
Accepted Manuscript

Predictive power of principal components for single-index model and
sufficient dimension reduction

Andreas Artemiou, Bing Li

PII: S0047-259X(13)00076-6
DOI: http://dx.doi.org/10.1016/j.jmva.2013.04.015
Reference: YJMVA 3543

To appear in: Journal of Multivariate Analysis

Received date: 3 December 2012

Please cite this article as: A. Artemiou, B. Li, Predictive power of principal components for
single-index model and sufficient dimension reduction, Journal of Multivariate Analysis
(2013), http://dx.doi.org/10.1016/j.jmva.2013.04.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jmva.2013.04.015


Predictive power of principal components for

single-index model and sufficient dimension reduction

Andreas Artemiou∗ and Bing Li

Department of Mathematical Sciences, Michigan Technological University and

Department of Statistics, Pennsylvania State University

Abstract

In this paper we demonstrate that a higher-ranking principal component
of the predictor tends to have a stronger correlation with the response in
single index models and sufficient dimension reduction. This tendency holds
even though the orientation of the predictor is not designed in any way to be
related to the response. This provides a probabilistic explanation why it is
often beneficial to peform regression on principal components — a practice
commonly known as principal component regression but whose validity has
long been debated. This result is a generalization of earlier results by Li
(2007), Artemiou and Li (2009), and Ni (2011), where the same phenomenon
was conjectured and rigorously demonstrated for linear regression.

Key words and phrases. Permutation invariance; Principal component analysis;

Rotation invariance; Single-index model; Sufficient dimension reduction.

1 Introduction

Principal component analysis has been used for dimension reduction for regression

problems ever since its introduction by Pearson (1901) and Hotelling (1933). Let

X be a p-dimensional random vector and Y be a random variable. When p is

large relative to the sample size n, it is a common practice to regress Y on the

first few principal components of X rather than X itself to avoid singularity or
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ill-conditioned matrix inversion. However, the validity of this tactic, often referred

to as the Principal Component Regression (Jolliffe, 1982), has long been debated

— questioned by some and defended by others. The gist of the debate is that,

since the principal components are extracted solely from the covariance matrix Σ

of the predictorsX, a process in which the response plays no role whatsoever, there

seems no reason to think that the first few principal components are any better

in predicting the response than the last few principal components. This debate

was documented and illuminated in Cook (2007) in the context of Fitted Principal

Components. See also Artemiou and Li (2009), Hall and Yang (2010).

Artemiou and Li (2009), inspired by a conjecture by Li (2007), proved the

following result: if the response variable Y is not pre-designed to favor any specific

orientation of the ellipsoid representing the covariance matrix Σ, then, under the

linear regression model

Y = βTX + ε, ε X, (1)

with probability greater than a half, the correlation between Y and the ith principal

component of X is greater than the correlation between Y and the jth principal

component of X for any i < j. Here, indicates independence. More specifically,

let vi and vj be the eigenvectors of Σ corresponding to its ith and jth largest

eigenvalues, with i < j. Then the probability of

|corr(Y,viX)| > |corr(Y,vjX)| (2)

is always greater than a half, as long as there is no predesigned alignment between

β and the orientation of the ellipsoid representing the positive definite covariance

matrix Σ of X.

Using an invariant argument by Arnold and Brockett (1992) and a stronger

invariant assumption, Ni (2011) calculated the exact probability for (2) to happen

to be

(2/π)E{arctan[(λi/λj)
1
2 ]},

where λi and λj are the ith and jth largest eigenvalues of Σ. We note that this

probability is always greater than or equal to a half and, for λi � λj , it can

be arbitrarily close to 1. Ni (2011) also generalized this result in several other

directions, but confined his analysis to linear regression.
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From a different angle, Hall and Yang (2010) established, also in the linear

regression setting, that regressing Y on to the first few principal components of

X achieves the minimax bound of a conditional mean squared error between βTX

and β̂
T
X. They allow the predictor to be either a vector or a function, but the

relation between X and Y is still intrinsically linear.

