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a b s t r a c t

This article studies two regularized robust estimators of scatter matrices proposed (and
proved to be well defined) in parallel in Chen et al. (2011) and Pascal et al. (2013), based on
Tyler’s robust M-estimator (Tyler, 1987) and on Ledoit and Wolf’s shrinkage covariance
matrix estimator (Ledoit and Wolf, 2004). These hybrid estimators have the advantage
of conveying (i) robustness to outliers or impulsive samples and (ii) small sample size
adequacy to the classical sample covariancematrix estimator.We consider here the case of
i.i.d. elliptical zeromean samples in the regimewhere both sample and population sizes are
large. We demonstrate that, under this setting, the estimators under study asymptotically
behave similar to well-understood randommatrix models. This characterization allows us
to derive optimal shrinkage strategies to estimate the population scattermatrix, improving
significantly upon the empirical shrinkage method proposed in Chen et al. (2011).

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Many scientific domains customarily deal with (possibly small) sets of large dimensional data samples from which
statistical inference is performed. This is in particular the case in financial data analysis where few stationary monthly
observations of numerous stock indexes are used to estimate the joint covariance matrix of the stock returns [12,13,23],
bioinformatics where clustering of genes is obtained based on gene sequences sampled from a small population [24],
computational immunology where correlations among mutations in viral strains are estimated from sampled viral
sequences and used as a basis of novel vaccine design [7,22], psychology where the covariance matrix of multiple
psychological traits is estimated from data collected on a group of tested individuals [28], or electrical engineering at large
where signal samples extracted from a possibly short time window are used to retrieve parameters of the signal [25]. In
many such cases, the number n of independent data samples x1, . . . , xn ∈ CN (or RN ) may not be large compared to the size
N of the population, suggesting that the empirical sample covariance matrix C̄N =

1
n

n
i=1(xi − x̄)(xi − x̄)∗, x̄ =

1
n

n
i=1 xi,

is a poor estimate for CN = E[(x1 − x̄)(x1 − x̄)∗]. Several solutions have been proposed to work around this problem. If the
end application is not to retrieve CN but some metric of it, recent works on random matrix theory showed that replacing
CN in the metric by C̄N often leads to a biased estimate of the metric [19], but that this estimate can be corrected by an
improved estimation of themetric itself via the samples x1, . . . , xn [18]. However, when the object under interest is CN itself
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and N ≃ n, there is little hope to retrieve any consistent estimate of CN . A popular alternative proposed originally in [14]
is to ‘‘shrink’’ C̄N , i.e., consider instead C̄N(ρ) = (1 − ρ)C̄N + ρIN for an appropriate ρ ∈ [0, 1] that minimizes the average
distance E[tr((C̄N(ρ) − CN)2)]. The interest of ρ here is to give more or less weight to C̄N depending on the relevance of the
n samples, so that in particular ρ is better chosen close to zero when n is large and close to one when n is small.

In addition to the problem of scarcity of samples, it is often the case that outliers are present among the set of samples.
These outliers may arise from erroneous or inconsistent data (e.g., individuals under psychological or biological tests
incorrectly identified to fit the test pattern), or from the corruption of some samples by external events (e.g., interference
by ambient electromagnetic noise in signal processing). These outliers, if not correctly handled, may further corrupt
the statistical inference and in particular the estimation of CN . The field of robust estimation intends to deal with this
problem [10,16] by proposing estimators that have the joint capability to naturally attenuate the effect of outliers [9] as well
as to appropriately handle samples of an impulsive nature [30], e.g., elliptically distributed data. A common denominator
of such estimators is their belonging to the class of M-estimators, therefore taking the form of the solution to an implicit
equation. This poses important problems of analysis in small N, n dimensions, resultingmostly in only asymptotic results in
the regime N fixed and n → ∞ [15,11]. This regime is however inconsistent with the present scenario of scarce data where
N ≃ n. Nonetheless, recentworks based on randommatrix theory have shown that a certain family of such robust covariance
matrix estimators asymptotically behave as N, n → ∞ and N/n → c ∈ (0, 1) similar to classical random matrices taking
(almost) explicit forms. Such observations were made for the class of Maronna’s M-estimators of scatter [15] for sample
vectors whose independent entries can contain outliers [5] and for elliptically distributed samples [6], as well as for Tyler’s
M-estimator [30] in Zhang et al. [32].

In this article, we study two hybrid robust shrinkage covariance matrix estimates ĈN(ρ) (hereafter referred to as the
Abramovich–Pascal estimate) and ČN(ρ) (hereafter referred to as the Chen estimate) proposed in parallel in [1,21]1 and in [4],
respectively. Both matrices, whose definition is introduced in Section 2, are empirically built upon Tyler’s M-estimate [30]
originally designed to cope with elliptical samples whose distribution is unknown to the experimenter and upon the
Ledoit–Wolf shrinkage estimator [14]. This allows for an improved degree of freedom for approximating the population
covariance matrix and importantly allows for N > n, which Maronna’s and Tyler’s estimators do not. In [21,4], ĈN(ρ) and
ČN(ρ)were proved to bewell-defined as the unique solutions to their defining fixed-pointmatrices. However, little is known
of their performance as estimators of CN in the regimeN ≃ n of interest here. Some progress in this directionwasmade in [4]
but this work does notmanage to solve the optimal shrinkage problem consisting of finding ρ such that E[tr((ČN(ρ)−CN)2)]
is minimized and resorts to solving an approximate problem instead.

The present article studies the matrices ĈN(ρ) and ČN(ρ) from a random matrix approach, i.e., in the regime where
N, n → ∞ with N/n → c ∈ (0, ∞), and under the assumption of the absence of outliers. Our main results are as follows:

• we show that, under the aforementioned setting, both ĈN(ρ) and ČN(ρ) asymptotically behave similar to well-known
randommatrix models and prove in particular that both have a well-identified limiting spectral distribution;

• we prove that, up to a change in the variable ρ, the matrices ČN(ρ) and ĈN(ρ)/( 1
N tr ĈN(ρ)) are essentially the same for

N, n large, implying that both achieve the same optimal shrinkage performance;
• wedetermine the optimal shrinkageparameters ρ̂⋆ and ρ̌⋆ thatminimize the almost sure limits limN

1
N tr[(ĈN(ρ)/( 1

N tr ĈN

(ρ)) − CN)]2 and limN
1
N tr[(ČN(ρ) − CN)]2, respectively, both limits being the same. We then propose consistent esti-

mates ρ̂N and ρ̌N for ρ̂⋆ and ρ̌⋆ which achieve the same limiting performance. We finally show by simulations that a
significant gain is obtained using ρ̂⋆ (or ρ̂N ) and ρ̌⋆ (or ρ̌N ) compared to the solution ρ̌O of the approximate problem
developed in [4].

In practice, these results allow for a proper use of ĈN(ρ) and ČN(ρ) in anticipation of the absence of outliers. In the presence
of outliers, it is then expected that both Abramovich–Pascal and Chen estimates will exhibit robustness properties that
their asymptotic random matrix equivalents will not. Note in particular that, although ĈN(ρ) and ČN(ρ) are shown to be
asymptotically equivalent in the absence of outliers, it is not clear at this point whether one of the two estimates will show
better performance in the presence of outliers. The study of this interesting scenario is left to future work.

The remainder of the article is structured as follows. In Section 2, we introduce our main results on the large N, n
behavior of the matrices ĈN(ρ) and ČN(ρ). In Section 3, we develop the optimal shrinkage analysis, providing in particular
asymptotically optimal empirical shrinkage strategies. Concluding remarks are provided in Section 4. All proofs of the results
of Section 2 and Section 3 are then presented in Section 5.

General notations: The superscript (·)∗ stands for Hermitian transpose in the complex case or transpose in the real case.
The notation ∥·∥ stands for the spectral norm formatrices and the Euclidean norm for vectors. TheDiracmeasure at point x is
denoted δx. The ordered eigenvalues of a Hermitian (or symmetric)matrix X of sizeN×N are denoted λ1(X) ≤ · · · ≤ λN(X).
For ℓ > 0 and a positive and positively supportedmeasure ν, we defineMν,ℓ =


tℓν(dt) (may be infinite). The arrow ‘‘

a.s.
−→’’

designates almost sure convergence. The statement X , Y defines the new notation X as being equal to Y .

1 To the authors’ knowledge, the first instance of the estimator dates back to [1] although the non-obvious proof of ĈN (ρ) being well-defined is only
found later in [21].
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2. Main results

We start by introducing themain assumptions of the datamodel under study.We consider n sample vectors x1, . . . , xn ∈

CN (or RN ) having the following characteristics.

Assumption 1 (Growth Rate). Denoting cN = N/n, cN → c ∈ (0, ∞) as N → ∞.

Assumption 2 (Population Model). The vectors x1, . . . , xn ∈ CN (or RN ) are independent with

a. xi =
√

τ iANyi, where yi ∈ CN̄ (or RN̄ ), N̄ ≥ N , is a random zero mean unitarily (or orthogonally) invariant vector with
norm ∥yi∥2

= N̄ , AN ∈ CN×N̄ is deterministic, and τ1, . . . , τn is a collection of positive scalars. We shall denote zi = ANyi.
b. CN , ANA∗

N is nonnegative definite, with trace 1
N tr CN = 1 and spectral norm satisfying lim supN ∥CN∥ < ∞.

c. νN , 1
N

N
i=1 δλi(CN ) satisfies νN → ν weakly with ν ≠ δ0 almost everywhere.

Since all considerations to come are equally valid over C or R, we will consider by default that x1, . . . , xn ∈ CN . As
the analysis will show, the positive scalars τi have no impact on the robust covariance estimates; with this definition, the
distribution of the vectors xi contains in particular the class of elliptical distributions. Note that the assumption that yi is
zero mean unitarily invariant with norm N̄ is equivalent to saying that yi =

√

N̄ ỹi
∥ỹi∥

with ỹi ∈ CN̄ standard Gaussian. This,

along with AN ∈ CN×N̄ and lim supN ∥CN∥ < ∞, implies in particular that ∥xi∥2 is of order N . The assumption that ν ≠ δ0
almost everywhere avoids the degenerate scenario where an overwhelming majority of the eigenvalues of CN tend to zero,
whose practical interest is quite limited. Finally note that the constraint 1

N tr CN = 1 is inconsequential and in fact defines
uniquely both terms in the product τiCN .

The following two theorems introduce the robust shrinkage estimators ĈN(ρ) and ČN(ρ), and constitute the main
technical results of this article.

