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a b s t r a c t

Functional data are infinite-dimensional statistical objects which pose significant chal-
lenges to both theorists and practitioners. Both parametric and nonparametric regressions
have received attention in the functional data analysis literature. However, the former im-
poses stringent constraints while the latter suffers from logarithmic convergence rates. In
this article,we consider twopopular sufficient dimension reductionmethods in the context
of functional data analysis, which, if desired, can be combined with low-dimensional non-
parametric regression in a later step. In computation, predictor processes and index vectors
are approximated in finite dimensional spaces using the series expansion approach. In the-
ory, the basis used can be either fixed or estimated, which include both functional principal
components andB-spline basis. Thus our study ismore general thanprevious ones. Numeri-
cal results from simulations and a real data analysis are presented to illustrate themethods.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

There has recently been increased interest in the statistical modeling of functional data. In many experiments, functional
data appear as the basic unit of observations. As a natural extension of themultivariate data analysis, functional data analysis
provides valuable insights into these problems. Compared with the discrete multivariate analysis, functional analysis takes
into account the smoothness of the high dimensional covariates, and often suggests new approaches to the problems that
have not been discovered before. Even for nonfunctional data, the functional approach can often offer new perspectives on
the old problem.

The literature contains an impressive range of functional analysis tools for various problems including exploratory func-
tional principal component analysis, canonical correlation analysis, classification and regression. Two major approaches
exist. The more traditional approach, masterfully documented in the monograph [29], typically starts by representing func-
tional data by an expansion with respect to a certain basis, and subsequent inferences are carried out on the coefficients.
The most commonly utilized basis include B-spline basis for nonperiodic data and Fourier basis for periodic data. Another
line of work by the French school [16], taking a nonparametric point of view, extends the traditional nonparametric tech-
niques, most notably the kernel estimate, to the functional case. Some recent advances in the area of functional regression
include Cardot et al. [5]; Cai and Hall [4]; Aneiros-Perez and Vieu [3]; Preda [28]; Ait-Saidi et al. [2]; Aguilera et al. [1]; Wong
et al. [30]; Yao et al. [32]; Ait-Saidi et al. [2]; Crambes et al. [13].

As an extension of classical linear regression, parametric functional linear regression has achieved exclaimed success
in many real problems, although it can be argued that the structural constraint is too stringent. On the other hand,
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nonparametric functional regression is more flexible but typically suffers from poor convergence rate [17]. To address these
problems, Chen et al. [6] studied functional single-index and multiple-index models.

Herewe consider an alternative semiparametric approach based on sufficient dimension reduction. In functional context,
we assume

Y = g(⟨β1, X⟩, . . . , ⟨βK , X⟩, ϵ), (1)

where ⟨, ⟩ is the usual inner product in L2[0, 1]. Thus the response Y only depends on the predictor through K indices
obtained by projecting onto K directions. Since g is unknown, the K directions, referred to as dimension reduction directions,
are not identifiable. In the multivariate case, the space spanned by them (referred to as a dimension reduction subspace, or
drs) is identifiable under mild assumptions, however such assumptions are not known in the functional context yet. Thus
we will not use the concept of the central space which is popularly used in the dimension reduction literature [7,34]. The
reason is that for functional data there is no corresponding theory for the existence and uniqueness of the central space. This
may be due to that density for functional data is a tricky concept to work with. In the literature of functional SIR, researchers
typically work with a drs, even though there might be multiple drs’s. Although a unique drs is generally not identifiable,
useful methodology is still possible. The approach of dimension reduction is particularly useful in an exploratory stage of
statistical analysis since very few structural assumptions are imposed in (1). In particular, it is not necessary to assume the
different indices act additively as usually assumed in multiple-index models, and the error also is not necessarily additive
onmean, or homogeneous. After the dimension reduction directions are found, in particular if there are only a small number
of significant directions, one can use traditional nonparametric approaches to study the relationships between responses
and the few indices. This second stage typically involves additional structural assumptions such as additive errors.

There exist quite a few different methods aimed at estimating the dimension reduction space [24,12,25,37,38]. Among
these sliced inverse regression (SIR) and sliced average variance estimation (SAVE) are probably the most popular. Both
required linearity assumption of the predictors. However, SIR will fail when E[X |Y ] = 0 which motivated the use of SAVE.
On the other hand, SAVE requires an additional assumption on the distribution of predictors.

Adapting SIR to functional context has been proposed in [18] based on functional principal component analysis on the
random predictor process. In particular the predictor process is approximated by a truncation of the Karhunen–Loève
expansion, using the eigenfunctions as the basis. The basic procedure is to (i) approximate the functional predictors
with series expansion using certain basis and obtain the coefficients; (ii) perform dimension reduction using the finite-
dimensional coefficients as the predictors; (iii) use directions obtained in (ii) as the coefficients of the basis to finally obtain
the direction in functional space. It turns out this computational procedure is correct only when the basis is orthonormal,
and we will detail the general algorithm in Section 4.

In terms of theory, Ferré and Yao [18] assumes that the number of slices is fixed which works well for discrete responses,
but is only an approximation for continuous responses. On the other hand, the kernel estimate used in [19] was later shown
to require much stronger assumptions [9].

Our contributions in this study are summarized as follows. First, our theory for SIR allows various basis systems, either
fixed in advanced or estimated from data. Second, our theory works for both categorical and continuous response Y . Third
and most importantly, we extend SAVE to the functional context which has not been considered before.

2. SIR and SAVE

Let Y be a real random response and X ∈ L2[0, 1] the random functional predictor. In this article, we assume the en-
tire trajectory of noise-free process X is observed. When the process is densely measured, this is a reasonable assumption.
For simplicity, we assume EX = 0. We also assume the fourth moment of X exists, that is E∥X∥

4 < ∞. The (population)
covariance operator of X is given by Γ = E(X ⊗ X), where for any x, y ∈ L2[0, 1], x ⊗ y denotes the linear operator
L2[0, 1] → L2[0, 1] such that (x ⊗ y)(z) = ⟨x, z⟩y. Using the well-known Karhunen–Loève expansion, we can write

X =

∞
j=1

ξjφj,

where Eξ 2
j = λj are the eigenvalues and φj are the eigenfunctions. We assume all the eigenvalues, λ1 > λ2 > · · · > 0 are

distinct and positive, as usually assumed in the functional data literature [22,18]. If some eigenvalues are zero, the compo-
nents of βk in the kernel space of Γ cannot be identified. We focus on the estimation of the space spanned by K linearly
independent directions β1, . . . , βK , which is called a dimension reduction subspace (drs) and denoted by S. Let Γ S be the
space spanned by Γ β1, . . . , Γ βK .

Let BX = (⟨β1, X⟩, . . . , ⟨βK , X⟩). The principle of SIR and SAVE is based on the following result with proofs omitted,
which is a direct extension of the multivariate case.

Theorem 1. (a) [18] Suppose for all b ∈ L2[0, 1], the conditional expectation E(⟨b, X⟩|BX ) is linear in ⟨β1, X⟩, . . . , ⟨βK , X⟩. Then
E(X |Y ) ∈ Γ S. Obviously, if the linearity assumption is true for all drs’s, then E(X |Y ) ∈ Γ (∩S is a drs S). Note that generally,
∩S is a drs S is not guaranteed to be a drs, but s spanning system for the intersection may still be useful in practice.
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(b) If in addition Var(X |BX ) is nonrandom, Γ − Var(X |Y ) ∈ Γ S. Similarly, if this nonrandomness assumption holds for all drs’s,
Γ − Var(X |Y ) ∈ Γ (∩S is a drs S).

