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a b s t r a c t

We consider deconvolution from repeated observations with unknown error distribution.
Until now, this model has mostly been studied under the additional assumption that the
errors are symmetric.

We construct an estimator for the non-symmetric error case and study its theoretical
properties and practical performance. It is interesting to note that we can improve
substantially upon the rates of convergence which have been presented in the literature
and, at the same time, dispose ofmost of the extremely restrictive assumptionswhich have
been imposed so far.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Density deconvolution is one of the classical topics in nonparametric statistics and has been extensively studied during
the past decades. The aim is to identify the density of some random variable X , which cannot be observed directly, but is
contaminated by some additional additive error ε, independent of X .

A large amount of literature is available on the case where the distribution of the errors is perfectly known. To mention
only a few of the various publications on this subject, we refer to [3,20,21,10,7,19,9].

However, perfect knowledge of the error distribution is hardly ever realistic in applications. For this reason, the interest
in deconvolution problems with unknown error distribution has grown. Meister [16] has investigated deconvolution with
misspecified error distribution. Diggle and Hall [6] replace the unknown characteristic function of the errors by its empirical
counterpart and then apply standard kernel deconvolution techniques. The effect of estimating the characteristic function
of the errors is then systematically studied by Neumann [17]. Let us also mention [12] for deconvolution problems with
unknown errors.

The lastmentioned publications have beenworking under the standing assumption that an additional sample of the pure
noise is available. This is realistic in some practical examples. For example, if the noise is due to some measurement error,
it is possible to carry out additional measurements in absence of any signal.

However, in many fields of applications it is not realistic to assume that an additional training set is available. It is clear
that, to make the problem identifiable, some additional information on the noise is required. In the present work, we are
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interested in the casewhere information can be drawn from repeatedmeasurements of X , perturbed by independent errors.
This framework is known as model of repeated measurements or panel data model. The observations are of the type

Yj,k = Xj + εj,k; j = 1, . . . , n; k = 1, . . . ,N,

where all Xj and εj,k are independent.
This problem is relatively well-studied under the assumption that the distribution of the errors is symmetric. We

refer to [5,4] and [13]. In the present paper, we consider deconvolution from repeated observations when the symmetry
assumption on the errors is dropped. The study of non-symmetric error terms has some practical relevance in the field of
econometrics. One may think about generalized GARCH models in time series analysis, when the innovation terms follow
(conditionally) a mixed normal distribution. Models of that type have become increasingly popular in the modeling of
exchange rates, see, for example, [1].

The estimation strategies which have been developed for deconvolution from repeated measurements with symmetric
errors are no longer applicablewhen the symmetry assumption is dropped. In this situation, a completely different approach
is in order. The same problem has been investigated in earlier publications by Li and Vuong [15] and by Neumann [18].

The paper by Li and Vuong has two major drawbacks. On one hand, the rates of convergence presented therein are
extremely slow, in comparison to the rate results which are usually found in deconvolution problems. On the other hand,
thementioned authors impose very restrictive assumptions on the target density and on the distribution of the noise, which
are only met in some exceptional cases.

Neumann overcomes this second drawback and constructs consistent estimators under most general assumptions.
However, rate results are not given in that paper so the question whether the convergence rates found by Li and Vuong
can be improved has so far remained unanswered. Moreover, the estimator proposed by Neumann is only implicitly given
and non-constructive, so it is difficult to investigate its practical performance.

In the present work, we study a fully constructive estimator, which is based on a modification of the original procedure
by Li and Vuong. It is interesting to note that we are able to improve substantially upon the rates of convergence found by Li
and Vuong and, at the same time, dispose of most of their restrictive assumptions. Surprisingly, it can also be shown that our
estimator outperforms, in some cases, the estimators which have been studied for the structurally simpler case of repeated
observations with symmetric errors.

It is worth pointing out that many of our considerations extend to the structurally more involved problem of estimating
the jump size density in a mixed compound Poisson process. This model is studied in [8].

This paper is organized as follows: In Section 2, we introduce the statistical model and define estimators for the target
density, as well as for the residuals. In Section 3, we provide upper risk bounds and derive rates of convergence. In Section 4,
we present some data examples. All proofs are postponed to Section 5.

2. Statistical model an estimation procedure

Let ε1 and ε2 be independent copies of a random variable ε and let X be independent of ε1 and ε2. By Y , we denote the
random vector Y = (Y1, Y2) = (X + ε1, X + ε2). We observe n independent copies

Yj = (Yj,1, Yj,2), j = 1, . . . , n

of Y . The following assumptions are imposed on X and ε:

(A1) X and ε have square integrable Lebesgue densities fX and fε .
(A2) The characteristic functions ϕε(·) = E[ei·ε] and ϕX (·) = E[ei·X ] vanish nowhere.
(A3) E[ε] = 0.

