (1—e™)? (1—e)?
n q2p — De ™1 (1 —x; —e™) X1X n gx(1 — e ™ — x1e7%1) xe % xie ™1
(1 —e™1)2 (1—e™)(1—e™) (1 —e™)2(1 —e¥) 1l—e* 1—em
where
g PP DA —x —e™) X
(1 —e™)2 (1—e)?’
b e ™1 (1 —x; —e™) . x?
(1 —e1)2 (1—e*)2’
_q2p—1e™(1—x —e™) X1X
- (1—e)? (1—e)(1—e™’

_ogx(1— e — x1e7%1) xe % xe” "

T (1—e)2(1—e¥) 1l—e* 1—e™)’

Sincel—x; —e ™ <0,1—e % —xe7 > 0, and from Lemma 3.1, it can be seen that
<0, B<0, y=<0, §<0=f(x)=<0,

thus, f(x1) > f(x2), which implies gx) (t) > Treyy (), 1., Xpn — X1:n =h Yo — Yin. O

Example 3.5. Setp = 2,q = 3, A1 = 0.4, A, = 2, . = 6 in Theorem 3.4, we then have A > A, > A; > 0. Fig. 1 plots
the reversed hazard rate functions of sample range in multiple-outlier exponential models. It can be seen that the reversed
hazard rate of X;,., — X1., is larger than that of Y;,., — Y1, for t € 91, which shows the validity of the result in Theorem 3.4. O

Theorem 3.6. Let X1, X3, ..., X, be independent exponential random variables such that X; has failure rate Ay fori=1,...,p
and, X; has failure rate A, forj=p+1,...,n,wherep > lTandq=n—p > 1. Let Y1, Y,, ..., Y, be independent exponential
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random variables such that Y; has failure rate A for i = 1, ..., p and, Y; has failure rate A5 forj =p+ 1, ..., n.If

m
()"15"'7}"19)‘*2s"'7)"2)z()"*a"'v Ts §5~"7A;)5
———— —— N — O

p q p q
then,

Xn:n - Xl:n Zth yn:n - Y]:n-

Proof. Without loss of generality, we assume that A; < A < A} < X,. We need to show

Troo (t) = Try) (8),

ie.,
—2¥t —a%t
p)»%e*)‘lr qk%ef)‘zf 13 o PATZE 1 q)ﬁzkze 2
prett | @hoe ey T ey pheTt | @aget et T ae a2
_ oMt et PAq 4k =t ST Ak o
1-e 1-e 1—e*1t + 1—e*2! 1—e™ T—e —1x*t + —ZA*t
1—e "1 1—e "2
Denote
px%e*xl qx%e*XZ
pxie qxae™? (I—e )2 T (1—e*2)2
O(X1, .., X1, X2, ..., Xg) = 1—ex 1— ex - 0%
M q 1—e™™1 1—eX2
It is then sufficient to prove
> * * ¥ *
) =
X1, . X1, X0, ., X2) = O(X], L XL X, LX)
———— —— —— ——
P q p q

under the condition x; < x] < xj < x, and

m
£ K K £
(X1, .., X1, X2, .., X2) = (X, .. X, Xg, o, X5).
S—— S—— ———— ————
p q p q

In other words, we need to show ¢(xq, ..., X1, X2, . . ., X2) is Schur-convex in (xq, ..., X1, X2, . . ., X2). Note that
— ——— —— ———

p q p q
9 ([ px L PoeM(l—x —e™) S s L
0X4 1—e™ 1—e¢™® (1 —e™1)2 1—e™ 1—e™® 1—e™  1—e*
e (1 —x;—e™) X1 xe M 1—e™ —xe™™
(1—e™)? T—e™ 1—e™m  (1—e™)?
1—e™ —xe™™ pxe~™ X1 gxpe™*2 Xo
(1 —e™1)2 1—e™ 1—e™ T1—e™ 1—e™
_etdox—e™ o e Y
(1—e™1)? 1l—e™  1—e™
pxie™  1—x;—e™
(1—e™)2 (1—e™)?
n 2 1—e™ —xe™ . X0 %2 _ xie X1 . 1—x;—e™
1—e™ (1—e*1)2 1—e™ T1—e™ (1—e™)?