Theorem 1 (Abramovich–Pascal Estimate). Let Assumptions 1 and 2 hold. For ε ∈ (0,min{1, c−1
}), define R̂ε = [ε +

max{0, 1 − c−1
}, 1]. For each ρ ∈ (max{0, 1 − c−1

N }, 1], let ĈN(ρ) be the unique solution to

ĈN(ρ) = (1 − ρ)
1
n

n
i=1

xix∗

i
1
N x

∗

i ĈN(ρ)−1xi
+ ρIN .

Then, as N → ∞,

sup
ρ∈R̂ε

ĈN(ρ) − ŜN(ρ)

 a.s.
−→ 0

where

ŜN(ρ) =
1

γ̂ (ρ)

1 − ρ

1 − (1 − ρ)c
1
n

n
i=1

ziz∗

i + ρIN

and γ̂ (ρ) is the unique positive solution to the equation in γ̂

1 =


t

γ̂ ρ + (1 − ρ)t
ν(dt).

Moreover, the function ρ → γ̂ (ρ) thus defined is continuous on (0, 1].

Proof. The proof is deferred to Section 5.1.

Theorem 2 (Chen Estimate). Let Assumptions 1 and 2 hold. For ε ∈ (0, 1), define Řε = [ε, 1]. For each ρ ∈ (0, 1], let ČN(ρ)
be the unique solution to

ČN(ρ) =
B̌N(ρ)

1
N tr B̌N(ρ)

where

B̌N(ρ) = (1 − ρ)
1
n

n
i=1

xix∗

i
1
N x

∗

i ČN(ρ)−1xi
+ ρIN .

Then, as N → ∞,

sup
ρ∈Řε

ČN(ρ) − ŠN(ρ)

 a.s.
−→ 0
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where

ŠN(ρ) =
1 − ρ

1 − ρ + Tρ

1
n

n
i=1

ziz∗

i +
Tρ

1 − ρ + Tρ

IN

in which Tρ = ργ̌ (ρ)F(γ̌ (ρ); ρ) with, for all x > 0,

F(x; ρ) =
1
2

(ρ − c(1 − ρ)) +


1
4

(ρ − c(1 − ρ))2 + (1 − ρ)
1
x

and γ̌ (ρ) is the unique positive solution to the equation in γ̌

1 =


t

γ̌ ρ +
1−ρ

(1−ρ)c+F(γ̌ ;ρ)
t
ν(dt).

Moreover, the function ρ → γ̌ (ρ) thus defined is continuous on (0, 1].

Proof. The proof is deferred to Section 5.2.

Theorems 1 and 2 show that, as N, n → ∞ with N/n → c , the matrices ĈN(ρ) and ČN(ρ), defined as the non-trivial
solution of fixed-point equations, behave similar to matrices ŜN(ρ) and ŠN(ρ), respectively, whose characterization is well-
known and much simpler than that of ĈN(ρ) and ČN(ρ) themselves. Indeed, ŜN(ρ) and ŠN(ρ) are random matrices of the
sample covariance matrix type thoroughly studied in e.g., [17,26,27].

Note that these results are similar in statement to the results of Couillet et al. [5,6] for robust estimators of the Maronna-
type. Technically speaking, the proof of both Theorems1 and2unfolds from the same technique as produced in these articles.
However, while the proof of Theorem 1 comes with nomajor additional difficulty compared to these works, due to the scale
normalization imposed in the definition of ČN(ρ), the proof of Theorem 2 requires a more elaborate approach than used
in [6]. Another difference to previous works lies here in that, unlike Maronna’s estimator that only attenuates the effect
of the scale parameters τi, the proposed Tyler-based estimators discard this effect altogether. Also, the technical study of
Maronna’s estimator can be made under the assumption that CN = IN (from a natural variable change) while here, because
of the regularization term ρIN , CN does intervene in an intricate manner in the results.

As a side remark, it is shown in [21] that for each N, n fixed with n ≥ N + 1, ĈN(ρ) → ĈN(0) as ρ → 0 with ĈN(0)
defined (almost surely) as one of the (uncountably many) solutions to

ĈN(0) =
1
n

n
i=1

xix∗

i
1
N x

∗

i ĈN(0)−1xi
. (1)

In the regime where N, n → ∞ and N/n → c , this result is difficult to generalize as it is challenging to handle the limit
∥ĈN(ρN) − ŜN(ρN)∥ for a sequence {ρN}

∞

N=1 with ρN → 0. The requirement that ρN → ρ0 > 0 on any such sequence is
indeed at the core of the proof of Theorem 1 (see Eqs. (5) and (6) in Section 5.1 where ρ0 > 0 is necessary to ensure e+ < 1).
This explains why the set R̂ε in Theorem 1 excludes the region [0, ε). Similar arguments hold for ČN(ρ). As a matter of fact,
the behavior of any solution ĈN(0) to (1) in the large N, n regime, recently derived in [32], remains difficult to handle with
our proof technique.

An immediate consequence of Theorems 1 and 2 is that the empirical spectral distributions of ĈN(ρ) and ČN(ρ) converge
to the well-known respective limiting distributions of ŜN(ρ) and ŠN(ρ), characterized in the following result.

Corollary 1 (Limiting Spectral Distribution). Under the settings of Theorems 1 and 2,

1
N

N
i=1

δλi(ĈN (ρ))

a.s.
−→ µ̂ρ, ρ ∈ R̂ε

1
N

N
i=1

δλi(ČN (ρ))

a.s.
−→ µ̌ρ, ρ ∈ Řε

where the convergence arrow is understood as the weak convergence of probability measures, for almost every sequence
{x1, . . . , xn}∞n=1, and where

µ̂ρ = max{0, 1 − c−1
}δρ + µ̂

ρ

µ̌ρ = max{0, 1 − c−1
}δ Tρ

1−ρ+Tρ
+ µ̌

ρ



R. Couillet, M. McKay / Journal of Multivariate Analysis 131 (2014) 99–120 103

Fig. 1. Histogram of the eigenvalues of ĈN (Abramovich–Pascal type) for n = 2048, N = 256, CN =
1
3 diag(I128, 5I128), ρ = 0.2, versus limiting eigenvalue

distribution.

with µ̂
ρ
and µ̌

ρ
continuous finite measures with compact support in [ρ, ∞) and [Tρ(1 − ρ + Tρ)−1, ∞) respectively, real

analytic wherever their density is positive. The measure µ̂ρ is the only measure with Stieltjes transformmµ̂ρ (z) defined, for z ∈ C
with ℑ[z] > 0, as

mµ̂ρ (z) = γ̂
1 − (1 − ρ)c

1 − ρ


1

ẑ(ρ) +
t

1+cδ̂(z)

ν(dt)

where ẑ(ρ) = (ρ − z)γ̂ (ρ)
1−(1−ρ)c

1−ρ
and δ̂(z) is the unique solution with positive imaginary part of the equation in δ̂

δ̂ =


t

ẑ(ρ) +
t

1+cδ̂

ν(dt).

The measure µ̌ρ is the only measure with Stieltjes transform mµ̌ρ (z) defined, for ℑ[z] > 0 as

mµ̌ρ (z) =
1 − ρ + Tρ

1 − ρ


1

ž(ρ) +
t

1+cδ̌(z)

ν(dt)

with ž(ρ) =
1

1−ρ
Tρ(1 − z) − z and δ̌(z) the unique solution with positive imaginary part of the equation in δ̌

δ̌ =


t

ž(ρ) +
t

1+cδ̌

ν(dt).

Proof. This is an immediate application of [26,27] and Theorems 1 and 2.

From Corollary 1, µ̂ρ is continuous on (ρ, ∞) so that µ̂ρ(dx) = p̂ρ(x)dx where, from the inverse Stieltjes transform
formula (see e.g., [3]) for all x ∈ (ρ, ∞), denoting ı =

√
−1,

p̂ρ(x) = lim
ε→0

1
π

ℑ

mµ̂ρ (x + ıε)


.

Letting ε > 0 small and approximating p̂ρ(x) by 1
π
ℑ[mµ̂ρ (x + ıε)] allows one to depict p̂ρ approximately. Similarly,

µ̌ρ(dx) = p̌ρ(x)dx for all x ∈ (Tρ(1 − ρ + Tρ)−1, ∞) which can be obtained equivalently. This is performed in Figs. 1 and 2
which depict the histogram of the eigenvalues of ĈN(ρ) and ČN(ρ) for ρ = 0.2, N = 256, n = 2048, CN = diag(I128, 5I128),
versus their limiting distributions for c = 1/8. Fig. 3 depicts ČN(ρ) for ρ = 0.8, N = 1024, n = 512, CN = diag(I128, 5I128)
versus its limiting distribution for c = 2. Note that, when c = 1/8, the eigenvalues of ČN(ρ) concentrate in two bulks close
to 1/3 and 5/3, as expected. Due to the different trace normalization of ĈN(ρ), the same reasoning holds up to a multiplica-
tive constant. However, when c = 2, the eigenvalues of ČN(ρ) are quite remote frommasses in 1/3 and 5/3, an observation
known since [17].

Another corollary of Theorems 1 and 2 is the joint convergence (over both ρ and the eigenvalue index) of the individual
eigenvalues of ĈN(ρ) to those of ŜN(ρ) and of the individual eigenvalues of ČN(ρ) to those of ŠN(ρ), as well as the joint
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Fig. 2. Histogram of the eigenvalues of ČN (Chen type) for n = 2048, N = 256, CN =
1
3 diag(I128, 5I128), ρ = 0.2, versus limiting eigenvalue distribution.

Fig. 3. Histogram of the eigenvalues of ČN (Chen type) for n = 512, N = 1024, CN =
1
3 diag(I128, 5I128), ρ = 0.8, versus limiting eigenvalue distribution.

convergence over ρ of the moments of the empirical spectral distributions of ĈN(ρ) and ČN(ρ). These joint convergence
properties are fundamental in problems of optimization of the parameter ρ as discussed in Section 3.

Corollary 2 (Joint Convergence Properties). Under the settings of Theorems 1 and 2,

sup
ρ∈R̂ε

max
1≤i≤n

λi(ĈN(ρ)) − λi(ŜN(ρ))

 a.s.
−→ 0

sup
ρ∈Řε

max
1≤i≤n

λi(ČN(ρ)) − λi(ŠN(ρ))

 a.s.
−→ 0.