Our objective is to estimate fX and fε . This statistical framework allows a straightforward generalization to the case where
more than two observations of the noisy random variable X are feasible. However, for sake of simplicity and clarity, we
content ourselves with considering the two dimensional case.

In the sequel, we denote by ψ the characteristic function of the two dimensional random vector Y ,

ψ(u1, u2) = E[ei(u1Y1+u2Y2)].

By independence of X , ε1 an ε2, the following holds for ψ:

ψ(u1, u2) = E[ei(u1+u2)Xeiu1ε1eiu2ε2 ] = ϕX (u1 + u2)ϕε(u1)ϕε(u2). (2.1)

From formula (2.1) one derives the following lemma, which has been formulated and proved in [15]. Lemma 2.1 is then the
key to the construction of the estimator.

Lemma 2.1. Assume that E[|Y1|] < ∞ and E[ε] = 0. Then ϕX is determined by ψ via the following formula:

ϕX (u) = exp
 u

0

∂
∂u1
ψ(0, u2)

ψ(0, u2)
du2.
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Li and Vuong propose the following estimator of ϕX :

ϕLV
X (u) := exp

 u

0

∂
∂u1
ψ(0, u2)ψ(0, u2)

du2,

with

ψ(u1, u2) =
1
n

n
j=1

ei(u1Yj,1+u2Yj,2) and
∂

∂u1

ψ(u1, u2) =
1
n

n
j=1

iYj,1ei(u1Yj,1+u2Yj,2)

denoting the empirical version of ψ and its first partial derivative.
Given a kernel K and bandwidth h, the corresponding estimator of fX is

f LVXh (x) =
1
2π


e−iuxϕLV

X (u)F Kh(u) du,

with Kh(·) = 1/hK(·/h) and with F Kh(u) =

eiux Kh(x) dx denoting the Fourier transformation. We propose a modified

version off LVXh
. First of all, it is well known that small values of the denominator lead to unfavorable effects in the estimation

procedure, so it is preferable to consider some regularized version of ψ . One possible approach is to replace ψ in the
denominator by ψ + ρ with some Ridge-parameter to be appropriately chosen. See, for example, [5]. However, following
ideas in [17], we prefer to define

ψ(0, u2) =

ψ(0, u2)

min{n1/2|ψ(0, u2)|, 1}

and use 1/ψ(0, u2) as an estimator of 1/ψ(0, u2).
This leads to defining the following modified estimator of ϕX :

ϕmod
X (u) = exp

 u

0

∂
∂u1
ψ(0, u2)ψ(0, u2)

du2.

Next, we have to pay attention to the fact that, by definition, neitherϕLV
X norϕmod

X need to be characteristic functions and
they may take values larger than one. Indeed, much of the complexity in the proofs presented in [15] and many of the
restrictive assumptions imposed therein are a consequence of the fact that there appears an unbounded exponential term
in the definition ofϕLV

X which has to be controlled, leading to some Bernstein-type arguments and hence to the assumption
that the supports are bounded.

However, the quantity to be estimated is, in any case, a characteristic function, so the quality of the estimator can
be improved by bounding the absolute value of ϕmod

X . These considerations lead to defining our final estimator of the
characteristic function of X ,

ϕX (u) :=
ϕmod

X (u)
max{1, |ϕmod

X (u)|}
. (2.2)

Sometimes, one may not only be interested in the estimation of the target density itself, but also in the distribution of
the residuals. The following holds true for the characteristic function of ε:

ϕε(u) =
ψ(0, u)
ϕX (u)

.

This quantity can hence be recovered, using a plug-in estimator. We set

ϕX (u) =
ϕX (u)

min{n1/2|ϕX (u)|, 1}

and then

ϕε(u) :=

ψ(0, u)ϕX (u)
. (2.3)

Given a kernel K and bandwidth h > 0, the kernel estimators of fX and fε corresponding to formula (2.2) and (2.3) are

fXh(x) =
1
2π


e−iuxϕX (u)F Kh(u) du

and fεh(x) =
1
2π


e−iuxϕε(u)F Kh(u) du.
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3. Risk bounds and rates of convergence

3.1. Non-asymptotic risk bounds

We start by analyzing the performance offX . It is important to stress that we can dispose of most of the assumptions
which have been imposed in earlier publications on the subject. Indeed the conditions on X and ε which are imposed
in [15], namely boundedness of the support of fX and fε and nowhere vanishing characteristic functions, are violated for any
distribution which is commonly studied in probability theory. In [2] an estimator is constructed under weaker assumptions
on the distributions. But still, it is required in that paper thatX havemoments of all orders,which is certainly quite restrictive.
Moreover, the rates which are found by those authors turn out to be even slower than the rate results presented in [15]. It
is interesting to note that we can substantially improve upon these results, even though our assumptions are much weaker.