In the statement of the theorem above Var(X |BX ) denotes the conditional covariance operator of X , which can also bewritten
as E[(X − E(X |BX ))⊗ (X − E(X |BX ))|BX ]. With abuse of notation, Γ −Var(X |Y ) ∈ Γ S in fact means (Γ −Var(X |Y ))β ∈ Γ S
for all β ∈ L2[0, 1]. The two conditions in (a) and (b) above constrain the marginal distribution of the predictors, not the
conditional distribution of Y |X as is typical in regression. Both hold when X is a Gaussian process, although Gaussianity is
not necessary.

Note that in the literature of sufficient dimension reduction in the Euclidean space, one usually simplifies the investi-
gations somewhat by focusing on the standardized predictor Z = Γ −1/2X . However, under the functional context, such
standardization generally does not make sense. The reason is that by the Karhunen–Loève expansion, formally we have
Γ −1/2X =


∞

i=1(ξi/
√

λi)φj, but Eξ 2
i /λi = 1 implies


∞

i=1(ξi/
√

λi)φj is not a well-defined element in L2[0, 1] with proba-
bility one.

Based on Theorem 1, functional SIR estimates a drs as the eigenspace of Γ −1Var(E[X |Y ]). In the multivariate case, the
SAVE estimator is defined by the eigenspace of E[(I − Var(Z |Y ))2] where Z = (E[XXT

])−1/2X is the standardized covariate.
As noted above, such standardization is not possible for functional predictor, but we can define functional SAVE based on
the same principle. We could use the eigenspace of Γ −1E[(Γ − Var(X |Y ))2] to estimate a drs, but this does not reduce to
SAVE in the multivariate case. Instead, we first note that Γ − Var(X |Y ) ∈ Γ S implies Γ 1/2

− Var(X |Y )Γ −1/2
∈ Γ S which

in turn implies (Γ 1/2
− Var(X |Y )Γ −1/2)(Γ 1/2

− Var(X |Y )Γ −1/2)∗ = Γ − 2Var(X |Y ) + Var(X |Y )Γ −1Var(X |Y ) ∈ Γ S
where (.)∗ denotes the adjoint operator. Thus a drs can be obtained from the eigenspace of Γ −1E[(Γ − 2Var(X |Y ) +

Var(X |Y )Γ −1Var(X |Y ))]. In general, the eigenspace of these operators constructed by SIR and SAVE is only a subspace
of S and we can only hope to be able to recover this subspace. Nevertheless, for theoretical analysis, following the
dimension reduction literature, we assume the eigenvectors in either the SIR or the SAVE approach exhaustively span S.
Furthermore, to ease notation, these eigenvectors are still denoted by β1, . . . , βK (even though eigenvectors for the two
operators constructed in SIR and SAVE are obviously different). We assume the K eigenvalues of Γ −1Var(E[X |Y ]) and
Γ −1E[(Γ −2Var(X |Y )+Var(X |Y )Γ −1Var(X |Y ))] are distinct for simplicity so that all eigenvectors associatedwith nonzero
eigenvalues can be identified.

Since the domain of Γ −1 or Γ −1/2 is not the whole L2[0, 1], these formal expressions might not be well-defined, which
motivates the following proposition. Note that the sufficient conditions given in the theorem below do not depend on
whether model (1) is true or not. If the model (1) is indeed true, then these expressions are automatically well-defined
by Theorem 1.

Proposition 1. If
j

λ−2
j


i

(E[E(ξi|Y )E(ξj|Y )])2 < ∞, (2)

then Γ −1Var(E(X |Y )) is well-defined. If

E


j

λ−2
j


i

Cov2ij|Y

2
 < ∞, (3)

then Γ −1E[Γ − 2Var(X |Y ) + Var(X |Y )Γ −1Var(X |Y )] is well-defined, where Covij|Y = Cov(ξi, ξj|Y ).

3. Series expansion for functional data

We approximate both predictor X and direction βk by a basis expansion

X(t) ≈

D
j=1

xjBj(t), βk(t) ≈

D
j=1

bkjBj(t),

where D is the number of basis functions in approximating the functions. Various basis systems, such as Fourier bases,
polynomial bases, and B-spline bases, can be used in this basis expansion. Bases estimated from data can also be used,
with the most popular choice being the estimated eigenfunctions of Γ . Our methodology works for any basis system that
satisfies somemild assumptions as detailed later. For specificity,wewill emphasize the use of eigenfunctions estimated from
functional PCA aswell as B-spline basis. Theoretically, we can use a different number of basis functions in the approximation
of different functions, or use a different basis system, but it is hard to choose multiple D’s during estimation and it also
makes notationsmore complicated to consider more than one basis system. Thus we only focus on one set of basis functions
throughout the paper.

Since we allow the basis to be estimated from data, we distinguish between two D-dimensional subspaces of L2[0, 1], ŜD
and SD, where the former is the space spanned by the estimated basis functions and the latter spanned by its population
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counterpart. Let ΠD be the operator of projection onto the subspace SD, which is finite-dimensional although the dimension
diverges with sample size. Consider SIR first, where we want to estimate Γ −1Var(E[X |Y ]). Even though the inverse Γ −1

exists, it is generally not a bounded operator. Thus we replace Γ by the finite-rank operator ΓD = ΠDΓ ΠD with (pseudo-
)inverseΓ −1

D = ΠDΓ
−1ΠD. Even thoughΓ −1 is not bounded,Γ −1

D canbe expected to be bounded. On the other hand, inverse
of Var(E[X |Y ]) is not involved and thus it can be directly estimated without using finite-dimensional approximation, which
we detail now.

Given an i.i.d. sample {(X1, Y1), . . . , (Xn, Yn)}, define the order statistics Y(1) ≤ · · · ≤ Y(n), and let X(i) be the concomitant
of Y(i). To obtain slicing estimator, the range of Y is divided into H slices. We assume each slice contains an equal number of
observations, c , such that n = Hc (n is assumed to be a multiple of c without loss of generality).

In the following we use ∥ ·∥ for multiple norms, with operator it indicates the operator norm, withmatrix it indicates the
spectral norm (maximum eigenvalue), with functions it indicates the L2 norm, with vectors it indicates the l2 (Euclidean)
norm.

As a direct extension of sliced inverse regression to functional predictors, we estimate Var(E[X |Y ]) by

Var(E[X |Y ]) =
1
H

H
h=1

X̄h ⊗ X̄h,

where X̄h is the sample average of the predictors in the hth slice. Below we demonstrate the convergence of Var(E[X |Y ])
to Var(E[X |Y ]). As seen in the proof, the convergence rate can be demonstrated in almost the same way as in the finite
dimensional case. On the other hand, note that Hsing and Carroll [23]; Zhu and Ng [36] only considered another version
of SIR based on estimation of E(Var(X |Y )) and thus our proposition below is of interest even in the finite dimensional
case, which seems to be missing in the literature in the case of H → ∞. Note that Ferré and Yao [18] directly used
∥Var(E[X |Y ]) − Var(E[X |Y ])∥ = Op(n−1/2) without the following assumptions, thus their proof can only be applied to
categorical responses, or as an approximation to continuous responses. Furthermore, for functional data, somemodifications
in the proof are necessary.