In this paper, we extend the probabilistic characterization of the inequality

(2) to much more general settings than the linear regression model. For example,

consider the single index model

Y = f(βTX) + ε, X ε, (3)

where f is an unknown, arbitrary function. See, for example, Powell, Stock, and

Stoker (1989), Härdle, Hall, and Ichimura (1993), and Ichimura (1993). Another

example is the heteroscedastic single index model

Y = f(βTX) + g(βTX)ε, X ε. (4)

where f and g are arbitrary functions. Under these models, does the ranking

of a principal component of X affects its correlation with the response Y ? In

other words, do the principal components, which are not designed to predict any

response variable, have any predictive power for the response in single index models

and beyond, regardless of how that response is related to the single index? If the

answer is yes, then it makes sense to perform nonlinear regressions on the principal

components of the predictors.

One can put this question in the broader context of unsupervised versus super-

vised dimension reduction. The PCA is a main tool for unsupervised dimension

reduction and one could regard models (3) and (4) as special cases of supervised

(or sufficient) dimension reduction. Indeed, consider the following conditional in-

dependence relations

Y E(Y |X)|βTX, (5)

Y X|βTX. (6)

Here, A B|C reads “the random elements A and B are conditionally independent

given a third random element C”. The first relation asserts that the conditional

mean E(Y |X) depends on X only through the index βTX; it includes the mean

regression model (3) as a special case. The second relation asserts that the full
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conditional distribution depends on X through the index βTX; it includes the het-

eroscedastic mean regression model as a special case. The above two relations are,

respectively, special cases of sufficient dimension reduction for conditional mean

and that for conditional distribution. In sufficient dimension reduction, β can be

an arbitrary matrix, and the objective is to recover the subspaces spanned by the

columns of β without the knowledge of the functional forms of the conditional

mean or conditional distribution. The subspace spanned by the columns of β in

(5) is called the central mean subspace; that spanned by the columns of β in (6)

is called the central subspace. For further information about sufficient dimension

reduction, see, for example, Li (1991), Cook (1996, 1998), Cook and Li (2002), Xia,

Tong, Li, and Zhu (2002), and Li and Wang (2007).

Intuitively, we can regard supervised dimension reduction as reducing the di-

mension of X while preserving its relation with a response Y , and principal com-

ponent analysis as reducing the dimension of X so as to keep those directions that

contain most of the variation of X. Thus, in this broader context our question

becomes: do the variables extracted from the original predictor using unsupervised

dimension reduction have the tendency — even if a weak tendency — to be aligned

with the variables extracted using supervised dimension reduction? If this relation

can be established, then it makes sense to perform unsupervised dimension reduc-

tion before supervised dimension reduction as a preprocessing or prescreening step.

This would be of practical significance because such prescreenings are commonly

used in practice and often work well. See, for example, Chiaromonte and Martinelli

(2002), and Li, Kim, and Altman (2010). Our results show that, at least in the

situations where the dimension of X can be reduced to 1, the above assertion is

true.

The rest of the paper is organized as follows. In Section 2 we give a brief outline

of the previous results for linear regression, and point out that the conditions

used in Ni (2011) are somewhat stronger than those used in Artemiou and Li

(2009): the former involves permutation invariance and the latter involves rotation

invariance. In sections and 3 and 4 we generalize the stronger result of Ni (2011)

to sufficient dimension reduction for conditional mean and conditional distribution

under rotation invariance. In section 5 we make the corresponding generalizations

of the weaker result of Artemiou and Li (2009) under permutation invariance.

These are followed by a short discussion in section 6.
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2 Overview of previous results

Li (2007) argued that, if Y is correlated with X at all, it should be correlated with

its first principal component, unless nature’s choice of Σ has a favored orienta-

tion. Artemiou and Li (2009) formulated the notion of “no favorable orientation”

rigorously as the following assumption.