This result implies

lim sup
N

sup
ρ∈R̂ε

∥ĈN(ρ)∥ < ∞

lim sup
N

sup
ρ∈Řε

∥ČN(ρ)∥ < ∞
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almost surely. This, and the weak convergence of Corollary 1, in turn induce that, for each ℓ ∈ N,

sup
ρ∈R̂ε

 1N tr

ĈN(ρ)ℓ


− Mµ̂ρ ,ℓ

 a.s.
−→ 0

sup
ρ∈Řε

 1N tr

ČN(ρ)ℓ


− Mµ̌ρ ,ℓ

 a.s.
−→ 0

where we recall that Mµ,ℓ =

tℓµ(dt) ∈ (0, ∞] for any probability measure µ with support in R+; in particular, Mµ̂ρ ,1 =

1
γ̂ (ρ)

1−ρ

1−(1−ρ)c + ρ and Mµ̌ρ ,1 = 1.

Proof. The proof is provided in Section 5.3.

3. Application to optimal shrinkage

We now apply Theorems 1 and 2 to the problem of optimal linear shrinkage, originally considered in [14] for the simpler
sample covariance matrix model. The optimal linear shrinkage problem consists in choosing ρ to be such that a certain
distance metric between ĈN(ρ) (or ČN(ρ)) and CN is minimized, therefore allowing for a more appropriate estimation of CN

via ĈN(ρ) or ČN(ρ). The metric selected here is the squared Frobenius norm of the difference between the (possibly scaled)
robust estimators and CN , which has the advantage of being a widespread matrix distance (e.g., as considered in [14]) and
a metric amenable to mathematical analysis.2 In [4], the authors studied this problem in the specific case of ČN(ρ) but did
not find an expression for the optimal theoretical ρ due to the involved structure of ČN(ρ) for all finite N, n and therefore
resorted to solving an approximate problem, the solution of which is denoted here ρ̌O. Instead, we show that for large N, n
values the optimal ρ under study converges to a limiting value ρ̌⋆ that takes an extremely simple explicit expression. A
similar result holds for ĈN(ρ) for which an equivalent optimal ρ̂⋆ is defined.

Our first result is a lemma of fundamental importance which demonstrates that, up to a change in the variable ρ,
ŜN(ρ)/Mµ̂ρ ,1 and ŠN(ρ) are completely equivalent to the original Ledoit–Wolf linear shrinkage model for the samples
z1, . . . , zn.

Lemma 1 (Model Equivalence). For each ρ ∈ (0, 1], there exist unique ρ̂ ∈ (max{0, 1 − c−1
}, 1] and ρ̌ ∈ (0, 1] such that

ŜN(ρ̂)

Mµ̂ρ̂ ,1
= ŠN(ρ̌) = (1 − ρ)

1
n

n
i=1

ziz∗

i + ρIN .

Besides, the maps (0, 1] → (max{0, 1− c−1
}, 1], ρ → ρ̂ and (0, 1] → (0, 1], ρ → ρ̌ thus defined are continuously increasing

and onto.

Proof. The proof is provided in Section 5.4.

Alongwith Theorems 1 and 2, Lemma 1 indicates that, up to a change in the variable ρ, ĈN(ρ) and ČN(ρ) can be somewhat
viewed as asymptotically equivalent (but there is no saying whether they can be claimed equivalent for all finite N, n). As
such, thanks to Lemma 1, we now show that the optimal shrinkage parameters ρ for both ĈN(ρ)/( 1

N tr ĈN(ρ)) and ČN(ρ)
lead to the same asymptotic performance, which corresponds to the asymptotically optimal performance of the Ledoit–Wolf
linear shrinkage estimator constructed from the vectors z1, . . . , zn.

Proposition 1 (Optimal Shrinkage). For each ρ ∈ (0, 1], define3

D̂N(ρ) =
1
N

tr

 ĈN(ρ)

1
N tr ĈN(ρ)

− CN

2


ĎN(ρ) =
1
N

tr


ČN(ρ) − CN

2
.

Also denote D⋆
= c Mν,2−1

c+Mν,2−1 , ρ
⋆
=

c
c+Mν,2−1 , and ρ̂⋆

∈ (max{0, 1 − c−1
}, 1], ρ̌⋆

∈ (0, 1] the unique solutions to

ρ̂⋆

1
γ̂ (ρ̂⋆)

1−ρ̂⋆

1−(1−ρ̂⋆)c + ρ̂⋆
=

Tρ̌⋆

1 − ρ̌⋆ + Tρ̌⋆
= ρ⋆.

2 Alternative metrics (such as the geodesic distance on the cone of nonnegative definite matrices) can be similarly considered. The appropriate choice
of such a metric heavily depends on the ultimate problem to optimize.
3 Recall that, for A Hermitian, 1

N tr(A2) =
1
N tr(AA∗) =

1
N ∥A∥

2
F with ∥ · ∥F the Frobenius norm for matrices.
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Then, letting ε < min(ρ̂⋆
− max{0, 1 − c−1

}, ρ̌⋆), under the setting of Theorems 1 and 2,

inf
ρ∈R̂ε

D̂N(ρ)
a.s.

−→D⋆, inf
ρ∈Řε

ĎN(ρ)
a.s.

−→D⋆

and

D̂N(ρ̂⋆)
a.s.

−→D⋆, ĎN(ρ̌⋆)
a.s.

−→D⋆.

Moreover, letting ρ̂N and ρ̌N be random variables such that ρ̂N
a.s.

−→ ρ̂⋆ and ρ̌N
a.s.

−→ ρ̌⋆,

D̂N(ρ̂N)
a.s.

−→D⋆, ĎN(ρ̌N)
a.s.

−→D⋆.

Proof. The proof is provided in Section 5.5.

The last part of Proposition 1 states that, if consistent estimates ρ̂N and ρ̌N of ρ̂⋆ and ρ̌⋆ exist, then they have optimal
shrinkage performance in the large N, n limit. Such estimates may of course be defined in multiple ways. We present below
a simple example based on ĈN(ρ) and ČN(ρ).

Proposition 2 (Optimal Shrinkage Estimate). Under the setting of Proposition 1, let ρ̂N ∈ (max{0, 1− c−1
}, 1] and ρ̌N ∈ (0, 1]

be solutions (not necessarily unique) to

ρ̂N
1
N tr ĈN(ρ̂N)

=
cN

1
N tr


1
n

n
i=1

xix∗i
1
N ∥xi∥2

2


− 1

ρ̌N
1
n

n
i=1

x∗i ČN (ρ̌N )−1xi
∥xi∥2

1 − ρ̌N + ρ̌N
1
n

n
i=1

x∗i ČN (ρ̌N )−1xi
∥xi∥2

=
cN

1
N tr


1
n

n
i=1

xix∗i
1
N ∥xi∥2

2


− 1

defined arbitrarily when no such solutions exist. Then ρ̂N
a.s.

−→ ρ̂⋆ and ρ̌N
a.s.

−→ ρ̌⋆, so that D̂N(ρ̂N)
a.s.

−→D⋆ and ĎN(ρ̌N)
a.s.

−→D⋆.

Proof. The proof is deferred to Section 5.6.

Fig. 4 illustrates the performance in terms of themetric ĎN of the empirical shrinkage coefficient ρ̌N introduced in Propo-
sition 2 versus the optimal value infρ∈(0,1]{ĎN(ρ)}, averaged over 10 000 Monte Carlo simulations. We also present in this
graph the almost sure limiting value D⋆ of both ĎN(ρ̌N) and infρ∈Řε

{ĎN(ρ)} for some sufficiently small ε, as well as ĎN(ρ̌O)

of ρ̌O defined in [4, Eq. (12)] as the minimizing solution of E[ 1
N tr((ČO(ρ) − CN)2)] with ČO(ρ) the so-called ‘‘clairvoyant

estimator’’

ČO(ρ) = (1 − ρ)
1
n

n
i=1

xix∗

i
1
N x

∗

i C
−1
N xi

+ ρIN .

We consider in this graph N = 32 constant, n ∈ {2k, k = 1, . . . , 7}, and [CN ]ij = r |i−j|, r = 0.7, which is the same setting as
considered in [4, Section 4].

It appears in Fig. 4 that a significant improvement is brought by ρ̌N over ρ̌O, especially for small n, which translates the
poor quality of ČO(ρ) as an approximation of ČN(ρ) for large values of cN (obviously linked to 1

N x
∗

i C
−1
N xi being then a bad

approximation for 1
N x

∗

i ČN(ρ)−1xi). Another important remark is that, even for so small values of N, n, infρ∈(0,1] ĎN(ρ) is
extremely close to the limiting optimal, suggesting here that the limiting results of Proposition 1 are already met for small
practical values. The approximation ρ̌N of ρ̌⋆, translated here through ĎN(ρ̌N), also demonstrates good practical performance
at small values of N, n.

We additionally mention that we produced similar curves for ĈN(ρ) in place of ČN(ρ) which happened to show virtually
the same performance as the equivalent curves for ČN(ρ). This is of course expected (with exact match) for infρ∈(0,1] D̂N(ρ)

which, up to the region [0, ε), matches infρ∈(0,1] ĎN(ρ) for large enoughN, n, and similarly for D̂N(ρ̂N) since ρ̂N was designed
symmetrically to ρ̌N .

Associated to Fig. 4 is Fig. 5 which provides the shrinkage parameter values, optimal and approximated, for both the
Abramovich–Pascal and Chen estimates, along with the clairvoyant ρ̌O of Chen et al. [4]. Recall that the ˆ(·) values must only
be compared to one another, and similarly for the ˇ(·) values (so in particular ρ̌O only compares against the ˇ(·) values). It
appears here that ρ̌O is a rather poor estimate for argminρ∈(0,1]ĎN(ρ) for a large range of values of n. It tends in particular to
systematically overestimate the weight to be put on the sample covariance matrix.
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Fig. 4. Performance of optimal shrinkage averaged over 10 000 Monte Carlo simulations, for N = 32, various values of n, [CN ]ij = r |i−j| with r = 0.7; ρ̌N
is given in Proposition 2; ρ̌O is the clairvoyant estimator proposed in [4, Eq. (12)]; D⋆ taken with c = N/n.

Fig. 5. Shrinkage parameter ρ averaged over 10 000Monte Carlo simulations, for N = 32, various values of n, [CN ]ij = r |i−j| with r = 0.7; ρ̂N and ρ̌N given
in Proposition 2; ρ̌O is the clairvoyant estimator proposed in [4, Eq. (12)]; ρ⋆ , ρ̂⋆ , and ρ̌⋆ taken with c = N/n; ρ̂◦

= argmin
{ρ∈(max{0,1−c−1

N },1]}{D̂N (ρ)} and

ρ̌◦
= argmin{ρ∈(0,1]}{ĎN (ρ)}.