qxa 1—e™ —xe71 xe7%
_1—e—X2'|: (1—e)2 .1—e—"1:|'
Similarly,
99 ( P )2 _ed-x—e™) ( P 9% )2
I \1—e™ 1—en (1—e>*)2 1—e™  1—e™®
grie™ 1—x, —e %
S (—e)r (1—e)
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102 T T T T T

— — —reversed hazard rate function of Xn,nfxm

100 R~ ) ™
reversed hazard rate function of Yn‘n_Y1'n

98 -

96 -

94

92

90 -

88 -

86 -

84 1 1 1 1 1 1 1 1 1
0.035 0.0355 0.036 0.0365 0.037 0.0375 0.038 0.0385 0.039 0.0395 0.04

Fig. 2. Plot of Tgx) (t) and Tr(y)(t) whenp = 2,q = 3, A; = 0.01, A, = 12.66, A7 = 4and A} = 10.

X1 1—e™ —xe™  xe ™ e 1—x,—e™
T e [ (1—e*2)2 1—en l1—en (1—en)2 }
X1 1—e™ —xe™®  xe ™
S l—en |: (1—ex2)2 1—e—"2]

Thus, we have

D¢ _ 99 s [P(P - DX 2pgraxs q(q — DX ]

x;  0x;  [(Q—e™)2  (1—eX)(1—eX) (1—e )2
[e™ (1 —x1—e™) e ™(1—x;—e™)
x _
(1 —e*1)2 (1 —e*2)2
N [px1e72(1 —x, —e™™)  gxpe™1(1—x; —e™) X X
| (1 —e™1)(1—e*2)? (1 —e™)2(1 — e*) 1l—e™ 1—e™
n [px1(1 —e™ —xe7%2)  gxp(1 —e™ — x1e71) X2 xie
| (1 —e™1)(1—e*2)? (1 —e™1)2(1 —e %) 1—e™ 1—e™

= a+B+y, say,

[ p(p — X} 2pgx1x; q(q — 1)x3 ] » [e"l (A—x—e™) e™0—x— exZ)]
| (1—e™ )2 " (1—e™)(1—e™) (1—e*)? (1 —e*)2 (1 —e*2)2 ’
[px1e72(1 —x; —e ™) gxoe ™1 (1 —x; —e™) X X
= | d—em)(1—e2)2 ' (1—e™)2(1—e %) } ' (1 —ex 1—e—"1)

[px1(1 —e™2 —xe7%2)  gxp(1 — ™™ — x1e71) xpe %2 xe X1
| (Q—e )1 —e)2 ' (1—e™M)2(1—e%) ] ' (1 —e  1-— e"‘l) '
Noticethat 1 —x—e™ <0and 1 —e™* —xe ™ > 0forall x € M. Using this fact and Lemma 3.1,we have 8 < 0andy <0
for x, > x;. On the other hand, it can be checked that « < 0 for x, > x; from Lemma 3.2. Therefore, it holds that

(X1 — x2) (8790 - 8790) > 0.

3X1 8X2

)/:

Now the desired result follows by using Lemma 3.3 and the entire proof is completed. O

Example3.7. Set p = 2,q = 3, A; = 0.01, ., = 12,66, A] = 4, A3 = 10 in Theorem 3.6, we then have

(0.01,0.01, 12.66, 12.66, 12.66) g (4, 4, 10, 10, 10). Fig. 2 plots the reversed hazard rate functions rr(x)(t) and 7rey)(t).
Observe that the reversed hazard rate of X,,., — Xy., is larger than that of Y,,.,, — Y1, for t € 9i, which is in accordance with
the theoretical result in Theorem 3.6. O

The following result extends the result of Theorem 3.6.

Theorem 3.8. Let X1, X3, ..., X, be independent exponential random variables such that X; has failure rate Ay fori=1,...,p
and, X; has failure rate A, forj=p+1,...,n,wherep > lTandq=n—p > 1. Let Y1, Y,, ..., Y, be independent exponential
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random variables such that Y; has failure rate Ay for i = 1, ..., p and, Y; has failure rate A5 for j = p + 1, ..., n. Suppose
A < A7 < A3 < Ay, Then the following two statements are equivalent:

(@) e A hay o hg) = (R A AS, L AD)
— —m—— N —

p q p q
(i) Xn:n — X1:n =eh Yoen — Yoo

Proof. (ii)=(i). Assume that frex)(t) > Trey)(t). Upon using Taylor’s expansion at the origin, we have, for t € %,