Assumption 1 The covariance matrix Σ of X is a random matrix that can be

written as λ1v1v
T
1 + . . .+ λpvpv

T
p where

1. (λ1, . . . , λp) are positive, exchangeable random variables;

2. (v1, . . . ,vp) are exchangeable random vectors;

3. (λ1, . . . , λp) (v1, . . . ,vp).

Intuitively, what is required by this assumption is that the relative positions

of eigenvalues and eigenvectors of Σ can be freely permuted without changing the

distribution of Σ. Under this assumption Artemiou and Li (2009) showed the

following result. Suppose linear regression model (1) holds, and

1. Σ satisfies Assumption 1;

2. E(X|Σ) = 0 and var(X|Σ) = Σ;

3. β (X,Σ), ε (X,β,Σ), E(ε) = 0 and var(ε) <∞;

4. P ≡ λ, where λ is the Lebesgue measure (≡ denotes mutual absolute conti-

nuity).

Then

P
(
corr2(Y,vT

iX|β,Σ) ≥ corr2(Y,vT
jX|β,Σ)

)
> 1/2. (7)

vi and vj are the ith and jth eigenvectors of Σ, and i > j.

Under somewhat stronger assumptions, Ni (2011) calculated the exact proba-

bility for the inequality in (7) as

P
(
corr2(Y,vT

iX|β) ≥ corr2(Y,vT
jX|β)

)
= (2/π) arctan (λi/λj)

1
2 . (8)
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Ni’s result require either β or Σ to be invariant under rotation transformations,

which will be spelled out precisely in the next section. It is the rotation invari-

ance that makes it possible to determine the probability of the inequality in (8)

completely in terms of the relative magnitudes of the eigenvalues.

These results indicate that, as long as the alignment between β and the axes of

Σ is arbitrary at the outset, a linear regression relation has the natural tendency

of making the correlation between Y and the first principal component of X larger

than that between Y and the second principal component of X. In the case that

Σ is fixed the expectation on the left hand side of the above equality is removed.

3 Predictive power of PCA for the conditional mean model

In this section we extend Ni’s result to the setting the conditional mean dimension

reduction (5). We first lay out two key assumptions under either of which this

result holds. The first assumption is the same as that made in Ni (2011, Section

3); the second assumption was used but not explicitly spelled out in Ni (2011). Let

Up×p be the class of all p× p orthogonal matrices.

Assumption 2 The distribution of the random vector β is spherically symmetric;

that is, for any A ∈ Up×p, β D= Aβ.

A necessary and sufficient condition for this to happen is that the density of β

depends only on ‖β‖.

Assumption 3 The random matrix Σ is symmetric and invariant under orthog-

onal transformation; that is, for any A ∈ Up×p we have Σ D= AΣAT. Moreover,

all the eigenvalues of Σ are distinct and positive.

Although this assumption was not explicitly mentioned in Ni (2011), the as-

sumption used in the proof of Theorem 1 in that paper seems to be closer to this

assumption than that used in Artemiou and Li (2009), as stated in Assumption 1.

In fact, Assumption 1 is not sufficient to guarantee the spherical distribution used

in the proof of Theorem 1 in Ni (2011).

Note that if Σ is invariant under orthogonal transformations, then the eigen-

values of Σ are nonrandom constants. Because our results only rely on arbitrary

orientations, the relative lengths of the axes of Σ are irrelevant and need not be

restricted as they were in the previous papers. In the following, when we say Σ has
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spectrum decomposition V ΛV T we mean Λ is the diagonal matrix whose diagonal

elements are eigenvalues of Σ, with λ1 ≥ · · · ≥ λp; V is the orthogonal matrix

whose columns are eigenvectors corresponding go λ1, . . . , λp. The next lemma

shows that Σ is invariant under orthogonal transformations then the distribution

of V is unchanged by multiplying from the left by any orthogonal matrix.

Lemma 1 If Σ is a random matrix satisfying Assumption 3 with spectrum decom-

position V ΛV T, then AV D= V for any orthogonal matrix A.