Denotem(y) = E[X |Y = y] and let ϵi = Xi −m(Yi). Herem is L2[0, 1]-valued. Then ϵ(i) = X(i) −m(Y(i)) are conditionally
independent given the order statistics Y(i) [31]. Smoothness condition onm is needed for the convergence of Var(E[X |Y ]). Let
Pn(T ) be the set of all partitions−T ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T of the interval [−T , T ]where T > 0. We say a L2[0, 1]-valued
function m(y) has total variation of order r if

lim
n→∞

n−r sup
Pn(T )

n−1
i=1

∥m(ti+1) − m(ti)∥ = 0,

for any fixed T > 0. We say m is non-expansive on (−∞, −T ] ∪ [T , ∞) if there exists a nondecreasing function M such
that for two points y1 and y2 both in (−∞, −T ] or both in [T , ∞), we have ∥m(y1) − m(y2)∥ ≤ |M(y1) − M(y2)|. These
conditions are similar to those assumed in [23,36].

Proposition 2. Assume that
(i) E∥X∥

4 < ∞, and all the eigenvalues of Γ are distinct and positive;
(ii) For some r > 0,m(y) has a total variation of order r, and for some T0 > 0,m is nonexpansive on (−∞, −T0] ∪ [T0, ∞),

with M satisfying limt→∞ M4(t)P(|Y | > t) = 0;
(iii) c ∼ nδ for some 0 < δ < 1/2.
Then ∥Var(E[X |Y ]) − Var(E[X |Y ])∥ = OP(n−γ ) with γ = min{δ, 1 − δ − r, 1/2 − δ}.

Remark 1. As presented in the proposition above, we can only achieve the n−1/4 convergence rate (with δ = 1/4). How-
ever, the rate of order Op(n−1/2) is possible if we modify the assumptions. For example, if m(y) is totally bounded on the
entire range of Y , then we can use r = 0 in the proof where we have


i ∥m(Y(i+1)) − m(Y(i))∥ = Op(1), and D122n,D123n

defined in the proof will not appear. Then with c ∼ n1/2, it is obvious from the proof that the convergence rate is now
n−1/2. Alternatively, if Y is discrete taking a finite number of possible values, then it is easy to show that ∥Var(E[X |Y ]) −

Var(E[X |Y ])∥ = Op(n−1/2) under mild assumptions ([18] directly used this without proof). When Y is discrete, the proof is
easier than the proof of Proposition 2 and we do not present it here. Even when Y is continuous, we can construct a discrete
version Ỹ of Y by quantization into H values. It is always true that S for Ỹ is a subset of S for Y , and when H is sufficiently
large these two dimension reduction spaces are equal. This quantization approach is adopted in many asymptotic analysis
of sliced inverse regression, including Li [24]; Duan and Li [15]; Cook and Ni [11].

Since Γ −1 is an unbounded operator and Γ −1 is involved in the estimation of a drs, it is necessary to regularize the
operator, such as using the finite-rank approximation so that its generalized inverse is bounded. Corresponding to the
population covariance operator, let Γ = (

n
i=1 Xi ⊗ Xi)/n be the natural moment estimator of Γ . Similarly, we defineΠD as the projection ontoSD and ΓD = ΠDΓ ΠD. For functional PCA,SD is different from SD since the eigenfunctions are

estimated from spectral decomposition of Γ . On the other hand, when B-spline basis is used,SD = SD. Formally, with SIR
approach, a drs is estimated as the space spanned by the top K eigenvectors of Γ −1

D
Var(E[X |Y ]), denoted byβ1, . . . ,βK .

To state the theorem below, we define sD = ∥ΓD − ΓD∥, and let tD be the smallest positive eigenvalue of ΓD.
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Theorem 2. Suppose ∥Var(E[X |Y ])−Var(E[X |Y ])∥ = Op(n−γ ) for some 0 < γ ≤ 1/2. If D → ∞, sD = op(tD), 1/(
√
nt2D) →

0, and 1/(nγ t3/2D ) → 0, then ∥βj − βj∥ = op(1), j = 1, . . . , K.

Remark 2. Compared to Ferré and Yao [18], the only additional assumption on D is that 1/(nγ t3/2D ) → 0. This is due to
that we allowmore general convergence rate for Var(E[X |Y ]). When γ = 1/2, this assumption is actually unnecessary here
since it is implied by 1/(

√
nt2D) → 0.

Remark 3. Here we discuss the value of sD and tD defined above for the special cases of functional PCA and B-spline basis. In
the former case, let a1 = 2

√
2/(λ1 −λ2) and aj = 2

√
2/min(λj−1 −λj, λj −λj+1). Then following the arguments in [18], we

have ∥ΓD −ΓD∥ = Op(
D

j=1 aj/
√
n). Furthermore, the minimum positive eigenvalue of ΓD is λD and thus the condition that

sD = op(tD) reduces to
D

j=1 aj/(
√
nλD) → 0. For B-spline basis, we have obviously ∥ΓD − ΓD∥ ≤ ∥Γ − Γ ∥ = Op(1/

√
n).

Thus we require that tD approaches zero slower than 1/
√
n.

Now we consider functional SAVE. The sample version of the condition variance of X given Y in each slice is Varh =c
j=1(X(h,j)−X̄h)⊗(X(h,j)−X̄h)/(c−1), wherewe use a double script (h, j) to denote the jth observation in the hth slice. Thus

Γ −1E

Γ − 2Var(X |Y ) + Var(X |Y )Γ −1Var(X |Y )


can be estimated by Γ −1

D

Γ −
2
H

H
h=1

Varh +
1
H

H
h=1

VarhΓ −1
D
Varh.

Theorem 3. SupposeE[Var(X |Y )] − (1/H)

H
h=1

Varh
 = Op(n−γ )

and E[Var(X |Y )Γ −1
D Var(X |Y )] − (1/H)

H
h=1

VarhΓ −1
D
Varh

 = Op(t−1
D n−γ )

for some 0 < γ ≤ 1/2. If D → ∞, sD = op(tD), 1/(
√
nt2D) → 0, and 1/(nγ t5/2D ) → 0, then ∥βj − βj∥ = op(1), j = 1, . . . , K.

Remark 4. Here we briefly discuss how polynomial rates for convergence to E[Var(X |Y )] and E[Var(X |Y )Γ −1Var(X |Y )], as
in the assumption of the theorem, can be obtained by the results in the existing literature. The rate of ∥E[Var(X |Y )] −

(1/H)
H

h=1
Varh∥ for the multivariate case can be found in [23,36]. These results can be adapted easily to functional

context using some necessary modifications that are contained in the proof of Proposition 2. In particular, under suitable
assumptions, one can obtain ∥E[Var(X |Y )] − (1/H)

H
h=1

Varh∥ = Op(n−1/2). Also, under assumptions similar to those
in [26], and following their proof, we can show ∥E[Var(X |Y )Γ −1

D Var(X |Y )]− 1
H

H
h=1

Var(h)Γ −1
D
Var(h)∥ = Op(t−1

D n−γ ), for
some 0 < γ ≤ 1/2, where themain difference from themultivariate case is the appearance of t−1

D which comes from ∥Γ −1
D ∥

(since sD = op(tD), ∥Γ −1
D ∥ is also of order Op(t−1

D )) that will come up in various places in the proof for the functional case.
Note that in generalwe have γ < 1/2 for SAVE estimator. γ = 1/2 is possible if bias correction is adopted, or Y can take only
a finite number of possible values, as shown in [26]. Our statement of the theorem directly impose these convergence rates
as assumptions for clarity since list of those more primitive assumptions in [26] would be quite messy. Finally, the value
of γ in ∥E[Var(X |Y )] − (1/H)

H
h=1

Varh∥ and ∥E[Var(X |Y )Γ −1
D Var(X |Y )] − (1/H)

H
h=1

VarhΓ −1
D
Varh∥ generally can be

different. We assume them to be the same only for ease of notation. The convergence rate of ∥E[Var(X |Y )Γ −1
D Var(X |Y )] −

(1/H)
H

h=1
VarhΓ −1

D
Varh∥ is usually slower and determines the convergence rate ofβj.