. N prde 1t qrze"2!
Troo () = prie " qrae”"2 _Q—etMih2 (g2t
- - x x
Tt 1—emt Fi‘lhf + Fi‘zlzf
pa2(1-24t40(t2)) QA3 (1-22t+0(t2))
_ Ph (1 — Mt + O(tz)) qr; (1 — At + O(tz)) (1=(1=2t+062))*  (1=(1-1pt+0(t2)))?
T 1_(1— 2 —(1— 2y) Py ar
1— (1=t +02) 11— (1= At +0(2)) —inie®) T i)
n _ prtqro

n
+— Phi k) — 2L 401

t
n—1 n—1
= < (pA1 + qA2) +o(1).

Similarly,

n—1 n—1

FR(y)(t) = . (p)»’; + qk;) + 0(1)

Thus, we have

Troo) (£) = Trey) () = pAq + qhz < AT + qA5.

(i)=(ii). Assume that pA;+qX, < pAj+qA5.The resultfollows from Theorem 3.6 for the case when pA4-qi, = pAT-+qA;.
In what follows we only need to consider the case when pA; + gA, < pA] + gAj. In this case, there exists some A satisfying
A1 < A < ATand pA+qr, = pA] +q);. Let Z,., — Zy., denote the sample range from the independent exponential variables

Z1,7Z,, ...,Z, with hazard rates (A,..., A, Ay, ..., A2). Apparently, (A, ..., A, Ay, ..., A2) § A, - AL AS, L AD).
—_— —_— — —_—
Upon using Theorem 3.6, it holds that ’ ' ’ ' ! !
Znn — Z1:n =1h Yo — Y1n- (3)
On the other hand, we have
Xnin — X1:n Z1th Znin — Z1in (4)

for A1 < A < A7 < A, from Theorem 3.4. Then, the desired result is obtained from (3) and (4). O

Example39.Set p = 2,q = 3, Ay = 001, 2, = 6, A] = 4,15 = 10 in Theorem 3.8, we have

(0.01,0.01, 6,6, 6) ; (4,4, 10, 10, 10). Fig. 3 plots the reversed hazard rate functions rrex)(t) and Try)(t). It can be
observed that the reversed hazard rate function X,., — X;., is larger than that of Y., — Yy, for t € 9., as stated of the
result in Theorem 3.8.

4. Usual stochastic ordering

In this section, we establish some comparison results in terms of the usual stochastic order in multiple-outlier
exponential and PHR models.

Theorem 4.1. Let X1, X5,..., X, be independent exponential random variables such that X; has failure rate A1 fori = 1,...,p
and, X; has failure rate A, forj =p+1,...,n,wherep > landq=n —p > 1. Let Yy, Y,,..., Y, be independent exponential
random variables such that Y; has failure rate ] for i = 1, ..., p and, Y; has failure rate A3 for j = p + 1, ..., n. Suppose that
M <A <Ay <A df

Mg =GP,
then,
Xn:n - Xl:n >t Yn:n - Y1zn~
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Fig. 3. Plot of Trx)(t) and 7r(y)(t) whenp = 2,9 = 3, 4 = 0.01, A, = 6,17 = 4and A5 = 10.

Proof. We need to show

Froy (t) < Frey) (D),

)

—rt\P —pt)4 * * 1—9_)‘?[1) 1—e_*§[q
|: PAq qhrs :|(1—e 1P (1 — e2t) <|: pAk N qrs :|

1—e ™Mt 1—e pA1+ qAa 1—e Mt 11—t pAY + qAd

under the condition A1 < A% < A} < Ay and AjAT = (A%)P(13)9, which is actually equivalent to showing that

< P )_(1—e‘xl)"(1—e‘*2)q<< px; n qx; )_(1—6"‘1)"(1—6"‘2)‘1
)

1l—e™  1—e* PX1 + qxz “\l—eM 1-e% pxj +ax5

X

under the conditions x; < x; < x; < Xx; and x’;xg = (x7)P(x3)%. Denote y; = logxy,y, = logx,,y; = logx} and y5 = logx;.
We then have the following relation:
m K K 3k K
G5 oo Y1 Y20 00 Y2) = O] o Y1 Y30 -5 Vo)
D e D — —
p q p q