Proof. Let M = {UΛUT : U ∈ Up×p}. Since the diagonal elements of Λ are

distinct, a matrix Γ ∈M uniquely determines the matrix U in Γ = UΛUT. Write

this function as U(Γ). Because AΣAT D= Σ we have

U(AΣAT) D= U(Σ).

However, because Σ = V ΛV T, we have

AΣAT = AV ΛV TAT

which implies U(AΣAT) = AV . Hence

AV = U(AΣAT) D= U(Σ) = V ,

as desired. 2

In the following, let Rp denote the class of Borel sets in Rp. The next two

lemmas show that V Tβ is spherically symmetric if either of Assumption 2 or As-

sumption 3 is satisfied.

Lemma 2 If β is spherically symmetric and Σ is any nonrandom symmetric ma-

trix with spectrum decomposition V ΛV T, then V Tβ is spherically symmetric.

Proof. Let A ∈ Up×p. Because V ∈ Up×p, AV T ∈ Up×p. Hence

A(V Tβ) = (AV T)β D= β
D= V Tβ,

which means V Tβ is spherically symmetric. 2
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Lemma 3 If Σ satisfies Assumption 3 with spectrum decomposition V ΛV T and

β is any nonrandom, nonzero vector, then V Tβ is spherically symmetric.

Proof. Let Oβ be the orbit of β under transformations in Up×p; that is,

Oβ = {Aβ : A ∈ Up×p} = {b ∈ Rp : ‖b‖ = ‖β‖}.

Then, for any b ∈ Oβ and A ∈ Up×p,

V Tb
D= (AV )Tb = V T(ATb).

Since AT can be any member of Up×p, the above implies that the distribution of

V Tb is the same for all b ∈ Oβ. Let η be a random vector uniformly distributed

on Oβ and η Σ. Let B ∈ Rp. Because η V we have, for any b ∈ Oβ,

P (V Tb ∈ B) = E{E[IB(V Tη)|η = b]}.

In other words E{E[IB(V Tη)|η]} is constant on the support of η. Since this is

true for all B ∈ Rp, we have V Tη η. Hence P (VTβ ∈ B) = P (VTη ∈ B) for all

B ∈ Rp, or equivalently,

V Tβ
D= V Tη. (9)

We now show that V Tη is spherically symmetric. Because η is spherically sym-

metric and η V , η|V is also spherically symmetric. By Lemma 2, V Tη|V is

spherically symmetric. So if we can show V Tη V , then V Tη is spherically sym-

metric unconditionally. Let B ∈ Rp. Then

P (V Tη ∈ B|V ) = P (η ∈ B|V ) = P (η ∈ B),

where the first equality holds because η|V is spherically symmetric and the second

holds because η V . Because the above equality is true for all B ∈ Rp, we have

V Tη V , as desired. 2

In fact, in order for V Tβ to be spherically symmetric, we can allow both the

matrix Σ in Lemma 2 and the vector β in Lemma 3 to be random as long as we

keep β and Σ independent, as shown by the next corollary.

Corollary 1 If either of the following conditions are satisfied:
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1. β satisfies Assumption 2 and Σ is a random matrix such that β Σ,

2. Σ satisfies Assumption 3 and β is a random vector such that β Σ,

then V Tβ is spherically symmetric.

Proof. Suppose condition 1 is satisfied. Let Σ0 be a fixed matrix in M with spec-

trum decomposition V 0ΛV T
0. Then, by Lemma 2, V T

0β is spherically symmetric.

That is, for any A ∈ Up×p and B ∈ Rp,

P (AV T
0β ∈ B) = P (V T

0β ∈ B).

However, because β V , we have

P (AV T
0β ∈ B) =P (AV Tβ ∈ B|V = V 0),

P (V T
0β ∈ B) =P (V Tβ ∈ B|V = V 0).

It follows that

P (AV Tβ ∈ B|V ) = P (V Tβ ∈ B|V ).