4. Concluding remarks

The article shows that, in the large dimensional randommatrix regime, the Abramovich–Pascal and Chen estimators for
elliptical samples x1, . . . , xn are (up to a variable change) asymptotically equivalent, so that both can be used interchange-
ably. They are also equivalent to the classical Ledoit–Wolf estimator based on the (unobservable) samples z1, . . . , zn or,
as can be easily verified, for the (observable) samples

√
Nx1/∥x1∥, . . . ,

√
Nxn/∥xn∥. This means that for elliptical samples,

at least as far as first order convergence is concerned, the Abramovich–Pascal and Chen estimators perform similar to a
normalized version of Ledoit–Wolf.

Recalling that robust estimation theory aims in particular at handling sample sets corrupted by outliers, the performance
of the Abramovich–Pascal and Chen estimators given in this paper (not considering outliers) can be seen as a base reference
for the ‘‘clean data’’ scenario which paves the way for future work in more advanced scenarios. In the presence of outliers, it
is expected that the Abramovich–Pascal and Chen estimates exhibit robustness properties that the normalized Ledoit–Wolf
scheme does not possess by appropriately weighting good versus outlying data. The study of this scenario is currently under
investigation. Also, the extension of this work to second order analysis, e.g., to central limit theorems on linear statistics
of the robust estimators, is a direction of future work that will allow to handle more precisely the gain of robust versus
non-robust schemes in the not-too-large dimensional regime.
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In terms of applications, Proposition 2 allows for the design of covariance matrix estimators, with minimal Frobenius
distance to the population covariancematrix for impulsive i.i.d. samples but in the absence of outliers, and having robustness
properties in the presence of outliers. This is fundamental to those scientific fields where the covariance matrix is the object
of central interest. More generally though, Theorems 1 and 2 can be used to design optimal covariance matrix estimators
under other metrics than the Frobenius norm. This is in particular the case in applications to finance where a possible target
consists in the minimization of the risk induced by portfolios built upon such covariance matrix estimates, see e.g., [13,
23,31]. The possibility to let the number of samples be less than the population size (as opposed to robust estimators of
the Maronna-type [15]) is also of interest to applications where optimal shrinkage is not a target but where robustness is
fundamental, such as array processing with impulsive noise (e.g., multi-antenna radar) where direction-of-arrival estimates
are sought for (see e.g., [20,5]). These considerations are also left to future work.

5. Proofs

This section successively introduces the proofs of Theorems 1, 2, Corollary 2, Lemma 1, Propositions 1 and 2. The
methodology of proof of Theorem 1 closely follows that of Couillet et al. [6]. The proof of Theorem 2 also relies on the
same ideas but is more technical due to the imposed normalization of ČN(ρ) to be of trace N . The proofs of the corollary,
lemma, and propositions then rely mostly on the important joint convergence over ρ proved in Theorems 1 and 2, and on
standard manipulations of randommatrix theory and fixed-point equation analysis.

5.1. Proof of Theorem 1

The proof of existence and uniqueness of ĈN(ρ) is given in [21].
The existence and uniqueness of γ̂ (ρ) is quite immediate as the right-hand side integral in the definition of γ̂ (ρ) is a

decreasing function of γ̂ (since ρ > 0) with limits 1/(1 − ρ) > 1 as γ̂ → 0 (since ν ≠ δ0 almost everywhere) and zero as
γ̂ → ∞. We now prove the continuity of γ̂ on (0, 1]. Let ρ0, ρ ∈ (0, 1] and γ̂0 = γ̂ (ρ0), γ̂ = γ̂ (ρ). Then

t
γ̂ ρ + (1 − ρ)t

ν(dt) −


t

γ̂0ρ0 + (1 − ρ0)t
ν(dt) = 0.

Setting the difference into a common integral and isolating the term γ̂0 − γ̂ , this becomes, after some calculus,

(γ̂0 − γ̂ )ρ0 = −γ̂ (ρ0 − ρ) + (ρ − ρ0)

 t2
(γ̂ ρ+(1−ρ)t)(γ̂0ρ0+(1−ρ0)t)

ν(dt) t
(γ̂ ρ+(1−ρ)t)(γ̂0ρ0+(1−ρ0)t)

ν(dt)
.

Since the support of ν is bounded by lim supN ∥CN∥ < ∞ and in particular γ̂ (ρ) ≤ ρ−1 lim supN ∥CN∥ by definition of γ̂ ,
the ratio of integrals above is uniformly bounded on ρ in a certain small neighborhood of ρ0 > 0. Taking the limit ρ → ρ0
then brings γ̂0 − γ̂ → 0, which proves the continuity.

From now on, for readability, we discard all unnecessary indices ρ when no confusion is possible.
Note first that xi can be equivalently replaced by zi from the definition of ĈN(ρ) which is independent of τ1, . . . , τn.

Consider ρ ∈ R̂ε fixed and assume ĈN exists for all N on the realization {z1, . . . , zn}∞n=1 (a probability one event). We

start by rewriting ĈN in a more convenient form. Denoting Ĉ(i) , ĈN − (1 − ρ) 1
n

ziz∗i
1
N z∗i Ĉ

−1
N zi

and using (A + tvv∗)−1v =

A−1v/(1 + tv∗A−1v) for positive definite Hermitian A, vector v, and scalar t > 0, we have

1
N
z∗

i Ĉ
−1
N zi =

1
N z

∗

i Ĉ
−1
(i) zi

1 + (1 − ρ)c
1
N z∗i Ĉ

−1
(i) zi

1
N z∗i Ĉ

−1
N zi

so that
1
N
z∗

i Ĉ
−1
N zi = (1 − (1 − ρ)cN)

1
N
z∗

i Ĉ
−1
(i) zi

and we can rewrite ĈN as

ĈN =
1 − ρ

1 − (1 − ρ)cN

1
n

n
i=1

ziz∗

i
1
N z

∗

i Ĉ
−1
(i) zi

+ ρIN .

The interest of this rewriting is detailed in [6] and mostly lies in the intuition that 1
N z

∗

i Ĉ
−1
(i) zi should be close to 1

N tr(Ĉ−1
N ) for

all i, while 1
N z

∗

i Ĉ
−1
N zi is a priori more involved.
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To proceed with the proof, for i ∈ {1, . . . , n}, denote d̂i(ρ) , 1
N z

∗

i Ĉ
−1
(i) zi and, up to relabeling, assume d̂1(ρ) ≤ · · · ≤

d̂n(ρ). Then, using A ≽ B ⇒ B−1
≽ A−1 for positive Hermitian matrices A, B,

d̂n(ρ) =
1
N
z∗

n


1 − ρ

1 − (1 − ρ)cN

1
n

n−1
i=1

ziz∗

i

d̂i(ρ)
+ ρIN

−1

zn

≤
1
N
z∗

n


1 − ρ

1 − (1 − ρ)cN

1
n

n−1
i=1

ziz∗

i

d̂n(ρ)
+ ρIN

−1

zn.

Since zn ≠ 0, this implies

1 ≤
1
N
z∗

n


1 − ρ

1 − (1 − ρ)cN

1
n

n−1
i=1

ziz∗

i + d̂n(ρ)ρIN

−1

zn. (2)

Similarly, with the same derivations, but with opposite inequalities

1 ≥
1
N
z∗

1


1 − ρ

1 − (1 − ρ)cN

1
n

n
i=2

ziz∗

i + d̂1(ρ)ρIN

−1

z1.

Our objective is to show that supρ∈R̂ε
max1≤i≤n |d̂i(ρ)−γ̂ (ρ)|

a.s.
−→ 0where γ̂ (ρ) is given in the statement of the theorem.

This is proved via a contradiction argument.

For this, assume that there exists a sequence {ρn}
∞

n=1 overwhich d̂n(ρn) > γ̂ (ρn)+ℓ infinitely often, for some ℓ > 0 fixed.
Since {ρn}

∞

n=1 is bounded, it has a limit point ρ0 ∈ R̂ε . Let us restrict ourselves to such a subsequence on which ρn → ρ0

and d̂n(ρn) > γ̂ (ρn) + ℓ. On this sequence, from (2)

1 ≤
1
N
z∗

n


1 − ρn

1 − (1 − ρn)cN

1
n

n−1
i=1

ziz∗

i + (γ̂ (ρn) + ℓ)ρnIN

−1

zn , ên. (3)

Assume first ρ0 ≠ 1. From standard randommatrix results, we have

ên =
1 − (1 − ρn)cN

1 − ρn

1
N
z∗

n


1
n

n−1
i=1

ziz∗

i + (γ̂ (ρn) + ℓ)ρn
1 − (1 − ρn)cN

1 − ρn
IN

−1

zn

a.s.
−→

1 − (1 − ρ0)c
1 − ρ0

δ


−(γ̂ (ρ0) + ℓ)ρ0

1 − (1 − ρ0)c
1 − ρ0


, e+ (4)

where, for x > 0, δ(x) is the unique positive solution to the equation

δ(x) =


t

−x +
t

1+cδ(x)

ν(dt).

The convergence (4) follows from several classical ingredients. For this, we first use the fact that, for each p ≥ 2, w > 0, and
j ∈ {1, . . . , n}, (see e.g., [26,5] for similar arguments)

E

 1N z∗

j


1
n


i≠j

ziz∗

i + wIN

−1

zj − δ(−w)


p = O


N−p/2

which, taking p ≥ 4 along with Boole’s inequality, Markov inequality, and Borel–Cantelli lemma, ensures that

max
1≤j≤n

 1N z∗

j


1
n


i≠j

ziz∗

i + wIN

−1

zj − δ(−w)

 a.s.
−→ 0.
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Using successively A−1
−B−1

= A−1(B−A)B−1 for invertible A, Bmatrices and the fact that ∥( 1
n


i≠j ziz

∗

i +wIN)−1
∥ < w−1

and lim supn max1≤i≤n
1
N ∥zi∥2

= Mν,1 = 1 < ∞ a.s., we then have, for any positive sequence wn → w > 0,

max
1≤j≤n

 1N z∗

j


1
n


i≠j

ziz∗

i + wnIN

−1

zj −
1
N
z∗

j


1
n


i≠j

ziz∗

i + wIN

−1

zj


= |wn − w| max

1≤j≤n

 1N z∗

j


1
n


i≠j

ziz∗

i + wnIN

−1 
1
n


i≠j

ziz∗

i + wIN

−1

zj


≤ |wn − w|

1
wnw

max
1≤j≤n

1
N

∥zj∥2

a.s.
−→ 0

from which the convergence (4) unfolds.
Developing the expression of e+ then leads to e+ being the unique positive solution of the equation

e+
=


t

(γ̂ (ρ0) + ℓ)ρ0 +
t

1−(1−ρ0)c
1−ρ0

+ce+

ν(dt)

which we write equivalently

1 =


t

(γ̂ (ρ0) + ℓ)ρ0e+ +
te+

1−(1−ρ0)c
1−ρ0

+ce+

ν(dt). (5)

Note that the right-hand side term is a decreasing function f of e+. From the definition of γ̂ (ρ0), we can in parallel write

1 =


t

γ̂ (ρ0)ρ0 × 1 +
t×1

1−(1−ρ0)c
1−ρ0

+c×1

ν(dt) (6)

wherewepurposelymade the terms 1 explicit. Now, since both integrals above equal 1, since ℓ > 0, and since f is decreasing,
we must have e+ < 1. But this is in contradiction with ên ≥ 1 and the convergence (4).