Up to now it suffices to show that the symmetrical differentiable function @: (—oo, 00)" — (0, 00) given by

o ) (—pe" ge” (1—e P —e )
e Y1, Y2, 000, Y2) = 1—676},1 ]—€7J2 peJ’I—}—quZ
p q
is Schur-concave. Taking the partial derivative of @ (yq, ..., y1, y2, ..., ¥2) with respect to y;, we have
—— ———
p q
ez)’l . e_ey]

04 —e¥1\p—1 —eV2
- = —1-(1—e¢e p - (1—e q.
oy, ~ @D o A e e 1 qon)

eVigh2 ev2 ev1 . =1
+q-(1—e P (1 —e )T + :
(pevt + qey2)? 1— @2 pevt + qev2

eV1eV2 1—e®!
1—e % (pevt + gev)?

—q«l—e”ﬁl-a—edﬁ”[

sgn o eVied2 ev2 eVie—e1 eVl . b2 1—e "
=q(l1—e ) - + . — .
(pe¥1 + qev2)? 1—e®2 pevt + qev2 1—e?? (pe¥1 + qev2)?2
e e . (1 —e %)

T eI e e
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Similarly,
0P sgn 1 — e eY1ey2 N ev ev2p—e"2 eVl . V2 1— o=
—_— = —_— e . . — .
Y, P (pe1 +qev2)2 1 —e=¢" pe¥1 +qge¥2 1 —e @ (peVt 4 qev2)?
eV .o (1—e®")
+@-=1- — :
(1—e=92) - (pe'1 +qe’2)
Observe that

oD Y sn ( 1) e .e—eyl -(1- e—eyz) eVl . e¥2 .e—eyz N eVl . V2. (e—eyl _ e—eyz)
oy s T (1—e @) (pe" +qe2)  poi + qo (pe'1 + qor2)?

|:ey1 @2 (e e ) e e e¥2. e . (1—e®") :|
+q-

(pe¥1 + qev2)?2 + pevt + qev2 (1— e_eYZ) - (pev1 + ge»2)

eyl . eV2 . (e—ey2 — e_eyl) eyl . g2 . e—ey2 62372 . e_ey2 . (] — e_eyl)

T e T geny P qe | (1—e ) (p +q0%)
(e en(e ! —e?) (p— et (eyl e e .e—ey2)
(per + gev2)? (1—e ) (et +qe2) \1—e @ 1—ee?
(q+ vt -e2(e ' —e ¢?) V1. e2(e " — e ¢?)
(pe¥1 + qev2)? pevt + qev2
(q — 1)e*2 eV el 2. e
(1—e ") (pe' +qe) ( 1—e @ 11— )

=a+pB+y+5+E&, say,

where
_(p— et en(e! —e??)
B (pe/ + gev2)? ’
4 (p— Den eVl o2, e
C (1—e ) (pev1 +qe2) \1—e @ 1—e @
(g De-en(e —e?)
- (pev1 + qey2)? ’
5 — eV . ev2(el — e¢?)
B pevi + qev2
and
£ = (q— e e el ez e
C(I—e (et +qerz) \1—e @ 1—e®? )
Since ¢! — ¢=®? > 0 for y; < ys, using this and Lemma 3.1, we have

sgn  _oV1 _e¥2 sgn
x=e —e =Y2—)Y1,

ev2 . efeyz sgn

=Y2—Y1
e—e”

sgn eyl . eiE\y]

T l—e¥ 11—
el e Ey, —y,
sgn V1 _eV2 sgn
§=e™ —e " =y -3

and
sgn €1 - 1 ev2 . g—2
T 1 —e e B 1—e?

sgn

=Y2 =Y,
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Fig. 4. Plot of Fgx)(t) and Fr(y)(t) whenp =2,q =2, = 1/4, 1, = 4,17 = 1/2and A; = 2.

using which we have
W —y2) (87‘1) - 82) =<0
yr Wy /)
Now, upon applying Lemma 3.3, we can conclude that the function @ (y4, ..., y1, Y2, - - ., ¥2) is Schur-concave and hence
—— S———

the theorem follows. O

Example 4.2. Setp =2,q = 2,A; = 1/4, A, = 4, 1% = 1/2 and A5 = 2 in Theorem 4.1. Then we have A3 = (A1)2(A3)>.
Fig. 4 plots distribution functions of sample ranges. From Theorem 4.1, it follows that Fry)(t) > Fgx)(t) forall t € R, as
shown in Fig. 4.