Now take (unconditional) expectation on both sides to obtain

P (AV Tβ ∈ B) = P (V Tβ ∈ B),

which means AV Tβ
D= V Tβ. The proof of the assertion under condition 2 is simi-

lar. 2

Note that Corollary 1 accommodates both Lemma 2 and Lemma 3 because a

constant vector or a constant matrix is independent of any random element.

We now prove the main result of this section. Consider the following conditional

mean dimension reduction model

E(Y |X,β,Σ) = E(Y |βTX,β,Σ). (10)

This is the same model as (5) except that here we treat Σ and β as random and

that β is assumed to be a vector, rather than a matrix.

Theorem 1 Suppose (10) holds with var(X|Σ) = Σ and var(Y |β,Σ) <∞ almost

surely, and
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1. β (X,Σ);

2. E(X|βTX,β,Σ) is a linear function of βTX;

3. either Assumption 2 or Assumption 3 are satisfied;

4. cov(Y,βTX|β,Σ) 6= 0 almost surely.

Then, for i < j,

P (corr2(Y,vT
iX|β,Σ) > corr2(Y,vT

jX|β,Σ)) = (2/π) arctan[(λi/λj)
1
2 ].

Condition 2 in the theorem is commonly assumed for sufficient dimension re-

duction. It implies

E(X|βTX,β,Σ) = P T
Σ(β)X, (11)

where PΣ(β) is the projection matrix β(βTΣβ)−1βTΣ relative to the Σ-inner prod-

uct. See, for example, Cook (1998). Before proving the theorem we recall another

well known fact: if U1,U2,U3 are random vectors, then

cov[E(U1|U3),U2] = cov[U1, E(U2|U3)]. (12)

That is, conditional expectation is a self-adjoint operator.

Proof of Theorem 1. By (12),

cov(Y,vT
iX|β,Σ) = cov(Y,E(vT

iX|X,β,Σ)|β,Σ)

= cov(E(Y |X,β,Σ),vT
iX|β,Σ).

Applying (10) and then (12), we rewrite the right hand side as

cov(E(Y |βTX,β,Σ),vT
iX|β,Σ) = cov(Y,vT

iE(X|βTX,β,Σ)|β,Σ).

Apply (11) to further rewrite the right hand side as

cov(Y,vT
iP

T
Σ(β)X|β,Σ) =vT

iP
T
Σ(β)cov(X, Y |β,Σ)

=λiv
T
iβ(βTΣβ)−1βTcov(X, Y |β,Σ).

(13)

In the meantime, because β (X,Σ), we have β X|Σ. Hence

var(viX|β,Σ) = var(viX|Σ) = vT
i Σvi = λi. (14)
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Combine (13) and (14) to obtain

corr2(Y,vT
iX|β,Σ) =

λ2
i (vT

iβ)2(βTΣβ)−2[βTcov(X, Y |β,Σ)]2

var(Y |β,Σ)λi
.

It follows that

corr2(Y,vT
iX|β,Σ)

corr2(Y,vT
jX|β,Σ)

=
λi(vT

iβ)2

λj(vT
jβ)2

.

Hence

P
(
corr2(Y,vT

iX|β,Σ) > corr2(Y,vT
jX|β,Σ)

)

= P ((vT
iβ)2/(vT

jβ)2 > λj/λi)

= P (−(λi/λj)
1
2 < vT

jβ/v
T
iβ < (λi/λj)

1
2 ).

Because β (X,Σ), we have β Σ. This combined with Assumption 2 is the con-

dition 1 of Corollary 1; it combined with Assumption 3 is condition 2 of Corollary

1. In either case

V Tβ = (vT
1β, . . . ,v

T
pβ)T

is spherically symmetric. Hence, by Arnold and Brocket (1992), vT
jβ/v

T
iβ has a

Cauchy distribution, which entails

P (−(λi/λj)
1
2 < vT

jβ/v
T
iβ < (λi/λj)

1
2 ) = (2/π) arctan[(λj/λi)

1
2 ],

as desired. 2

The above result can be extended to vector-valued responses as follows. Let Y

be a q-dimensional random vector and assume

E(Y |X,β,Σ) = E(Y |βTX,β,Σ). (15)

Then, for any α ∈ Rq, we have

E(αTY |X,β,Σ) = E(αTY |βTX,β,Σ).