If instead, ρ0 = 1, then from the definition of ên in (3), and since 1
N ∥zn∥2 a.s.

−→Mν,1 = 1 (from limn max1≤i≤n |
1
N ∥zi∥2

−

Mν,1|
a.s.

−→ 0), lim supn ∥
1
n

n
i=1 ziz

∗

i ∥ < ∞ a.s. (from Assumption 2-b and [2]), and γ̂ (1) = Mν,1 = 1, we have

ên
a.s.

−→
Mν,1

Mν,1 + ℓ
=

1
1 + ℓ

< 1

again contradicting ên ≥ 1.
Hence, for all large n, there is no sequence of ρn for which d̂n(ρn) > γ̂ (ρn) + ℓ infinitely often and therefore d̂n(ρ) ≤

γ̂ (ρ) + ℓ for all large n a.s., uniformly on ρ ∈ R̂ε .
The same reasoning holds for d̂1(ρ) which can be proved greater than γ̂ (ρ) − ℓ for all large n uniformly on ρ ∈ R̂ε .

Consequently, since ℓ > 0 is arbitrary, from the ordering of the d̂i(ρ), we have proved that supρ∈R̂ε
max1≤i≤n |d̂i(ρ) −

γ̂ (ρ)|
a.s.

−→ 0.
From there, we then find that

sup
ρ∈R̂ε

ŜN(ρ) − ĈN(ρ)

 ≤

1n
n

i=1

ziz∗

i

 sup
ρ∈R̂ε

max
1≤i≤n

1 − ρ

1 − (1 − ρ)cN

 d̂i(ρ) − γ̂ (ρ)

γ̂ (ρ)d̂i(ρ)


a.s.

−→ 0

where we used the fact that lim supn

 1
n

n
i=1 ziz

∗

i

 < ∞ a.s. from Assumption 2-b and [2], and the fact that 0 < ε < c−1.

5.2. Proof of Theorem 2

The proof of existence and uniqueness is given in [4]. The proof of Theorem 2 unfolds similarly as the proof of Theorem 1
but it is slightlymore involved due to the difficulty brought by the normalization of ČN(ρ) by its trace. For this reason,we first
introduce some preliminary results needed in the main core of the proof. Note also that, similar to the proof of Theorem 1,
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we may immediately consider zi in place of xi in the expression of ČN(ρ) from the independence of ČN(ρ) with respect to
τ1, . . . , τn.

From now on, for the sake of readability, we discard the unnecessary arguments ρ.

5.2.1. Some preliminaries
We start by some considerations on γ̌ (ρ) and FN(x) defined as the unique positive solution to the equation in FN

FN = (1 − ρ)
1
x

1
FN

+ ρ − cN(1 − ρ). (7)

Note first that, for x > 0, (7) can be written as a second order polynomial whose solutions have opposite signs, the positive
one being explicitly given by

FN(x) =
1
2

(ρ − cN(1 − ρ)) +


1
4

(ρ − cN(1 − ρ))2 + (1 − ρ)
1
x
.

The function FN(x) is decreasing with limx→0 FN(x) = ∞ and limx→∞ FN(x) = max{ρ − cN(1 − ρ), 0}. As N → ∞,
cN → c , and FN(x) → F(x) = F(x; ρ) defined in the statement of the theorem which therefore satisfies F(x) =

(1 − ρ) 1
x

1
F(x) + ρ − c(1 − ρ) and is decreasing with limx→0 F(x) = ∞ and limx→∞ F(x) = max{ρ − c(1 − ρ), 0}. This

implies in particular that the function

G : x →


t

xρ +
1−ρ

(1−ρ)c+F(x) t
ν(dt) (8)

is decreasing with limx→0 G(x) = ∞ and limx→∞ G(x) = 0. Hence the existence and uniqueness of γ̌ (ρ) as defined in the
theorem.

Now consider the function HN : x → xFN(x) for x > 0 and ρ < 1. Then, for x > 0,

H ′

N(x) =
1
2

A(x) + B(x)
ρ−(1−ρ)cN

2

2
x2 + (1 − ρ)x

where

A(x) = 2


ρ − (1 − ρ)cN
2


ρ − (1 − ρ)cN

2

2

x2 + (1 − ρ)x

B(x) = 1 − ρ + 2


ρ − (1 − ρ)cN
2

2

x.

Although A(x) may be negative, it is easily verified that B(x)2 = A(x)2 + (1 − ρ)2 for all x ≥ 0. Therefore, if ρ < 1, for each
w0 > 0, there exists ε > 0 such that

lim inf
N

sup
w0−ε<x<w0+ε

H ′

N(x) > 0 (9)

a relation which will be useful in the core of the proof of Theorem 2.
To prove continuity of γ̌ , the same arguments as in the proof of Theorem 1 hold. That is, take ρ0, ρ ∈ (0, 1] and denote

γ̌0 = γ̌ (ρ0) and γ̌ = γ̌ (ρ). Then, by definition of γ̌ (ρ), using F(x) = (1 − ρ) 1
x

1
F(x) + ρ − c(1 − ρ),

t

γ̌0ρ0 +
(1−ρ0)γ̌0F(γ̌0)

1−ρ0+ρ0γ̌0F(γ̌0)
t
ν(dt) −


t

γ̌ ρ +
(1−ρ)γ̌ F(γ̌ )

1−ρ+ργ̌ F(γ̌ )
t
ν(dt) = 0.

Setting these to a common denominator gives, after some calculus,
(γ̌0 − γ̌ )ρ0 + γ̌ (ρ0 − ρ)

  t
D(t)

ν(dt)

=
(1 − ρ)(1 − ρ0)(γ̌ F(γ̌ ) − γ̌0F(γ̌0)) + (ρ0 − ρ)γ̌ γ̌0F(γ̌ )F(γ̌0)

(1 − ρ + ργ̌ F(γ̌ ))(1 − ρ0 + ρ0γ̌0F(γ̌0))


t2

D(t)
ν(dt) (10)

where

D(t) =


γ̌0ρ0 +

(1 − ρ0)γ̌0F(γ̌0)

1 − ρ0 + ρ0γ̌0F(γ̌0)
t


γ̌ ρ +
(1 − ρ)γ̌ F(γ̌ )

1 − ρ + ργ̌ F(γ̌ )
t


> 0.
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Note now that γ̌ (ρ) ≤ ρ−1 lim supN ∥CN∥ and, on a small neighborhood of ρ0 ∈ (0, 1], γ̌ = γ̌ (ρ) is uniformly away from
zero. Indeed, if this were not the case, on some subsequence ρk → ρ0 such that γ̌ (ρk) → 0, the definition of γ̌ would imply

1 =


t

γ̌ (ρk)ρk +
1−ρ

(1−ρk)c+F(γ̌ (ρk))

ν(dt) → 0

which is a contradiction. This implies as a consequence that F(γ̌ ) is bounded on a neighborhood of ρ0. All this implies that
all terms proportional to ρ0 − ρ in (10) tend to zero as ρ → ρ0, so that, in the limit ρ → ρ0,

(γ̌0 − γ̌ )ρ0


tν(dt)
D(t)

+
(1 − ρ)(1 − ρ0)(γ̌0F(γ̌0) − γ̌ F(γ̌ ))

(1 − ρ + ργ̌ F(γ̌ ))(1 − ρ0 + ρ0γ̌0F(γ̌0))


t2ν(dt)
D(t)

→ 0.

But, since x → xF(x) is increasing, γ̌0F(γ̌0) − γ̌ F(γ̌ ) is of the same sign as γ̌0 − γ̌ . As D(t) is uniformly bounded for ρ in a
small neighborhood of ρ0, this induces γ̌0 − γ̌ → 0, which concludes the proof of continuity.

5.2.2. Main proof
Let us now work on the matrix B̌N . From the definition of ČN ,

B̌N =
1 − ρ

1
N tr B̌N

1
n

n
i=1

ziz∗

i
1
N z

∗

i B̌
−1
N zi

+ ρIN .

Denoting B̌(i) = B̌N −
1−ρ
1
N tr B̌N

1
n

ziz∗i
1
N z∗i B̌

−1
N zi

and using again (A + txx∗)−1x = A−1x/(1 + tx∗A−1x), we have this time

1
N
z∗

i B̌
−1
N zi =

1
N z

∗

i B̌
−1
(i) zi

1 + (1 − ρ)cN
1
N z∗i B̌

−1
(i) zi

1
N z∗i B̌

−1
N zi

1
1
N tr B̌N

so that

1
N
z∗

i B̌
−1
N zi =

1
N
z∗

i B̌
−1
(i) zi


1 − cN(1 − ρ)

1
1
N tr B̌N


. (11)

From the positivity of both quadratic forms above, this implies in particular that 1
N tr B̌N − c(1 − ρ) > 0.