Theorem 4.3. Let X1, X5, ..., X, be independent exponential random variables such that X; has failure rate .y fori=1,...,p
and, X; has failure rate A, forj =p+1,...,n,wherep > landq=n—p > 1. Let Y1, Y,, ..., Y, be independent exponential
random variables such that Y; has failure rate AT for i = 1,...,p and, Y; has failure rate A3 for j = p + 1,..., n. Suppose
A A=A <A df
Ot oo dt Aoy e ) = 5o A AS, A,
— — ~———— —,———
b q p q

then,
Xn:n - X]:n Zst Yn:n - Yl:n-

Proof. Assume (A1, ..., A1, Azs..., A2) = (A%, ... A, A5, ..., A3) to hold, we have Ay < A% < A3 < Ay and AfA] <
S——— —— N e e e’

P q p q
(AP (A3)4. The result holds when AfAJ = (1%)P(13)? from Theorem 4.1. In the following, suppose that A/A3 < (A)P(13)%.

Let A/ = 7 % Then, we have (A’)ng = (A)P(A3)%and Ay < A" < Xy Let Vo — V. be the sample range from the
independent exponential variables V1, V>, ..., V,, with respective hazard rates

(X N TV P )

— ——

p q

From Theorem 4.1, it follows that V,,., — V1., > Ynn — Y1.2. On the other hand, we have X,., — X1., > Vin — V1. from
Theorem 3.4, which implies that X,,., — X1., > V.n — V1.0 Hence, the desired result that X,,., — X1.n > Yn.n — Y10 follows
immediately. O

Example 4.4. Set p 3, = 2,0 = 1/4 2 = 2,A] = 1/2and A5 = 1 in Theorem 4.3. We then have

(1/4,1/4,1/4,2,2) (1/2,1/2,1/2,1, 1), but (1/4,1/4,1/4,2,2) ¥ (1/2,1/2,1/2,1, 1). Fig. 5 gives the plot of
distribution functions of two sample ranges. Note that Fg)(t) is smaller than Fry,(t) for all t € 9, which shows the
validity of the result in Theorem 4.3. Fig. 6 plots the reversed hazard rate functions g, (t) and gy (t). It can be seen that
the reversed hazard rate functions can not be compared in this case.

p

Y



P. Zhao, Y. Zhang / Journal of Multivariate Analysis 111 (2012) 335-349 347
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Fig. 5. Plot of Frx)(t) and Feyy(t) whenp =3, =2,11 = 1/4, 1, =2,A7 =1/2and A; = 1.
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Fig. 6. Plot of fpx) (t) and frey)(t) whenp =3, = 2,41 = 1/4, 4, = 2,1 =1/2and A5 = 1.

In the following, we present a result for the proportional hazard rates (PHR)

model. Independent random variables

X1, ..., X, are said to follow PHR model if, fori = 1, ..., n, the survival function of X; can be written as

Fi(x) = [F1™,

where F(x) is the survival function of some base random variable X. Let r(t) be the hazard rate function of the baseline

distribution F. Then, the survival function of X; can be written as

Fi(x) = e Hk®

fori = 1,...,n,where R(x) = fg r(t)dt is the cumulative hazard rate of X. Many well-known models are special cases of

the PHR model such as exponential, Weibull, Pareto, and Lomax et al.
We are now ready to present our result for the PHR model.

Theorem 4.5. Let X, Xo, ..., X, follow a PHR model with survival functions

(FeT, ... [FIM, [F012, ... [F01™),

p q

wherep 4+ q = n. Let Yy, Yo, ..., Y, follow another PHR model with survival functions

(FeM, ... [FOI, [FROT2, ..., [FX)12).