We can now apply Theorem 1 to (αTY ,X) to obtain the following generalization.
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Corollary 2 Suppose relation (15) holds with var(X|Σ) = Σ and

E(Y TY |β,Σ) <∞

almost surely. Then, under conditions 1, 2, and 3 in Theorem 1 we have, for i < j

and any α ∈ Rp such that

cov(αTY ,βTX|β,Σ) 6= 0 almost surely,

we have

P
(
corr2(αTY ,vT

iX|β,Σ) > corr2(αTY ,vT
jX|β,Σ)

)
= (2/π) arctan[(λi/λj)

1
2 ].

4 Predictive power of PCA for conditional distribution

We now turn to the general sufficient dimension reduction problem

Y X|(βTX,β,Σ) (16)

where Y and X are both random vectors as defined in the last section. This is the

same model as (6) except that here β and Σ are treated as random.

Theorem 2 Suppose relation (16) holds with var(X|Σ) = Σ. Then, under the

conditions 1, 2, and 3 in Theorem 1, for i < j and any f : Rp → R satisfying

var(f(Y )|β,Σ) <∞, cov(f(Y ),βTX|β,Σ) 6= 0 almost surely,

we have

P
(
corr2(f(Y ),vT

iX|β,Σ) > corr2(f(Y ),vT
jX|β,Σ)

)
= (2/π) arctan[(λi/λj)

1
2 ].

Proof. Since the proof is similar to that of Theorem 1, here we only highlight

the difference. Because Y X|(βTX,β,Σ), we have

E[f(Y )|X,β,Σ] = E[f(Y )|βTX,β,Σ].

Using this fact and derivations parallel to the proof of Theorem 1, we find

corr2(f(Y ),vT
iX|β,Σ) =

λ2
i (vT

iβ)2(βTΣβ)−2[βTcov(X, f(Y )|β,Σ)]2

var(f(Y )|β,Σ)λi
.

The rest of the proof follows similarly. 2
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5 Weaker form of the inequalities

As we have noticed in Section 2, the inequality obtained by Ni (2011) is stronger

than that by Artemiou and Li (2009), and the conditions used for the two results

are also different. In the previous two sections we have generalized Ni’s result to

sufficient dimension reduction for conditional mean and conditional distribution.

In this section we demonstrate the weaker form of the inequality to sufficient di-

mension reduction under weaker conditions than Assumptions 3. These weaker

assumptions are essentially the same as Assumption 1 but we are able to remove

some unnecessary ingredient from that assumption. Let Vp×p be the class of all

p× p permutation matrices. Recall that a permutation matrix is any matrix that

can be obtained by permuting the rows (or columns) of an identity matrix, that

Vp×p is a finite group, and that Vp×p ⊆ Up×p.

Assumption 4 The random matrix Σ is symmetric and positive definite with spec-

tral decomposition V ΛV T, where V has exchangeable columns in the sense that

V C
D= V for all C ∈ Vp×p and Λ is nonrandom. Moreover, the eigenvalues of Σ

are all distinct.

Compared with Assumption 1 used in Artemiou and Li (2009), here we no

longer assume the diagonal elements of Λ to be exchangeable random variables.

The intuition for this relaxation is that it is the relative position of eigenvalues and

eigenvectors that matters; in other words, as long as eigenvectors can be permuted

freely, we do not need the extra freedom to permute the eigenvalues. The next

proposition shows that Assumption 4 is indeed weaker than Assumption 3.

Proposition 1 Assumption 3 implies Assumption 4.