Replacing the quadratic forms 1
N z

∗

i B̌
−1
N zi in the expression of B̌N , we can now rewrite B̌N as

B̌N =
1 − ρ

1
N tr B̌N − cN(1 − ρ)

1
n

n
i=1

ziz∗

i
1
N z

∗

i B̌
−1
(i) zi

+ ρIN . (12)

Denote now ďi , 1
N z

∗

i B̌
−1
(i) zi and assume, up to relabeling, that ď1 ≤ · · · ≤ ďn for all n. Then, with the definition of B̌(i), we

have

ďn =
1
N
z∗

n


1 − ρ

1
N tr B̌N − cN(1 − ρ)

1
n

n−1
i=1

ziz∗

i

ďi
+ ρIN

−1

zn

≤
1
N
z∗

n


1 − ρ

1
N tr B̌N − cN(1 − ρ)

1
n

n−1
i=1

ziz∗

i

ďn
+ ρIN

−1

zn

=

1
N tr B̌N − cN(1 − ρ)

1 − ρ

1
N
z∗

n


1
n

n−1
i=1

ziz∗

i

ďn
+ ρ

1
N tr B̌N − cN(1 − ρ)

1 − ρ
IN

−1

zn

where the inequality follows from the initial quadratic form being increasing when seen as a function of ďi for each i. This
can be equivalently written

1 ≤

1
N tr B̌N − cN(1 − ρ)

1 − ρ

1
N
z∗

n


1
n

n−1
i=1

ziz∗

i + ďnρ
1
N tr B̌N − cN(1 − ρ)

1 − ρ
IN

−1

zn. (13)

At this point, it is convenient to express (13) as a function of FN defined in (7). From (12), note indeed that

1
N

tr B̌N =
1 − ρ

1
N tr B̌N − cN(1 − ρ)

1
n

n
i=1

1
N ∥zi∥2

ďi
+ ρ
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so that, since 1
N tr B̌N − cN(1 − ρ) > 0,

1
N

tr B̌N − cN(1 − ρ) = FN

1
n

n
i=1

1
N ∥zi∥2

ďi

−1
 . (14)

Since FN is decreasing, the term on the right-hand side is decreasing in ďi for each i. Hence

FN

1
n

n
i=1

1
N ∥zi∥2

ďi

−1
 ≥ FN

ďn


1
n

n
i=1

1
N

∥zi∥2

−1
 .

This implies, returning to (13)

1 ≤
1

1 − ρ
FN

1
n

n
i=1

1
N ∥zi∥2

ďi

−1
 1

N
z∗

n

1
n

n−1
i=1

ziz∗

i + ďn
ρ

1 − ρ
FN

ďn


1
n

n
i=1

1
N

∥zi∥2

−1
 IN

−1

zn. (15)

With this, similar to the proof of Theorem1,wewill now showvia a contradiction argument that supρ∈Řε
max1≤i≤n |ďi(ρ)

− γ̌ (ρ)|
a.s.

−→ 0. Let us then assume that, on a sequence {ρn}
∞

n=1, ďn = ďn(ρn) > γ̌ (ρn) + ℓ = γ̌ + ℓ infinitely often, for
some ℓ > 0, and let us consider a subsequence on which ρn → ρ0 ∈ Řε and ďn(ρn) > γ̌ (ρn) + ℓ. Then, from the fact that
HN(x) = xFN(x) is increasing for x > 0, we have

1 ≤
1

1 − ρ
FN

1
n

n
i=1

1
N ∥zi∥2

ďi

−1


×
1
N
z∗

n

1
n

n−1
i=1

ziz∗

i +
(γ̌ + ℓ)ρ

1 − ρ
FN

(γ̌ + ℓ)


1
n

n
i=1

1
N

∥zi∥2

−1
 IN

−1

zn. (16)

Assume first that ρ0 < 1. We will deal with each factor involving FN on the right-hand side of (16). We start with the
right-most factor. Usingmax1≤i≤n{

1
N ∥zi∥2

}
a.s.

−→ 1 since 1
N tr CN = 1 for each N , γ̌ (ρn) → γ̌ (ρ0) (by continuity of γ̌ ) and also

the fact that limN inf{γ̌ (ρ0)−η<x<γ̌ (ρ0)+η} H ′

N(x) > 0 for some η > 0 small (from (9)), from classical random matrix theory
results, e.g., [26], we obtain, with probability one

lim
n

1
N
z∗

n

1
n

n−1
i=1

ziz∗

i +
(γ̌ + ℓ)ρn

1 − ρn
FN

(γ̌ + ℓ)


1
n

n
i=1

1
N

∥zi∥2

−1
 IN

−1

zn

< lim
n

1
N
z∗

n

1
n

n−1
i=1

ziz∗

i +
γ̌ ρn

1 − ρn
FN

γ̌


1
n

n
i=1

1
N

∥zi∥2

−1
 IN

−1

zn

= δ (17)

where δ is the unique positive solution to

δ =


t

ρ0γ̌ (ρ0)F(γ̌ (ρ0))
1−ρ0

+
t

1+cδ

ν(dt).

Note here the fundamental importance of having H ′

N uniformly positive in a neighborhood of γ̌ (ρ0) to ensure the inequality
sign in (17) remains strict when passing to the limit over n. We will now show that e ,

F(γ̌ (ρ0))
1−ρ0

δ = 1. Indeed, from the
above equation,

e =


t

ρ0γ̌ (ρ0) +
(1−ρ0)t

F(γ̌ (ρ0))+(1−ρ0)ce

ν(dt)

or equivalently

1 =


t

eρ0γ̌ (ρ0) +
(1−ρ0)te

F(γ̌ (ρ0))+(1−ρ0)ce

ν(dt). (18)
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The right-hand side of (18) is a decreasing function of e with limits ∞ as e → 0 and 0 as e → ∞. As an equation of e, (18)
therefore has a unique positive solution which happens to be 1 by definition of γ̌ (ρ0) in the theorem statement. Therefore,
e = 1.

Now consider the leading factor involving FN in (16). We will show that this factor is uniformly bounded. For this,
proceeding similarly as above with ď1 instead of ďn, note that (15), with ρ = ρn, becomes (this is obtained by reversing
all inequality signs in the preceding derivations)

1 ≥
1

1 − ρn
FN

1
n

n
i=1

1
N ∥zi∥2

ďi

−1
 1

N
z∗

1

1
n

n−1
i=1

ziz∗

i + ď1
ρn

1 − ρn
FN

ď1


1
n

n
i=1

1
N

∥zi∥2

−1
 IN

−1

z1. (19)

Assume 1
n

n
i=1

1
N ∥zi∥2

ďi
→ ∞ on some subsequence (of probability one) over which maxi 1

N ∥zi∥2
→ 1. In particular

ď1 → 0. Then, from the limiting values taken by FN and HN , the quadratic form in (19) has a positive limit (even infinite
if c > 1) while the first term on the right-hand side tends to infinity. This contradicts (19) altogether and therefore

lim supn
1
n

n
i=1

1
N ∥zi∥2

ďi
< ∞.

Since in addition ďi ≤ ρ−1
n

1
N ∥zi∥2 (using ∥(A + ρnIN)−1

∥ ≤ ρ−1
n for nonnegative Hermitian A) is uniformly bounded

a.s. for all large n, it follows that 1
n

n
i=1

1
N ∥zi∥2

ďi
is uniformly bounded and bounded away from zero. This implies that

FN


1
n

n
i=1

1
N ∥zi∥2

ďi

−1


is uniformly bounded, as desired.

Getting back to (16) with ρ = ρn, we can therefore extract a further subsequence on which the latter converges to F∞

and ď1 converges to ď∞

1 (ď∞

1 can be zero) and we then have along this subsequence

1 <
F∞

1 − ρ0
δ =

F∞

F(γ̌ (ρ0))
(20)

with the equality arising from F(γ̌ (ρ0))δ = 1 − ρ0.
Since FN is increasing,

FN

1
n

n
i=1

1
N ∥zi∥2

ďi

−1
 ≤ FN

ďi


1
n

n
i=1

1
N

∥zi∥2

−1


so that, taking the limit over n, F∞
≤ F(ď∞

1 ) (set equal to ∞ if ď∞

1 = 0). This further implies

F(γ̌ (ρ0)) < F(ď∞

1 )

so that, if ď∞

1 > 0, inverting the above inequality, gives ď∞

1 < γ̌ (ρ0). Obviously, if ď∞

1 = 0, this is still true. Therefore
ď1(ρn) < γ̌ (ρ0) − ℓ′ infinitely often for some ℓ′ > 0 along the considered subsequence.

Conserving the same subsequence and reproducing the same steps for the sequence ď1(ρn) instead of ďn(ρn) (from (19),
use ď1(ρn) < γ̌ (ρn) − ℓ′ infinitely often and the growth of HN similar to before), we obtain this time

1 >
F∞

F(γ̌ (ρ0))

which contradicts (20).
Assume now ρ0 = 1. Starting from (13) with ρ = ρn and the expression of FN , we have

1 ≤ lim sup
N

FN

1
n

n
i=1

1
N ∥zi∥2

ďi

−1
 1

N
z∗

n

(1 − ρn)
1
n

n−1
i=1

ziz∗

i + ďnρnFN

1
n

n
i=1

1
N ∥zi∥2

ďi

−1
 IN

−1

zn

≤ lim sup
N

FN

1
n

n
i=1

1
N ∥zi∥2

ďi

−1
 1

N
z∗

n

(1 − ρn)
1
n

n−1
i=1

ziz∗

i + (γ̌ + ℓ)ρnFN

1
n

n
i=1

1
N ∥zi∥2

ďi

−1
 IN

−1

zn

=
1

γ̌ (ρ0) + ℓ

since ρn → ρ0 = 1, since 1
n

n
i=1

1
N ∥zi∥2

ďi
is uniformly away from zero (as shown previously), and since

lim supn ∥
1
n

n
i=1 ziz

∗

i ∥ < ∞ [2]. But then, the fact that γ̌ (ρ0) = 1 by definition along with the above relation leads to
1 ≤ 1/(1 + ℓ), again a contradiction.
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Therefore, gathering the results, our very initial hypothesis that there exists a subsequence of n and ρn over which
ďn(ρn) > γ (ρn) + ℓ infinitely often is invalid and we conclude that, instead, supρ∈Řε

ďn(ρ) − γ̌ (ρ) ≤ ℓ for all large n a.s.
The same procedure works similarly when starting over with ď1 and assuming with the same contradiction argument

that ď1(ρ ′
n) < γ̌ (ρ ′

n) − ℓ infinitely often on some sequence ρ ′
n. Taking a subsequence over which ρ ′

n → ρ ′

0, this will imply
this time that ďn(ρ ′

0) > γ̌ (ρ ′

0) + ℓ′ for some ℓ′ > 0 for all large n a.s. which we now know is invalid.
Gathering the results, we finally obtain

sup
ρ∈Řε

max
1≤i≤n

|ďi(ρ) − γ̌ (ρ)|
a.s.

−→ 0 (21)

as desired. This implies from (14) that

sup
ρ∈Řε

 1N tr B̌N − c(1 − ρ) − F(γ̌ (ρ))

 a.s.
−→ 0

with infρ∈Řε
F(γ̌ (ρ)) > 0 so that, from (12), Assumption 2-b, and [2],

sup
ρ∈Řε

B̌N −


1 − ρ

F(γ̌ (ρ))γ̌ (ρ)

1
n

n
i=1

ziz∗

i + ρIN

 a.s.
−→ 0.