p q

Suppose A1 < A} < Aj < Ay, we then have

m
(}»1,~-~7)L1,)»2,---,)Lz) = (A*s~~-7kTaA§s~~'aA§):>Xn:n_XlznZstYn:n
N— e —— —_— —— ——

p q p q

- Yl:n-
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Proof. In virtue of [6, p. 26], the probability distribution function of X,,., — X1.,, is given by, for t > 0,

oo = Y [P wr [T [P -Frao]a
i=1 j=1j#i

— > /Oo P Wf () [F“ W) —F (u+ t)]p_1 [F“ W) —F? @+ t)]q du
0

-1

+q / Y eF T wf W) [F“ W) —F (u+ t)]p [F“ W) —F?u+ r)]q du.
0

Similarly, the distribution function of Y., — Y., is given by, for t > 0,

Frn) (8) = p/ AT?AT_1(u)f(u) I:fplk (u) — fkslf (u+ t)i|p71 I:f)"; (u) — F}Lg (u—+ t)]q du
0

-1

+q /w BE Wf @) [F”f ) —F(u+ t)]p [F*z W) —F2(u+ t)]q du.
0

Thus, it suffices to show, fort > 0,u > 0,
. _ p—17p_ _ q—1
[F“ W —Fu+ c)] [F“ W) —F(u+ t)]
T 2 T2 T2 M |
« [pw ' (F?@ —F@+0) + goF o (Fw - F (u+r))]
-1

[F W) —F'(u+ r)]pi1 [F‘i W) —F2(u+ t)]q
[px () ( 2(u) — F2(u+ t)) +quF2 @) (F*T ) —F(u+ r))]

p—1 q—1

= A — A2
P 1_<F(u+t)> 1_(F(u+t)>
F(u) F(u)

— )\2
F(u+t)
Al 1—— A
X 1 PAq ( Fa ) + qr;

FPAe F(u+t)
1 2 1—
@ ( v )

— i

Fu+t)\ "’
x dpa 1= — + g\t
PAq ( F(u) ) qa,

)\*pl

_]_ F(u+t) ]
F(u)

- B "

1 F(u+t)
()

- B "

1 F(u+t)
( F(u) )

(5)

Denote F,(t) = Fg‘(j)”, and it is the survival functionof T, = T — u | T > u, the residual life of T at time u > 0. Upon using
A1 < AT < A5 < Ay, pA1 4+ qAy = pAT + gA5 and the transform

H(t) = —logFu(t), u=>0,
the inequality (5) becomes,

[1-— e—MH(f)]P—l[l _ e—le(f)]Q—1 {p)q[l

—e 2O L gay[1—e

—A]H([)]}

<[1- e*}”TH(f)]P*wl _ e—A;‘H(t)]q—1 {DAT[l —A3 H(t)] + q)\ [1— -3 H(t)]}

Using the result of Theorem 3.6 and the fact that the reversed hazard rate implies the usual stochastic order, we can get

1- e—Mt)p—l(] — e—kzt)q—l [P)w(] _ e—)»zt) +qr(1— e—)qr)]
< (1= HOP(1 — e [pk’{(l — e +qa3(1 - e*ﬂ‘f)] :

Replacing t with H(t) in inequality (6), the desired result follows immediately. O

(6)



P. Zhao, Y. Zhang / Journal of Multivariate Analysis 111 (2012) 335-349 349
5. Discussion

Let X1, ..., X, be independent random variables following the multiple-outlier exponential model with parameters
Ay es Ay A2y ey A),
———— ——
p q

where p + ¢ = n, and let Yy, ..., Y, be another set of independent random variables following the multiple-outlier
exponential model with parameters

AF, o AT AL, LAY,
—— —,—
p q

In this article, we have established, under the condition A; < A7 < Aj < X,, we have

w
()"17~-~7)\'11)"27~-~7)\'2) = ()\*7~--,)\T7 zau-’)\;)<:>Xn:n_xl:n2rhyn:n_ylzn (7)
D e —— — —— e ———
p q p q
and
P * * gk *
0”1““7)\1:)”2,“-7)\2) = ()\ R R4S ) 25--~a)¥2):>xn:n_X1:nZstYn:n_Y1:n~ (8)
e — e N — ———
p q p q

It would be of interest to check whether the results in (7) and (8) can be generalized to the likelihood ratio order and
hazard rate order, respectively.
Another natural question is whether, under the condition A1 < A7 < A < A,

m
()»1,“-,}»1,)»2,---,)»2) > ()"*7"" Tsxzk»---sxzk) :Xn:n_xlzanrlYn:n_Ykn
—— ——— ———— ———
p q p q

also holds. We are currently working on these problems and hope to report these findings in a future paper.
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