Proof. We need to show that, for any C ∈ Vp×p, V D= V C. We will show a

stronger result:

V A
D= V for any A ∈ Up×p. (17)

Let W be a random matrix supported on Up×p such that W V and AW D=

W for all A ∈ Up×p. Let B be a measurable set in Up×p. Because W V ,

P (V Tw ∈ B) = P (V TW ∈ B|W = w)

13



for any w ∈ Up×p. Because wT ∈ Up×p, by Lemma 1 wTV
D= V , which implies

that the distribution of V Tw is the same for all w ∈ Up×p. Hence the right hand

side above does not depend on w, which implies V TW W . Moreover, because

W V and AW D= W ,

P (ATW ∈ B|V ) = P (W ∈ B|V ).

Taking A to be V we see that

P (V TW ∈ B|V ) = P (W ∈ B|V ) = P (W ∈ B).

Since the right hand side is nonrandom, we have V TW V .

Because W V and V TW W ,

P (V T ∈ B) = P (V TW ∈ B|W = Ip) = P (V TW ∈ B).

This means V T D= V TW . Because V TW V , W V , and AW D= W for any

A ∈ Up×p, we have

P (AV TW ∈ B) = P (AV TW ∈ B|V ) =P (W ∈ B|V )

=P (V TW ∈ B|V ) = P (V TW ∈ B).

This means AV TW
D= V TW . Hence

AV T D= AV TW
D= V TW

D= V T.

Because this holds for every A ∈ Up×p, we have V TAT D= V T for every A ∈ Up×p,

which is equivalent to statement (17). 2

The next theorem extends the result of Artemiou and Li (2009) to model (15),

where the conditional mean is the primary interest of dimension reduction. The

assertion of the next theorem is more specific than Theorem 3.1 in Artemiou and Li

(2009) in that it not only asserts the probability of the desired inequality is greater

than a half but also gives the explicit expression of the amount greater than a

half. The result is weaker than Theorem 1 in that the probability depends on the

distribution of V Tβ, which cannot be completely determined under permutation

invariance.
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Theorem 3 Suppose relation (15) holds with var(X|Σ) = Σ and

E(Y TY |β,Σ) <∞

almost surely. Moreover, suppose:

1. β (X,Σ);

2. E(X|βTX,β,Σ) is a linear function of βTX;

3. Σ satisfies Assumption 4.

Then, for i < j, and any α ∈ Rq, such that cov(αTY ,βTX|β,Σ) 6= 0 almost

surely, we have

P
(
corr2(αTY ,vT

iX|β,Σ) > corr2(αTY ,vT
jX|β,Σ)

)

= 1/2 + (1/2)P (λj/λi < (vT
iβ)2/(vT

jβ)2 < λi/λj).

Proof. Using the same argument in the proof of Theorem 1 we can show that

corr2(αTY ,vT
iX|β,Σ)

corr2(αTY ,vT
jX|β,Σ)

=
λi(vT

iβ)2

λj(vT
jβ)2

.

Hence

P
(
corr2(αTY ,vT

iX|β,Σ) > corr2(αTY ,vT
jX|β,Σ)

)
=P ((vT

iβ)2/(vT
jβ)2 > λj/λi).

Because V β, we have, for any b ∈ Rp and B ∈ R2,

P ((vT
iβ,v

T
jβ) ∈ B|β = b) =P ((vT

i b,v
T
jb) ∈ B)

=P ((vT
jb,v

T
i b) ∈ B)

=P ((vT
jβ,v

T
iβ) ∈ B|β = b).

This means vT
iβ and vT

jβ are exchangeable conditioning on β. That is

P ((vT
iβ,v

T
jβ) ∈ B|β) = P ((vT

jβ,v
T
iβ) ∈ B|β).