Dividing the expression inside the norm by 1
N tr B̌N and taking the limit finally gives

sup
ρ∈Řε

ČN −


1 − ρ

ρF(γ̌ )γ̌ + (1 − ρ)

1
n

n
i=1

ziz∗

i +
ργ̌ F(γ̌ )

ργ̌ F(γ̌ ) + (1 − ρ)
IN

 a.s.
−→ 0

with γ̌ = γ̌ (ρ), which is the expected result.

5.3. Proof of Corollary 2

We only give the proof for ĈN(ρ). Similar arguments hold for ČN(ρ). The joint eigenvalue convergence is an application
of [8, Theorem 4.3.7] on the spectral norm convergence of Theorems 1 and 2. The norm boundedness results from
supρ∈R̂ε

|∥ĈN(ρ)∥ − ∥ŜN(ρ)∥|
a.s.

−→ 0 and from lim supN supρ∈R̂ε
∥ŜN(ρ)∥ < ∞ by an application of Bai and Silverstein [2].

The joint convergence of moments over R̂ε follows first from the convergence m̂N(z; ρ) − mµ̂ρ (z)
a.s.

−→ 0 for each z with
ℑ[z] > 0 and for each ρ ∈ R̂ε where mN(z; ρ) =

1
N tr((ŜN(ρ) − zIN)−1) (as a consequence of Corollary 1). Since

this holds for each such z, the almost sure convergence is also valid uniformly on a countable set of z with ℑ[z] > 0
having a limit point away from the union U over ρ ∈ R̂ε of the limiting spectra of ŜN(ρ), U being a bounded set since
lim supN supρ∈R̂ε

∥ŜN(ρ)∥ < ∞. But then, since

(1 − ρ)mN(z; ρ)

γ̂ (ρ)(1 − (1 − ρ)c)
=

1
N

tr

1
n

n
i=1

ziz∗

i +
ρ − z
1 − ρ

γ̂ (ρ)(1 − (1 − ρ)c)IN

−1


is analytic in ẑ(ρ) =
ρ−z
1−ρ

γ̂ (ρ)(1 − (1 − ρ)c) and bounded on all bounded regions away from U, by Vitali’s convergence

theorem [29], the convergence m̂N(z; ρ) − mµ̂ρ (z)
a.s.

−→ 0 is uniform on such bounded sets of (z, ρ). Using the Cauchy
integrals


zkmN(z; ρ)dz =

1
N tr(ŜN(ρ)ℓ) and


zkmµ̂ρ (z)dz = Mµ̂ρ ,k for each k ∈ N on a contour that circles around

(but sufficiently away from) U implies supρ∈R̂ε
|
1
N tr(ŜN(ρ)ℓ) − Mµ̂ρ ,ℓ|

a.s.
−→ 0, from which the result unfolds.

5.4. Proof of Lemma 1

We start with ŜN . Remark first that, for ρ ∈ (max{0, 1 − c−1
}, 1],

ŜN(ρ)

Mµ̂ρ ,1
=


1 −

ρ

1
γ̂ (ρ)

1−ρ

1−(1−ρ)c + ρ


1
n

n
i=1

ziz∗

i +
ρ

1
γ̂ (ρ)

1−ρ

1−(1−ρ)c + ρ
IN .

Denoting

f̂ : (max{0, 1 − c−1
}, 1] → (0, 1]

ρ →
ρ

1
γ̂ (ρ)

1−ρ

1−(1−ρ)c + ρ
=

1
1

ργ̂ (ρ)

1−ρ

1−(1−ρ)c + 1
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we have ŜN (ρ)

Mµ̂ρ ,1
= (1 − f̂ (ρ)) 1

n

n
i=1 ziz

∗

i + f̂ (ρ)IN and it therefore suffices to show that f̂ is continuously increasing and

onto. The continuity of f̂ unfolds immediately from the continuity of γ̂ . By the definition of γ̂ , the function ρ → ργ̂ (ρ)

is increasing and nonnegative (since ν is distinct from δ0 almost everywhere) while ρ →
1−ρ

1−(1−ρ)c is decreasing and

nonnegative. Therefore, f̂ is increasing and nonnegative. It remains to show that f̂ is onto. Clearly f̂ (1) = 1 since γ̂ (1) =

Mν,1 = 1. To handle the lower limit, let us rewrite

f̂ (ρ) =
ργ̂ (ρ)(1 − (1 − ρ)c)

1 − ρ + ργ̂ (ρ)(1 − (1 − ρ)c)

which we aim to show approaches zero as ρ ↓ max{0, 1 − c−1
}. For this, assume ρkγ̂ (ρk)(1 − (1 − ρk)c) → ℓ ∈ (0, ∞]

for a sequence ρk ↓ max{0, 1 − c−1
}. Then, from the defining equation of γ̂ (ρ) in Theorem 1,

1 =


(1 − (1 − ρk)c)t

ρkγ̂ (ρk)(1 − (1 − ρk)c) + (1 − ρk)(1 − (1 − ρk)c)t
ν(dt)

≤

(1 − (1 − ρk)c) lim sup
N

∥CN∥

ρkγ̂ (ρk)(1 − (1 − ρk)c) + (1 − ρk)(1 − (1 − ρk)c) lim sup
N

∥CN∥

→

lim
k

(1 − (1 − ρk)c) lim sup
N

∥CN∥

ℓ + lim
k

(1 − ρk)(1 − (1 − ρk)c) lim sup
N

∥CN∥

< 1

since the limit is either zero (when c ≥ 1) or (1− c) lim supN ∥CN∥/(ℓ + (1− c) lim supN ∥CN∥) < 1 (when c < 1). But this
is a contradiction. This implies that ργ̂ (ρ)(1 − (1 − ρ)c) → 0 and consequently f̂ (ρ) → 0 as ρ ↓ max{0, 1 − c−1

}, which
completes the proof for Ŝ(ρ).

Similarly, for Š(ρ), define

f̌ : (0, 1] → (0, 1]

ρ →
Tρ

1 − ρ + Tρ

where we recall that Tρ = ργ̌ (ρ)F(γ̌ (ρ); ρ) and which is such that ŠN(ρ) = (1− f̌ (ρ)) 1
n

n
i=1 ziz

∗

i + f̌ (ρ)IN . We will show
that f̌ is continuously increasing and onto. The continuity arises from the continuity of γ̌ . We first show that γ̌ is onto. For
the upper limit, f̌ (1) = 1. For the lower limit, assume Tρk → ℓ ∈ (0, ∞] over a sequence ρk → 0, so that in particular
Tρkρ

−1
k → ∞. Then, by the definition of γ̌ (ρ) and since F(x; ρ) = (1 − ρ) 1

xF(x;ρ)
+ ρ − c(1 − ρ),

1 =


1

γ̌ (ρk)ρkt−1 + Tρkρ
−1
k

1−ρk
1−ρk+Tρk

ν(dt) → 0

by dominated convergence (recall that ν has bounded support), which is a contradiction. This implies f̌ (ρ) → 0 as ρ → 0.
It remains to show that f̌ is increasing. For this, we will rewrite the equation defining γ̌ (ρ) as a function of f̌ (ρ). Using again
F(x; ρ) = (1 − ρ) 1

xF(x;ρ)
+ ρ − c(1 − ρ), we first have, for each t ≥ 0,

γ̌ (ρ)ρ +
1 − ρ

(1 − ρ)c + F(γ̌ (ρ); ρ)
t = γ̌ (ρ)ρ +

1 − ρ

(1 − ρ) 1
γ̌ (ρ)F(γ̌ (ρ);ρ)

+ ρ
t

= γ̌ (ρ)ρ +
(1 − ρ)γ̌ (ρ)F(γ̌ (ρ); ρ)

1 − ρ + ργ̌ (ρ)F(γ̌ (ρ); ρ)
t

=
ργ̌ (ρ)F(γ̌ (ρ); ρ)

F(γ̌ (ρ); ρ)
+

1 − ρ

ρ
f̌ (ρ)t

=
1

F(γ̌ (ρ); ρ)

(1 − ρ)f̌ (ρ)

1 − f̌ (ρ)
+

1 − ρ

ρ
f̌ (ρ)t
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where in the last equality we used (1− ρ)f̌ (ρ) = (1− f̌ (ρ))ργ̌ (ρ)F(γ̌ (ρ); ρ). We nowwork on F(γ̌ (ρ); ρ). By its implicit
definition,

1
F(γ̌ (ρ); ρ)

=
1

(1 − ρ) 1
γ̌ (ρ)F(γ̌ (ρ);ρ)

+ ρ − c(1 − ρ)

=
ργ̌ (ρ)F(γ̌ (ρ); ρ)

ρ(1 − ρ) + ρ2γ̌ (ρ)F(γ̌ (ρ); ρ) − c(1 − ρ)ργ̌ (ρ)F(γ̌ (ρ); ρ)

=
(1 − ρ)f̌ (ρ)

1 − f̌ (ρ)

1

ρ(1 − ρ) + ρ
(1−ρ)f̌ (ρ)

1−f̌ (ρ)
− c(1 − ρ)

(1−ρ)f̌ (ρ)

1−f̌ (ρ)

=
f̌ (ρ)

ρ − c(1 − ρ)f̌ (ρ)

where the last equation follows from standard algebraic simplification. Note here in particular that, by positivity of F(x; ρ)

for x > 0, ρ − c(1 − ρ)f̌ (ρ) > 0. Plugging the two results above in the defining equation for γ̌ (ρ), we obtain

1 =


t

f̌ (ρ)

ρ−c(1−ρ)f̌ (ρ)

(1−ρ)f̌ (ρ)

ρ(1−f̌ (ρ))
+

1−ρ

ρ
f̌ (ρ)t

ν(dt). (22)

Now assume that f̌ (ρ) is decreasing on an open neighborhood of ρ0 ∈ (0, 1). Then ρ →
1−ρ

ρ
f̌ (ρ) and ρ →

(1−ρ)f̌ (ρ)

ρ(1−f̌ (ρ))
are

also decreasing. This follows from the fact that, on this neighborhood, ρ → (1 − ρ)/ρ = 1/ρ − 1, ρ → 1 − ρ, and
ρ → f̌ (ρ)/(1 − f̌ (ρ)) = −1 + 1/(1 − f̌ (ρ)) are all positive decreasing functions of ρ. Finally,

f̌ (ρ)

ρ − c(1 − ρ) ˇf (ρ)
=

1
ρ

f̌ (ρ)
+ c(ρ − 1)

which is also positive decreasing, since ρ → ρ/f̌ (ρ) and ρ → c(ρ − 1) are both increasing and of positive sum. But then,
the right-hand side of (22) is increasing on a neighborhood of ρ0 while being constant equal to one, which is a contradiction.
Therefore, our initial assumption that f̌ (ρ) is locally decreasing around ρ0 does not hold, and therefore f̌ (ρ) is increasing
there and thus increasing on (0, 1]. This completes the proof.