4. Implementation in finite dimension

The above presentation of the SIR and the SAVE estimator in terms of operator language does not make it clear how to
implement the procedures in practice. In this section, we explain that we can project Xi onto SD to obtain finite dimensional
xi ∈ RD and then perform SIR and SAVE similar to the multivariate case. Note that although in terms of implementation the
functional case is similar to the multivariate case after a suitable basis is determined, in terms of theory the functional case
is different from the multivariate case. In addition, when the basis is not orthonormal, some adjustments are necessary.
Although conceptually the basis can be first transformed to be orthogonal by the Gram–Schmidt procedure, it is more
convenient to directly work on the original basis, as usually done for polynomial splines.

Let M : L2[0, 1] → SD be the mapping that maps any β ∈ L2[0, 1] to its best approximation (in the sense of minimizing
L2 norm) in the space SD. By abuse of notation, M also maps any operator constructed from X to the operator constructed
from M(X). For example, we have M(Γ ) = E(xTB ⊗ xTB), where xTB = M(X) and B = (B1, . . . , BD)

T .
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To derive the computational algorithm, we first consider M(Γ ). It is easy to see

M(Γ )(bTB) = E(⟨xTB, bTB⟩xTB) = (xxT B̄b)TB = (Var(x)B̄b)TB,

where B̄ is the D × D matrix with entries ⟨Bd, Bd′⟩ =
 1
0 Bd(t)Bd′(t)dt . Thus based on the displayed equation above, with

respect to the given basis, the operator M(Γ ) is represented by the D × D matrix Var(x)B̄. Similarly, approximation to
Var(E[X |Y ]) is represented by the matrix Var(E[x|Y ])B̄. Thus the algorithm for computing a drs using SIR is to find the top

K eigenvectors of B̄−1 Var(x)
−1 Var(E[x|Y ])B̄, denoted by b1, b2, . . . , bK and then estimate βk by bTkB, k = 1, . . . , K , where

Var(x) and Var(E[x|Y ]) are the estimators for Var(x) and Var(E[x|Y ]) respectively. Here we use Var(x) =
n

i=1 xix
T
i /n and

Var(E[x|Y ]) is the usual slicing estimator used in finite dimensional sliced inverse regression. Note that after reducing to
finite dimensions we could use other approaches, say kernel method [35], for Var(E[x|Y ]), but we only focus on the original
proposal [24] in this paper.

Similarly, to use SAVE in functional context, we compute the top eigenvectors of ID×D − 2B̄−1 Var(x)
−1 Var(x|Y )B̄ +

B̄−1 Var(x)
−1 Var(x|Y ) Var(x)

−1 Var(x|Y )B̄, and use these as coefficients in the basis expansion to obtain the estimated drs.
Although this expression looks quite complicated, when B̄ is the identity matrix (as whenwe use functional PCA to estimate
the basis) it is the same as the usual SAVE formula in finite dimensions.

5. Choice of dimension and regularization parameter

Determination of the dimension of the drs is a common problem in SIR and SAVE. In functional context, the regularization
parameter D also needs to be determined. Determination of drs dimension can be done by looking at the sum of the minor
eigenvalues of an appropriate matrix as suggested in [24,10]. In particular, we look at the eigenvalues of Var(E[X |Y ]) in
SIR, and Γ −

2
H

H
h=1

Varh +
1
H

H
h=1

VarhΓ −1
D
Varh in SAVE. If the asymptotic distribution for the test statistic can be

derived, which is typically a mixture of chi-squared distributions as shown in the finite-dimensional case [24,10], test can
be performed sequentially startingwith the null hypothesis K = 0 (that is the null model where predictor does not have any
effect on the response). However, for functional data, asymptotic distribution is harder to obtain, especially for SAVE. Thus
we consider the permutation test, which is based on recalculating the test statistic using multiple random permutations
of the responses. For detail, see Yin and Cook [33]. For SIR, we use the eigenvalues of Var(E[X |Y ]), so obviously no finite-
dimensional approximation is necessary (in practice this means we can use any D for this testing step as long as it is large
enough). For SAVE, we use the eigenvalues of Γ −

2
H

H
h=1

Varh +
1
H

H
h=1

VarhΓ −1
D
Varh and we choose a relatively large

D = 7 just to avoid singularity.
After the dimension is determined, there is still the problem of choosing D. Bias–variance tradeoff is controlled by this

parameter. As D increases, variance increases and bias decreases.
For both choice of dimension of the drs and D, graphical methods that plot the responses versus the predictors using the

estimated projections, or using some form of residuals, would be useful as discussed in [7,8]. Given that dimension reduction
is often used for data exploration, the graphical method may be satisfactory enough.

Furthermore, if prediction is the ultimate goal, then the dimension of the drs as well as parameter D can be chosen by
commonmethods used in regression, such as cross-validation. In fact, for choice of dimension,manymultivariate regression
methods are bundled with approaches for variable selection so dimension determination can be done in the context of
multivariate regression, although these variable selection procedures typically do not respect the order of the predictors
(in the context of dimension reduction using SIR or SAVE, it is desired that only the directions associated with larger
eigenvalues are kept). One should note that many flexible nonparametric multivariate regression methods, including say
neural networks or Gaussian process regression, suffer little from curse of dimensionality unless the dimension is very large.
When these regression procedures are used for prediction, we can usually use a large number of directions obtained from
SIR or SAVE.

6. Numerical examples

We use three simulation examples to illustrate functional dimension reduction. In all examples, the predictors are
standard Brownian motion on [0, 1]. We set n = 300 and the predictor is observed without noise on a grid of equally
spaced 100 points on [0, 1]. To study the sensitivity of results to the number of slices, we consider four values of H with
H = 5, 10, 15 and 20. All the results presented are based on 100 simulated datasets in each scenario. We consider both
functional PCA and B-spline basis. For the B-spline basis, the knots are chosen to be equally spaced on [0, 1]. For the latter
we use the quadratic splines with various number of internal knots.

M1. Y = ⟨β1, X⟩ + 100⟨β2, X⟩
3
+ ϵ, β1(t) = sin(3π t/2), β2(t) = sin(5π t/2),

M2. Y = ⟨β1, X⟩
3
+ 3⟨β2, X⟩ + ϵ, β1(t) = (2t − 1)3 + 1, β2(t) = (2t − 1)2 − 1,

M3. Y = 50⟨β1, X⟩ ⟨β2, X⟩
2
+ ϵ, β1(t) = (2t − 1)2 − 1, β2(t) = sin(5π t/2),
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Fig. 1. Boxplots showing ∥P −P∥ for M1 using four different estimation methods. Four rows correspond to four values of H , from small to large. Five
boxplots in each case correspond to different values of D. For basis obtained from functional PCA, we present results for D from 2 to 6. For B-spline basis,
we present results for the number of interval knots from 0 to 4 (D from 3 to 7).

where ϵ ∼ N(0, 0.12). In M1, β1 and β2 are both the eigenfunctions of Brownian motion. M2 is similar to M1 but the
directions are no long eigenfunctions of Brownian motion. M3 is intentionally designed such that SAVE will work better
than SIR and is motivated by that SIR does not work well for quadratic or close to quadratic link functions.