Consequently,

P ((vT
iβ,v

T
jβ) ∈ B) =E[P ((vT

iβ,v
T
jβ) ∈ B|β)]

=E[P ((vT
jβ,v

T
iβ) ∈ B|β)]

=P ((vT
jβ,v

T
iβ) ∈ B).
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This shows that (vT
iβ,v

T
jβ) is exchangeable unconditionally. Hence

P ((vT
iβ)2/(vT

jβ)2 > λj/λi)

=P ((vT
jβ)2/(vT

iβ)2 > λj/λi)

=P ((vT
iβ)2/(vT

jβ)2 < λi/λj)

= 1− P ((vT
iβ)2/(vT

jβ)2 ≥ λi/λj)

= 1− P ((vT
iβ)2/(vT

jβ)2 > λi/λj) + P (λj/λi < (vT
iβ)2/(vT

jβ)2 < λi/λj)

which implies the desired relation. 2

We now generalize this result to the sufficient dimension reduction model (16).

The proof is similar to that of Theorem 3 and is omitted.

Theorem 4 Suppose relation (16) holds with var(X|Σ). Then, under the condi-

tions 1, 2, and 3 in Theorem 3 we have, for i < j, and any f ∈ Rq → R, such

that

var(f(Y )|β,Σ) <∞, cov(f(Y ),βTX|β,Σ) 6= 0 almost surely,

we have

P
(
corr2(f(Y ),vT

iX|β,Σ) > corr2(f(Y ),vT
jX|β,Σ)

)

= 1/2 + (1/2)P (λj/λi < (vT
iβ)2/(vT

jβ)2 < λi/λj).

Interestingly, unlike Theorem 1, Corollary 2, and Theorem 2, where Assumption

3 can be replaced by Assumption 2, there is no weaker version of the inequality with

Assumption 4 replaced by the assumption that β is an exchangeable random vector.

This is because the exchangeability of β does not guarantee the exchangeability of

V Tβ for any orthogonal matrix V .

6 Discussion

The results of this paper, as well as the earlier papers by Li (2007), Artemiou

and Li (2009), Hall and Yang (2010), and Ni (2011) reveal a natural tendency

that had not been rigorously characterized previously — that is, the strongest

traits or features in high-dimensional data tend to have some predictive power

for a given response variable, even if that variable has no pre-designed linkage
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with these traits. The easiest way to understand this phenomenon is to imagine

a random vector with a single, dominant principal component, and with all the

other principal components negligible. In this case, if a response has any relation

with the random vector at all, then it has to be related to the dominant principal

component, because all the other principal components are essentially 0 and cannot

be correlated with the response. This tendency justifies some popular but heuristic

statistical practices that seem to have worked well for no obvious reasons, such as

principal component regression and performing unsupervised dimension reduction

before supervised dimension reduction.

The understanding of this phenomenon is particularly relevant given the height-

ened interaction and synthesis between supervised (or sufficient) and unsupervised

dimension reduction in the recent literature. See, for example, Wu (2008), Fuku-

mizu, Jordan, and Bach (2009), Yeh, Huang, and Lee (2009), Li, Artemiou, and

Li (2011), and Lee, Li, and Chiaromonte (2012). Our results provide fresh insights

into the interrelation between these two fields.

It is possible that even more general version of this inequality exists. For exam-

ple, though we have only considered the case where β is a vector, it is reasonable

to speculate that similar inequalities might hold when β is a matrix. Also, we

believe that the present results can be extended to the cases where X is a random

function, where sufficient dimension reduction takes the form

Y X|〈X, g〉.

See Ferré and Yao (2003) and Hsing and Ren (2009). This corresponds to the

nonlinear version of the setting considered by Hall and Yang (2010).

Finally, we would like to point out that the relation between the unsupervised

PCA and supervised dimension reduction is probabilistic and is not particularly

strong when λi and λj are close. As noted, the probability has a lower bound of

1/2 which shows that there is a risk of getting the wrong results if we use PCA

alone. Indeed, as noted by Joliffe (1982), Hadi and Ling (1998), there are where the

last few principal components are more related to the response, than the first few

ones. Nevertheless, when there are a large number of predictors, it is justifiable to

use PCA as a pre-screening device, followed by more powerful and computationally

intensive methods such as sufficient dimension reduction.
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