5.5. Proof of Proposition 1

We only prove the result for ĈN , the treatment for ČN being the same. First observe that, denoting AN(ρ̂) =
ĈN (ρ̂)

1
N tr ĈN (ρ̂)

−

ŜN (ρ̂)

Mµ̂ρ̂ ,1
,

sup
ρ̂∈R̂ε

D̂N(ρ̂) −
1
N

tr

 ŜN(ρ̂)

Mµ̂ρ̂ ,1
− CN

2


= sup
ρ̂∈R̂ε

 1N tr


AN(ρ̂)


ĈN(ρ̂)

1
N tr ĈN(ρ̂)

+
ŜN(ρ̂)

Mµ̂ρ̂ ,1
− 2CN


≤ sup

ρ̂∈R̂ε


2
 1N tr(AN(ρ̂)CN)

+
 1N tr


AN(ρ̂)


ĈN(ρ̂)

1
N tr ĈN(ρ̂)

+
ŜN(ρ̂)

Mµ̂ρ̂ ,1




≤ sup
ρ̂∈R̂ε

AN(ρ̂)
 sup

ρ̂∈R̂ε


3 +

1
N tr ŜN(ρ̂)

Mµ̂ρ̂ ,1


where we used | tr(AB)| ≤ tr A∥B∥ for nonnegative definite A along with 1

N tr CN = 1. Now,

sup
ρ̂∈R̂ε

AN(ρ̂)
 ≤

sup
ρ̂∈R̂ε

Mµ̂ρ̂ ,1 sup
ρ̂∈R̂ε

∥ĈN(ρ̂) − ŜN(ρ̂)∥

inf
ρ̂∈R̂ε

1
N tr ĈN(ρ̂)Mµ̂ρ̂ ,1

+

sup
ρ̂∈R̂ε

∥ŜN(ρ̂)∥ sup
ρ̂∈R̂ε

 1N tr ĈN(ρ̂) − Mµ̂ρ̂ ,1


inf

ρ̂∈R̂ε

Mµ̂ρ̂ ,1
1
N tr


ĈN(ρ̂)

 .
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Since Mµ̂ρ̂ ,1 =
1

γ̂ (ρ̂)

1−ρ̂

1−(1−ρ̂)c is uniformly bounded across ρ̂ ∈ R̂ε , this finally implies from Theorem 1 and Corollary 2
that both right-hand side terms tend almost surely to zero in the large N, n limit (in particular since the denominators are
bounded away from zero), and finally

sup
ρ̂∈R̂ε

D̂N(ρ̂) −
1
N

tr

 ŜN(ρ̂)

Mµ̂ρ̂ ,1
− CN

2
 a.s.

−→ 0.

Moreover, from Lemma 1, for each ρ̂ ∈ (max{0, 1 − c−1
}, 1],

1
N

tr

 ŜN(ρ̂)

Mµ̂ρ̂ ,1
− CN

2
 =

1
N

tr


S̄N(ρ) − CN
2

with ρ = ρ̂( 1
γ̂ (ρ̂)

1−ρ̂

1−(1−ρ̂)c +ρ̂)−1
∈ (0, 1] andwith S̄N = (1−ρ) 1

n

n
i=1 ziz

∗

i +ρIN . Also, using 1
N tr

 1
n

n
i=1 ziz

∗

i

 a.s.
−→Mν,1 =

1, 1
N tr

 1
n

n
i=1 ziz

∗

i

2 a.s.
−→Mν,2 + c , and basic arithmetic derivations

sup
ρ∈[0,1]

 1N tr


S̄N(ρ) − CN
2

− D̄(ρ)

 a.s.
−→ 0

where

D̄(ρ) = (Mν,2 − 1)ρ2
+ c(1 − ρ)2.

Note importantly that, from the Cauchy–Schwarz inequality, 1 = M2
ν,1 ≤ Mν,2 and therefore Mν,2 − 1 ≥ 0 with equality if

and only if ν = δa for some a ≥ 0 almost everywhere. From the above convergence, we then have, for any ε > 0 small,

sup
ρ̂∈R̂ε

D̂N(ρ̂) − D̄(ρ)

 a.s.
−→ 0. (23)

Now, call ρ⋆ the minimizer of D̄(ρ) over [0, 1]. It is easily verified that ρ⋆
∈ (0, 1] is as defined in the theorem. Also

denote ρ̂⋆ the unique value such that ρ⋆
= ρ̂⋆( 1

γ̂ (ρ̂⋆)

1−ρ̂⋆

1−(1−ρ̂⋆)c + ρ̂⋆)−1, which is well defined according to Lemma 1. Call

also ρ̂◦

N the minimizer of D̂N(ρ̂) over R̂ε and ρ◦

N = ρ̂◦

N( 1
γ̂ (ρ̂◦

N )

1−ρ̂◦
N

1−(1−ρ̂◦
N )c + ρ̂◦

N)−1. If ε is as given in the theorem statement,

ρ̂⋆
∈ R̂ε and then

D̄(ρ⋆) ≤ D̄(ρ◦

N)

D̂N(ρ̂◦

N) ≤ D̂N(ρ̂⋆)

D̂N(ρ̂⋆) − D̄(ρ⋆)
a.s.

−→ 0

D̂N(ρ̂◦

N) − D̄(ρ◦

N)
a.s.

−→ 0

the last two equations following from (23) (the joint convergence in (23) is fundamental since ρ◦

N and ρ̂◦

N are not constant
with N). These four relations together ensure that

D̂N(ρ̂◦

N) − D̄(ρ⋆)
a.s.

−→ 0

D̂N(ρ̂◦

N) − D̂N(ρ̂⋆)
a.s.

−→ 0.

These and the fact that D̄(ρ⋆) = D⋆ as defined in the theorem statement conclude the proof of the first part of the theorem.
For the second part, denoting ρN = ρ̂N( 1

γ̂ (ρ̂N )

1−ρ̂N
1−(1−ρ̂N )c + ρ̂N)−1, we have that D̄(ρN) − D̄(ρ⋆)

a.s.
−→ 0 by continuity of D̄

since ρN
a.s.

−→ ρ⋆ and therefore, since D̂N(ρ̂N) − D̄(ρN)
a.s.

−→ 0 by (23), D̂N(ρ̂N) − D̄(ρ⋆)
a.s.

−→ 0 which is the expected result.

5.6. Proof of Proposition 2

We first show the following identities

1
n
tr

1
n

n
i=1

xix∗

i
1
N ∥xi∥2

2
− cN

a.s.
−→Mν,2 (24)

sup
ρ∈Řε

Tρ − ρ
1
n

n
i=1

x∗

i ČN(ρ)−1xi
∥xi∥2

 a.s.
−→ 0. (25)
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Identity (24) unfolds from 1
n tr


( 1
n

n
i=1 ziz

∗

i )
2
 a.s.
−→Mν,2 + cM2

ν,1 = Mν,2 + c and frommax1≤i≤n |
1
N ∥zi∥2

− 1|
a.s.

−→ 0. As for
Eq. (25), it is a consequence of the elements of the proof of Theorem 2. Indeed, from (11),

ρ
1
N
x∗

i ČN(ρ)−1xi = ρ
1
N
x∗

i B̌(i)(ρ)−1xi


1
N

tr B̌N(ρ) − cN(1 − ρ)


where B̌(i)(ρ) = B̌N(ρ) −

1
n

1−ρ
1
N tr B̌N

xix∗i
1
N x∗i B̌N (ρ)−1xi

, which according to (14) further reads

ρ
1
N
x∗

i ČN(ρ)−1xi = ρ
1
N
x∗

i B̌(i)(ρ)−1xiFN

1
n

n
i=1

∥xi∥2

1
N x

∗

i B̌(i)(ρ)−1xi

−1

; ρ


with FN(x; ρ) the same function as F but with cN in place of c (recall that in (14), ďi =

1
N z

∗

i B̌(i)(ρ)−1zi). Since the τi
normalization is irrelevant in the expression above, xi can be replaced by zi. Using the convergence result (21) and the
continuity and boundedness of x → xFN(x), we then have

sup
ρ∈Řε

max
1≤i≤n

ρ 1
N
z∗

i ČN(ρ)−1zi − ργ̌ (ρ)F(γ̌ (ρ); ρ)

 a.s.
−→ 0.

As a consequence,

sup
ρ∈Řε

ρ 1
n

n
i=1

1
N
z∗

i ČN(ρ)−1zi − ργ̌ (ρ)F(γ̌ (ρ); ρ)


≤ sup

ρ∈Řε

max
1≤i≤n

ρ 1
N
z∗

i ČN(ρ)−1zi − ργ̌ (ρ)F(γ̌ (ρ); ρ)


a.s.

−→ 0.

This, and the fact that max1≤i≤n |
1
N ∥zi∥2

− 1|
a.s.

−→ 0 gives the result.

It remains to prove that ρ̂N
a.s.

−→ ρ̂⋆ and ρ̌N
a.s.

−→ ρ̌⋆. We only prove the first convergence, the second one unfolding along
the same lines. First observe from Corollary 2 that the defining equation of ρ̂N implies

f̂ (ρ̂N) =
c

Mν,2 + c − 1
+ ℓn

for some sequence ℓn
a.s.

−→ 0, with f̂ : x → x( 1
γ̂ (x)

1−x
1−(1−x)c + x)−1. Since f̂ is a one-to-one growing map from (max{0, 1 −

c−1
}, 1] onto (0, 1] (Lemma 1) and c

Mν,2+c−1 ∈ (0, 1), such a ρ̂N exists (not necessarily uniquely though) for all large N
almost surely. Taking such a ρN , by definition of ρ̂⋆, we further have

f̂ (ρ̂N) − f̂ (ρ̂⋆)
a.s.

−→ 0

which, by the continuous growth of f̂ , ensures that ρ̂N
a.s.

−→ ρ̂⋆. The convergence D̂N(ρ̂N)
a.s.

−→D⋆ is then an application of
Proposition 1.
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