We first consider the dimension K = 2 is known and study the accuracy of estimation. Let P andP be the orthogonal
projection operators onto the true drs and estimated drs respectively. The distance is measured by the largest singular value
of P −P , denoted by ∥P −P∥, with smaller values indicating better estimation performance. Figs. 1–3 show the boxplots
of ∥P −P∥ for M1–M3 using different values of D, for both SIR and SAVE. Here 5 values of D are used. Different rows in the
figures correspond to different values of H . In general, we see that SIR and SAVE perform similarly, except for M3, for which
SAVE is much better, as expected. For M1 and M3, functional PCA is better since some direction(s) are eigenfunctions of the
covariance operator while for M2 the results for functional PCA and B-splines are similar. Finally, compared to the choice of
D, the results are less sensitive to the choice of H . In the rest of the section, we only consider H = 10.

Next we present the permutation test results for M1–M3 (corresponding three different rows) in Figs. 4 and 5, where we
use barplots to indicate the frequency of selection for different dimensions. We use a significance level of 0.05 for testing.
In M1 and M2, permutation tests work well for SIR but tend to select K = 1 for SAVE. In M3, test for SIR only identifies one
direction while test for SAVE identifies two directions most of the time. This is as expected since SIR does not work well
for M3. Based on the simulation results, we suggest that permutation test can be used, but probably only as a rough guide.
Graphical method or prediction-based choice as discussed previously could be used to supplement the tests findings.

Finally, we show that the graphicalmethod can suggest reasonable value(s) forD.We only usemodelM1with SIRmethod
combinedwith basis estimated from functional PCA as an illustration. Fig. 6 shows the scatterplots of observations using two
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Fig. 2. Boxplots showing ∥P −P∥ for M2.

estimated projections. VisuallyD = 3 (using three eigenvectors in functional PCA) seems to be slightly better in revealing the
relationships between predictors and responses. More formally, regression can be performed to find the prediction errors,
but we do not pursue the corresponding simulations here since we are mainly interested in recovering the directions per
se. Prediction results will also depend on the regression method to be selected.

Finally, we use the Tecator spectrometric data which can be found at http://lib.stat.cmu.edu/datasets/tecator. For this
dataset we used H = 10 since this is the value that turns out to results in the smallest errors after we tried H = 5, 10, 15.
Each unit i (among n = 215) represents one piece of finely chopped meat. For each piece, we observe one spectrometric
curve (Xi) which corresponds to the absorbance measured at 100 wavelengths. Moreover, for each piece we have its fat
content (Yi) obtained by an analytical chemical processing.

We applied both SIR and SAVE to this dataset. Permutation test suggests K = 2 or 3 is appropriate, and thus we only look
at the first three eigenfunctions. We look at results for values of D from 3 to 7. For illustration purposes, here we consider
prediction errors or different methods. We use the first 172 units for estimating the projection directions. For fitting the
projection scores, we used Gaussian process regression (using bgp function in the R package tgp [21]) which is a flexible
nonparametric regressionmethod. The prediction errors on the test units aremeasured in rootmean squared errors (RMSE).
These errors are reported in Table 1. For this dataset, SIR generally performs better than SAVE and PCA better than splines.
The smallest RMSE 0.90 is obtained by SIR using basis obtained by functional PCA.

For comparison in terms of prediction errors,we also compute the functional linear regression estimator by the functional
principal component (PCR) approach [22] and the functional partial least squares (PLS) approach [14]. The number of basis
considered are from 1 to 20. The prediction errors on the 45 test observations, measured by the absolute difference between
the predicted response and the observed response, are show in Fig. 7. The smallest RMSE by PCR is 2.07, and the smallest

http://lib.stat.cmu.edu/datasets/tecator
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Fig. 3. Boxplots showing ∥P −P∥ for M3.

Table 1
Prediction RMSE on the test data for the Tecator example.

D = 3 D = 4 D = 5 D = 6 D = 7

SIR PCA 3.64 1.29 0.90 1.08 1.72
SIR SPLINE 3.58 1.39 1.42 2.71 4.00
SAVE PCA 4.29 1.68 1.70 1.13 2.10
SAVE SPLINE 3.76 2.11 1.71 2.99 3.94

RMSE by PLS is 1.77. This illustrates that functional linear regression using only one projection direction is not sufficient for
this dataset.

7. Conclusion and discussion

In this paper, we studied SIR and SAVE for functional data and demonstrated their statistical consistency. Compared
to existing works that focused on projecting the infinite-dimensional predictor onto subspaces derived from spectral
decomposition of the covariance operator, as in functional PCA, we further extended themethodology tomuchmore general
basis systems. In the presentation we focused on basis obtained from spectral decomposition and B-spline basis only, but
other basis such as wavelets can also be considered, which represents a very interesting class of decomposition method.
Another important contribution is the study of functional SAVEwhich is not found in the existing literature. Obviously other
dimension reduction methods can be extended to functional context, but we only focused on these twomost common ones
in this paper.
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Fig. 4. Permutation test results for selection of the dimension of the drs, when using basis estimated by functional PCA.

Fig. 5. Permutation test results for selection of the dimension of the drs, when using B-spline basis.

Some important and interesting issues are still left unresolved. Themost noteworthy is the construction of better tests for
determining the number of directions. This can be quite challenging for the SAVE estimator due to its complicated form. The
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Fig. 6. 3D scatterplots using the two estimated projection directions, for four values of D.

Fig. 7. Prediction errors for the Tecator data by functional principle component regression (20 boxes on the left) and functional partial least squares (20
boxes on the right).

graphical tools developed by Liquet and Saracco [27] could be adapted which can possibly select many parameters together,
includingH, K ,D. A detailed numerical study is however outside the scope of the current paper. Another problem is to obtain
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some nontrivial convergence rates. This would probably require stronger assumptions on the decay of the eigenvalues of
the covariance operator, as in [22].
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Appendix. Proofs

In the proofs C denotes a generic positive constant.

Proof of Proposition 1. Note that for the first part, our assumption is less stringent than condition (A-3) in [19].
Using Karhunen–Loève expansion, we can write

Var(E[X |Y ]) =

∞
i=1

∞
j=1

E[E(ξi|Y )E(ξj|Y )]φi ⊗ φj.

Thus for any β =


∞

i=1 biφi ∈ L2[0, 1], we have

Var(E[X |Y ])β =

∞
j=1


∞
i=1

biE[E(ξi|Y )E(ξj|Y )]


φj.