In [18], an implicit estimator of fX is proposed. The strength of this approach lies in the fact that it is fully general. However,
the price one has to pay is the lack of constructivity. The estimator is found as the solution to an abstract minimization
problem, so the practical computation is not clear. Moreover, consistency of the estimator is shown, but rate results are not
given, so nothing can be said about the quality of the procedure.

Finally, Delaigle et al. [5] and Comte et al. [4] have studied estimators in a repeatedmeasurementmodel, but it is assumed
in both papers that the distribution of the noise is symmetric. It is the main concern of the present publication to be able to
dispose of the symmetry.

In the sequel, we impose the following mild regularity assumption on the characteristic function of X:
(A4) For some positive constant CX ,

∀u, v ∈ R+ : (v ≤ u) ⇒ (|ϕX (u)| ≤ CX |ϕX (v)|).

The following bound can be given on the mean integrated squared error:

Theorem 3.1. Let K be supported on [−1, 1]. Assume that (A1)–(A4) are satisfied and that for some positive integer p,
E[|Y1|

2p
] < ∞. Assume, moreover, that ϕ′′

Xϕε is integrable. Then for some positive constant C depending only on p,

E
fX −fXh2L2 ≤ 2 ∥fX − Kh ∗ fX∥2

L2

+
CCXG(X, ε, 1, 1/h)

n

 1/h

−1/h


|u|

0

1
|ϕε(z)|2

dz du + CG(X, ε, p, 1/h)
 1/h

−1/h


1
n


|u|

0

1
|ϕY (z)|2

dz
p

du,

with

ϕY (z) = E[eizY2 ] = ψ(0, z) = ϕX (z)ϕε(z)

and

G(X, ε, p, u) := (∥ϕ′′

Xϕε∥L1 + E[ε2]∥ϕXϕε∥L1 + ∥ϕ′

Xϕε∥
2
L2)

p
+


|u|

0

 ∂
∂u1

logψ(0, x)
2 dxp

+
E[|Y1|

2p
]1{p≥2}up

np−1
+ E

1
2 [|Y1|

2p
].

In analogy with (A4), we impose the following assumption on the characteristic function of the errors:
(A5) For some positive constant Cε ,

∀u, v ∈ R+ : (v ≤ u) ⇒ (|ϕε(u)| ≤ Cε|ϕε(v)|).

The following bound can then be given on the mean integrated squared error offε:
Theorem 3.2. Assume that K is supported on [−1, 1] and the assumptions (A1)–(A5) are met. Assume, moreover, that for some
positive integer q ≥ 2, E[|Y1|

4q
] is finite. Then for some positive constant C depending only on q,

E
fε −fεh2L2 ≤ ∥fε − Kh ∗fε∥2

L2 + CCε


G(X, ε, 1, 1/h)

n

 1/h

−1/h


|u|

0

1
|ϕX (z)|2

dz du

+
G(X, ε, q, 1/h)

nq−1

 1/h

−1/h

1
|ϕX (u)|2


|u|

0

1
|ϕX (z)|2

dz


|u|

0

1
|ϕY (z)|2

dz
q−1

du

+
G(X, ε, 2, 1/h)1/2

n2

 1/h

−1/h

1
|ϕX (u)|2


|u|

0

1
|ϕY (z)|2

dz

du

+
G(X, ε, 2q, 1/h)1/2

nq

 1/h

−1/h

1
|ϕX (u)|4


|u|

0

1
|ϕY (z)|2

dz
q

du +
1
n2

 1/h

−1/h

1
|ϕX (u)|4

du

.
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Discussion It is easily seen that the assumptions (A4) and (A5) are not very restrictive. They aremet, for example, for normal
ormixed normal distributions, Gammadistributions, bilateral Gammadistributions andmany others. By a location shift, one
can always ensure that E[ε] = 0.

The integrability condition on ϕ′′

Xϕε is also very mild. Under the above assumptions, it is automatically met if ϕε is inte-
grable but can also be checked in most other cases.

The upper bound in Theorem 3.1 differs from the bounds which are commonly found in deconvolution problems in two
ways: For one thing, there appears an additional inner integral in the variance term. This could be a consequence of the two-
dimensional nature of the underlying problem. On the other hand, it is completely unexpected to find, in the second variance
term, the characteristic function of the target density appearing in the denominator. On an intuitive level, this phenomenon
could be understood as follows: To draw inference on X some information on the noise is required. However, in comparison
to standard deconvolution problems, ε is itself an unobservable quantity and is contaminated by X . Consequently, X does
not only play the role of a random variable of interest but also, with respect to the error term, the role of a contamination.
This might explain the occurrence of ϕX in the denominator.