The domain of Γ −1 is FX = {β =


i biφi ∈ L2[0, 1] :


∞

i=1 b
2
i /λ

2
i < ∞}. Thus we only need to show Var(E[X |Y ])β

∈ FX for all β ∈ L2[0, 1], which is equivalent to showing


j{


i biE[E(ξi|Y )E(ξj|Y )]}2/λ2
j < ∞. Since {


i biE[E(ξi|Y )

E(ξj|Y )]}2 ≤ {


i b
2
i }{


i(E[E(ξi|Y )E(ξj|Y )])2} by Cauchy–Schwarz inequality, we see Γ −1Var(E[X |Y ]) is well defined if
j λ

−2
j {


i E(E(ξi|Y )E(ξj|Y ))2} < ∞.
For the second part, we need to show that Γ −1E[Var(X |Y )] and Γ −1E[Var(X |Y )Γ −1Var(X |Y )] are well-defined. Given

any β =


i biφi, formally we have

Γ −1E[Var(X |Y )]β =


j


E


i

Covij|Ybi/λj


φj,

which is well-defined if
j


E


i

Covij|Ybi/λj

2

< ∞.

Using the Cauchy–Schwarz inequality, we have


j


E


i

Covij|Ybi/λj

2

≤


j

E


i

Covij|Ybi/λj

2
 ≤


j


E


i

Cov2ij|Y


i

b2i


λ2
j ,

and thus Γ −1E[Var(X |Y )]β is well-defined if
j


E


i

Cov2ij|Y


λ2
j < ∞,

which is implied by (3).
Now denote tj =


i Covij|Ybi/λj, and then we can write Γ −1Var(X |Y )β =


j tjφj. Thus

Γ −1Var(X |Y )Γ −1Var(X |Y )β =


j


i

Covij|Y ti/λj


φj,
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and Γ −1E[Var(X |Y )Γ −1Var(X |Y )] is well-defined if

E


j


i

Covij|Y ti/λj

2

< ∞. (4)

Since 
j


i

Covij|Y ti/λj

2

≤


j


i

Cov2ij|Y


i

t2i


λ2
j ,

and 
j

t2j ≤ C


j


i

Cov2ij|Y


λ2
j ,

(4) is also implied by (3). �

Proof of Proposition 2. Using Xi = m(Yi) + ϵi, we have

Var(E[X |Y ]) =
1
H

H
h=1


1
c

c
j=1

(m(Y(h,j)) + ϵ(h,j)) ⊗
1
c

c
j=1

(m(Y(h,j)) + ϵ(h,j))



=
1

Hc2

H
h=1

c
j=1

c
l=1

m(Y(h,j)) ⊗ m(Y(h,l)) +
1

Hc2

H
h=1

c
j=1

c
l=1

m(Y(h,j)) ⊗ ϵ(h,l)

+
1

Hc2

H
h=1

c
j=1

c
l=1

ϵ(h,j) ⊗ m(Y(h,l)) +
1

Hc2

H
h=1

c
j=1

c
l=1

ϵ(h,j) ⊗ ϵ(h,l)

=: D1n + D2n + D3n + D4n.

We will show ∥D1n − Var(E[X |Y ])∥ = Op(n−γ ) and the other three terms are Op(n−γ ). The proof strategy is similar to the
proof for the finite-dimensional case, say Hsing and Carroll [23], although the latter focused on a different version of SIR.
First, we have

D1n =
1

Hc2

H
h=1

c
j=1

c
l=1

m(Y(h,j)) ⊗ m(Y(h,l))

=
1

Hc2

H
h=1

c
j=1

c
l=1

m(Y(h,j)) ⊗ (m(Y(h,j)) + m(Y(h,l)) − m(Y(h,j)))

=
1
Hc

n
i=1

m(Yi) ⊗ m(Yi) +
1

Hc2

h,j≠l

m(Y(h,j)) ⊗ (m(Y(h,l)) − m(Y(h,j)))

=: D11n + D12n.

Obviously ∥D11n − Var(E[X |Y ])∥ = Op(n−1/2) by law of large numbers (note Var(E[X |Y ]) = E(m(Y ) ⊗m(Y ))). To deal with
D12n, we divide the sum over h into three summations: from 1 to [Hq], [Hq] + 1 to [H(1 − q)], and [H(1 − q)] + 1 to H ,
with appropriately chosen small positive number q, and thus write D12n = D121n + D122n + D123n. For h from [Hq] + 1 to
[H(1 − q)], Y(h,j)’s are contained in a bounded interval [−T (q), T (q)] which implies

D122n = Op


1

Hc2

[H(1−q)]
h=[Hq]


j<l

∥m(Y(h,j)) − m(Y(h,l))∥



= Op


1
H

c[H(1−q)]
i=c[Hq]+1

∥m(Y(i+1)) − m(Y(i))∥


= op(nr−1c),

sincem is bounded on compact sets.
For h from 1 to [Hq] (the case for h from [H(1− q)]+ 1 to H is similar), if Y is unbounded, then we can find small enough

q such that Y(h,j) ∈ (−∞, T0].

D121n ≤
1

Hc2

[Hq]
h=1


j≠l

∥m(Y(h,j))∥ ∥m(Y(h,j)) − m(Y(h,l))∥
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≤
1

Hc2
max
1≤i≤n

∥m(Yi)∥

[Hq]
h=1


j≠l

|M(Y(h,j)) − M(Y(h,l))|

= Op


1
H

max
1≤i≤n

∥m(Yi)∥ |M(Y(c[Hq])) − M(Y(1))|


.

By Lemma A.1 in [23], |M(Y(c[Hq])) − M(Y(1))| = op(n1/4). Using E∥m(Y )∥4 < ∞, we have P(max1≤i≤n ∥m(Yi)∥ > an1/4) ≤

nP(∥m(Yi)∥ > an1/4) ≤ nE∥m(Y )∥4/(an1/4)4 and thus max1≤i≤n ∥m(Yi)∥ = Op(n1/4). Thus D121n = op(n1/4+1/4−1c).
Next, for themultivariate case, ∥D2n∥ = Op(n−1/2) can be shown by straightforwardmoment calculations conditional on

order statistics Y(1), . . . , Y(n). However, for functional predictor, we need to take some detour. We bound the operator norm
∥D2n∥ by the Hilbert–Schmidt norm, which is given by

∥D2n∥
2
HS =

∞
m=1

∞
k=1

⟨D2nem, ek⟩2

=


m,k

1
H2c4


h,j,l

⟨m(Y(h,j)), em⟩⟨ϵ(h,l), ek⟩

2

,

where {ej} is any orthonormal basis of L2[0, 1]. Then the conditional second moment of ∥D2n∥
2
HS is

E[∥D2n∥
2
HS |Y(1), . . . , Y(n)] ≤

1
H2c4


m,k,h

E


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
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
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C
H2c2


m,h,j

⟨m(Y(h,j)), em⟩
2

=
C

H2c2

h,j

∥m(Y(h,j))∥
2

= Op(1/n),

by law of large numbers. Thus ∥D2n∥ = Op(n−1/2). Similarly we can get ∥D3n∥ = Op(n−1/2).
Finally, we have

D4n =
1

Hc2

H
h=1

c
j=1

ϵ(h,j) ⊗ ϵ(h,j) +
1

Hc2

h,j≠l

ϵ(h,j) ⊗ ϵ(h,l).

The first term on the right hand side above isOp(1/c) by law of large numbers, and the second term isOp(n−1/2) using similar
argument as in the analysis of D2n. �

Proof of Theorem 2. Let α1, . . . , αK be the K positive eigenvalues of Γ −1Var(E[X |Y ]) andα1, . . . ,αK be the K eigenvalues
ofΓ −1

D
Var(E[X |Y ]). Later in the proof wewill show that Bn = op(1) (Bn will be defined later) which implies |αj−αj| = op(1)

and thus we can assumeαj, j = 1, . . . , K are all positive and distinct. We only show the convergence of the first eigenvectorβ1 since the proofs for allβj’s are the same.
Before we continue, we note that in the following we will work with operators such as Γ −1Var(E[X |Y ])Γ −1/2. Strictly

speaking, due to the appearance of Γ −1/2, this operator is defined on FXX = {b =


i bjφi :


i b
2
i /λi < ∞}which is a dense

subset of L2[0, 1]. However, since Var(E[X |Y ]) is of finite-rank, it can be verified that Γ −1Var(E[X |Y ])Γ −1/2 is a closable
operator and thus the domain can actually be extended to L2[0, 1]. When we take Γ −1Var(E[X |Y ])Γ −1/2 to be the same
as its closed extension, the operator is actually bounded. Thus all calculations in the proof work as in the usual case where
appropriate operators are defined on L2[0, 1].

Let η = Γ 1/2β1 andη = Γ 1/2
D
β1. We have Γ −1Var(E[X |Y ])Γ −1/2η = α1β1 and Γ −1

D
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− Γ −1
D
Var(E[X |Y ])Γ −1/2

D ∥ + α−1
1 ∥Γ −1Var(E[X |Y ])Γ −1/2

∥ ∥η − η∥

+
α−1

1 −α−1
1

 ∥Γ −1Var(E[X |Y ])Γ −1/2
∥.
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Standard perturbation theory for self-adjoint operator implies

∥η − η∥ ≤ C∥Γ −1/2Var(E[X |Y ])Γ −1/2
− Γ −1/2

D
Var(E[X |Y ])Γ −1/2

D ∥,

and

|α1 −α1| ≤ ∥Γ −1/2Var(E[X |Y ])Γ −1/2
− Γ −1/2

D
Var(E[X |Y ])Γ −1/2

D ∥.

Thus we have ∥β1 − β1∥ = Op(An + Bn), where

An = ∥Γ −1Var(E[X |Y ])Γ −1/2
− Γ −1

D
Var(E[X |Y ])Γ −1/2

D ∥,

Bn = ∥Γ −1/2Var(E[X |Y ])Γ −1/2
− Γ −1/2

D
Var(E[X |Y ])Γ −1/2

D ∥.

We will show An = op(1). That Bn = op(1) is similar.
Thus we consider An.

An ≤ ∥Γ −1Var(E[X |Y ])Γ −1/2
− Γ −1

D Var(E[X |Y ])Γ
−1/2
D ∥ + ∥Γ −1

D Var(E[X |Y ])Γ
−1/2
D − Γ −1

D Var(E[X |Y ])Γ −1/2
D ∥

+ ∥Γ −1
D (Var(E[X |Y ]) − Var(E[X |Y ]))Γ −1/2

D ∥

=: A1n + A2n + A3n.

For A1n, we have

A1n ≤ ∥(Γ −1
− Γ −1

D )Var(E[X |Y ])Γ −1/2
∥ + ∥Γ −1

D Var(E[X |Y ])(Γ −1/2
− Γ

−1/2
D )∥

=: A11n + A12n.

Since the range of Var(E[X |Y ])Γ −1/2 is spanned by a finite number of elements {Γ β1, . . . , Γ βK }, and it can be directly
verified that (Γ −1

−Γ −1
D )Γ β → 0 for any fixed β , we have A11n = op(1). Similarly, using that ∥A∥ = ∥A∗

∥ for any operator
Awith adjoint operator A∗, we have A12n = op(1).

For A2n, we have

A2n ≤ ∥(Γ −1
D − Γ −1

D )Var(E[X |Y ])Γ
−1/2
D ∥ + ∥Γ −1

D Var(E[X |Y ])(Γ
−1/2
D − Γ −1/2

D )∥

≤ ∥(Γ −1
D − Γ −1

D )Var(E[X |Y ])Γ
−1/2
D ∥ + ∥Γ −1

D Var(E[X |Y ])(Γ
−1/2
D − Γ −1/2

D )∥

+ ∥(Γ −1
D − Γ −1

D )Var(E[X |Y ])(Γ
−1/2
D − Γ −1/2

D )∥

= A21n + A22n + A23n.

For A21n, using the simple equality

A−1
− B−1

= B−1(B − A)A−1, (5)

wehave (Γ −1
D −Γ −1

D )Var(E[X |Y ])Γ
−1/2
D = Γ −1

D (Γ −Γ )Γ −1
D Var(E[X |Y ])Γ

−1/2
D . It is easy to see that∥Γ −1

D Var(E[X |Y ])Γ
−1/2
D ∥

≤ ∥Γ −1Var(E[X |Y ])Γ −1/2
∥ < ∞. Furthermore, since ∥ΓD − ΓD∥ = op(tD), we have ∥Γ −1

D ∥ = Op(t−1
D ) and thus

A21n = Op(t−1
D n−1/2) = op(1).

To see A22n = op(1), we need to use the identify

A−1/2
− B−1/2

= A−1/2(B3/2
− A3/2)B−3/2

+ (A − B)B−3/2, (6)

and that

∥A3/2
− B3/2

∥ ≤ C∥A − B∥ if A and B are bounded linear operators, (7)

with constant C depending on the norm of A and B. The Eq. (6) can be directly verified while (7) can be found in Lemma 8 of
Fukumizu et al. [20]. We then have

A22n ≤ C∥t−1
D (Γ − Γ )∥ = Op(n−1/2t−1

D ) = op(1).

Using the identities (5) and (6), we can obtain ∥A23n∥
2

= Op(t−1
D n−1) = op(1)with similar arguments used for A21n and A22n.

Now we come to A3n. Since ∥Var(E[X |Y ]) − Var(E[X |Y ])∥ = Op(n−γ ), we have A3n = Op(n−γ t−3/2
D ) = op(1). �

Proof of Theorem 3. The proof is similar to that for functional SIR with small modifications at the end. We can get
∥β1 − β1∥ = Op(An + Bn), where An = ∥Γ −1GΓ −1/2

− Γ −1
D
GΓ −1/2

D ∥ and Bn = ∥Γ −1/2GΓ −1/2
− Γ −1

D
GΓ −1/2

D ∥. Here
we denote G = E


Γ − 2Var(X |Y ) + Var(X |Y )Γ −1Var(X |Y )


andG = Γ −

2
H

H
h=1

Varh +
1
H

H
h=1

VarhΓ −1
D
Varh.
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Following the same arguments as for SIR, we only need to show that ∥Γ −1
D (GD −G)Γ −1/2

D ∥ = op(1), where GD = E

Γ −

2Var(X |Y ) + Var(X |Y )Γ −1
D Var(X |Y )


. We use the decomposition

∥Γ −1
D (GD −G)Γ −1/2

D ∥ ≤

Γ −1
D


Γ − Γ − 2


Var(X |Y ) −

2
H

H
h=1

VarhΓ −1/2
D


+ ∥Γ −1

D Var(X |Y )(Γ −1
D − Γ −1

D )Var(X |Y )Γ −1/2
D ∥

+

Γ −1
D


Var(X |Y )Γ −1

D Var(X |Y ) −
1
H

H
h=1

VarhΓ −1
D
VarhΓ −1/2

D


=: C1n + C2n + C3n.

Obviously, C1n = Op(t
−3/2
D n−γ ) = op(1). For C2n, we can show C2n = ∥Γ −1

D Var(X |Y )(Γ −1
D −Γ −1

D )Var(X |Y )Γ
−1/2
D ∥+op(1) =

Op(∥Γ −1
D − Γ −1

D ∥) + op(1) = op(1). Finally, C3n = Op(t
−5/2
D n−γ ) = op(1) by assumption. �

References

[1] A. Aguilera, F. Ocana, M. Valderrama, Estimation of functional regressionmodels for functional responses bywavelet approximation, in: S. DaboNiang,
F. Ferraty (Eds.), Functional and Operatorial Statistics, in: Contributions to Statistics, 2008, pp. 15–21.

[2] A. Ait-Saidi, F. Ferraty, R. Kassa, P. Vieu, Cross-validated estimations in the single-functional index model, Statistics 42 (6) (2008) 475–494.
[3] G. Aneiros-Perez, P. Vieu, Semi-functional partial linear regression, Statistics & Probability Letters 76 (11) (2006) 1102–1110.
[4] T.T. Cai, P. Hall, Prediction in functional linear regression, Annals of Statistics 34 (5) (2006) 2159–2179.
[5] H. Cardot, F. Ferraty, P. Sarda, Spline estimators for the functional linear model, Statistica Sinica 13 (3) (2003) 571–591.
[6] D. Chen, P. Hall, H. Müller, Single and multiple index functional regression models with nonparametric link, Annals of Statistics 39 (3) (2011)

1720–1747.
[7] R. Cook, On the interpretation of regression plots, Journal of the American Statistical Association 89 (425) (1994) 177–189.
[8] R. Cook, Graphics for regressions with a binary response, Journal of the American Statistical Association 91 (435) (1996) 983–992.
[9] R. Cook, L. Forzani, A. Yao, Necessary and sufficient conditions for consistency of amethod for smoothed functional inverse regression, Statistica Sinica

20 (2010) 235–238.
[10] R. Cook, H. Lee, Dimension reduction in binary response regression, Journal of the American Statistical Association 94 (448) (1999) 1187–1200.
[11] R. Cook, L. Ni, Sufficient dimension reduction via inverse regression, Journal of the American Statistical Association 100 (470) (2005) 410–428.
[12] R. Cook, S. Weisberg, Sliced inverse regression for dimension reduction: comment, Journal of the American Statistical Association 86 (414) (1991)

328–332.
[13] C. Crambes, A. Kneip, P. Sarda, Smoothing splines estimators for functional linear regression, Annals of Statistics 37 (1) (2009) 35–72.
[14] A. Delaigle, P. Hall, Methodology and theory for partial least squares applied to functional data, The Annals of Statistics 40 (1) (2012) 322–352.
[15] N. Duan, K. Li, Slicing regression: a link-free regression method, The Annals of Statistics 19 (2) (1991) 505–530.
[16] F. Ferraty, P. Vieu, The functional nonparametric model and application to spectrometric data, Computational Statistics 17 (4) (2002) 545–564.
[17] F. Ferraty, P. Vieu, Nonparametric Functional Data Analysis: Theory and Practice, in: Springer Series in Statistics, Springer, New York, NY, 2006.
[18] L. Ferré, A. Yao, Functional sliced inverse regression analysis, Statistics 37 (6) (2003) 475–488.
[19] L. Ferré, A. Yao, Smoothed functional inverse regression, Statistica Sinica 15 (3) (2005) 665–683.
[20] K. Fukumizu, F. Bach, A. Gretton, Statistical consistency of kernel canonical correlation analysis, The Journal of Machine Learning Research 8 (2007)

361–383.
[21] R. Gramacy, H. Lee, Bayesian treed Gaussian processmodels with an application to computermodeling, Journal of the American Statistical Association

103 (483) (2008) 1119–1130.
[22] P. Hall, J.L. Horowitz, Methodology and convergence rates for functional linear regression, Annals of Statistics 35 (1) (2007) 70–91.
[23] T. Hsing, R. Carroll, An asymptotic theory for sliced inverse regression, The Annals of Statistics 20 (2) (1992) 1040–1061.
[24] K. Li, Sliced inverse regression for dimension reduction, Journal of the American Statistical Association 86 (414) (1991) 316–327.
[25] B. Li, S. Wang, On directional regression for dimension reduction, Journal of the American Statistical Association 102 (479) (2007) 997–1008.
[26] Y. Li, L. Zhu, Asymptotics for sliced average variance estimation, The Annals of Statistics 35 (1) (2007) 41–69.
[27] B. Liquet, J. Saracco, A graphical tool for selecting the number of slices and the dimension of the model in SIR and SAVE approaches, Computational

Statistics 27 (1) (2012) 103–125.
[28] C. Preda, Regression models for functional data by reproducing Kernel Hilbert spaces methods, Journal of Statistical Planning and Inference 137 (3)

(2007) 829–840.
[29] J.O. Ramsay, B.W. Silverman, Functional Data Analysis, second ed., in: Springer Series in Statistics, Springer, New York, 2005.
[30] H. Wong, R.Q. Zhang, W.C. Ip, G.Y. Li, Functional-coefficient partially linear regression model, Journal of Multivariate Analysis 99 (2) (2008) 278–305.
[31] S. Yang, General distribution theory of the concomitants of order statistics, The Annals of Statistics 5 (5) (1977) 996–1002.
[32] F. Yao, H.G. Müller, J.L. Wang, Functional linear regression analysis for longitudinal data, Annals of Statistics 33 (6) (2005) 2873–2903.
[33] X. Yin, R. Cook, Dimension reduction for the conditional kth moment in regression, Journal of the Royal Statistical Society. Series B (Statistical

Methodology) 64 (2) (2002) 159–175.
[34] X. Yin, B. Li, R. Cook, Successive direction extraction for estimating the central subspace in amultiple-index regression, Journal ofMultivariate Analysis

99 (8) (2008) 1733–1757.
[35] L. Zhu, K. Fang, Asymptotics for kernel estimate of sliced inverse regression, The Annals of Statistics 24 (3) (1996) 1053–1068.
[36] L. Zhu, K. Ng, Asymptotics of sliced inverse regression, Statistica Sinica 5 (1995) 727–736.
[37] L. Zhu, T. Wang, L. Ferré, Sufficient dimension reduction through discretization–expectation estimation, Biometrika 97 (2) (2010) 295–304.
[38] L. Zhu, L. Zhu, Z. Feng, Dimension reduction in regressions through cumulative slicing estimation, Journal of the American Statistical Association 105

(492) (2010) 1455–1466.

http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref1
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref2
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref3
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref4
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref5
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref6
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref7
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref8
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref9
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref10
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref11
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref12
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref13
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref14
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref15
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref16
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref17
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref18
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref19
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref20
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref21
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref22
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref23
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref24
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref25
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref26
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref27
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref28
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref29
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref30
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref31
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref32
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref33
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref34
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref35
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref36
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref37
http://refhub.elsevier.com/S0047-259X(13)00226-1/sbref38

	Series expansion for functional sufficient dimension reduction
	Introduction
	SIR and SAVE
	Series expansion for functional data
	Implementation in finite dimension
	Choice of dimension and regularization parameter
	Numerical examples
	Conclusion and discussion
	Acknowledgments
	Proofs
	References