3.2. Rates of convergence

In what follows, we derive rates of convergence under regularity assumptions on the target density fX and on the density
fε of the noise. For sake of simplicity, we assume in this section that K is the sinc-kernel, F K = 1[−1,1].

Let us introduce some notation: For ρ, C1 > 0, β, c ≥ 0, C2 ≥ 1, we denote by F u(C1, C2, c, β, ρ) the class of square
integrable densities f such that the characteristic function ϕ(·) =


ei·xf (x) dx satisfies

∀u, v ∈ R+
: (u ≥ v) ⇒ (|ϕ(u)| ≤ C2|ϕ(v)|) (3.1)

and

∀u ∈ R : |ϕ(u)| ≤ (1 + C1|u|2)−
β
2 e−c|u|ρ .

If c = 0, the functions collected in F u(C1, C2, c, β, ρ) are called ordinary smooth. For c > 0, they are called supersmooth. By
F ℓ(C1, C2, c, β, ρ), we denote the class of square integrable densities for which (3.1) holds and, in addition,

∀u ∈ R : |ϕ(u)| ≥ (1 + C1|u|2)−
β
2 e−c|u|ρ .

For C3 > 0, we denote by G(C3, p) the class of pairs (fX , fε) of square integrable densities for which the following conditions
are met: For the characteristic function ϕX of fX and ϕε of fε ,

(∥ϕ′′

Xϕε + E[ε2]ϕXϕε∥L1 + ∥ϕ′

Xϕε∥
2
L2)

p
+ E[|X + ε|2p] ≤ C3

holds and moreover, (logϕX+ε)
′ is square integrable, with

∥(logϕX+ε)
′
∥
2p
L2

≤ C3.

Finally, we use the short notation

F u,ℓ(X, ε, p) =


F u(C1,X , C2,X , cX , βX , ρX )× F ℓ(C1,ε, C2,ε, cε, βε, ρε)


∩ G(C3, p)

and

F ℓ,u(X, ε, p) =


F ℓ(C1,X , C2,X , cX , βX , ρX )× F u(C1,ε, C2,ε, cε, βε, ρε)


∩ G(C3, p).

Estimation of the target density
We start by providing rates of convergence for the estimation of fX . Let p ≥ 2. We may limit the considerations to

bandwidths h ≥ n−1/2, so the term up

np−1 appearing in the definition of G(X, ε, p, u) is readily negligible. We consider three
different cases:
Case I Ordinary smooth density with ordinary smooth errors, cX = cε = 0, βX > 1/2, βε > 1/2.

Then the choice of the kernel, Theorem 3.1 and the definition of F u,ℓ(X, ε, p) give

sup
(fX ,fε)∈F u,ℓ(X,ε,p)

E

∥fX −fX,h∥2

L2


= O(rn,h) := O


(1/h)γ1 +

1
n
(1/h)γ2 +

1
np
(1/h)γ3


with

γ1 = −2βX + 1, γ2 = 2βε + 2, γ3 = p(2βX + 2βε + 1)+ 1.

Minimizing rn,h with respect to h yields for the optimal bandwidth h∗,

1/h∗
≍ n

1
2βε+2(1+1/p)βX+1 .



36 F. Comte, J. Kappus / Journal of Multivariate Analysis 140 (2015) 31–46

Plugging h∗ in gives

sup
(fX ,fε)∈F u,ℓ(X,ε,p)

E

∥fX −fX,h∗∥

2
L2


= O


n−

(2βX−1)
2βε+2(1+1/p)βX+1


.

Case II Ordinary smooth density with supersmooth errors, βX > 1/2, cX = 0, cε > 0. Then

sup
(fX ,fε)∈F u,ℓ(X,ε,p)

E

∥fX −fX,h∥2

L2


= O(rn,h)

:= O

(1/h)γ1 +

1
n
(1/h)γ2 exp(2cε(1/h)ρε )+

1
np
(1/h)γ3 exp(2pcε(1/h)ρε )


,

with

γ1 = −2βX + 1, γ2 = [(2βε + 1 − ρε)+ + 1 − ρε]+, γ3 = [p(2βε + 2βX + 1 − ρε)+ + 1 − ρε]+.

Selecting h∗ as the minimizer of rn,h gives

1/h∗
=


1
2cε
(log n)−

1
2cε

log(log n)γ + O(1)
1/ρε

.

with

γ = max

γ2

ρε
+ 2βX − 1, 1/p


γ3

ρε
+ 2βX − 1


.

From this we derive that

sup
(fX ,fε)∈F u,ℓ(X,ε,p)

E

∥fX −fX,h∗∥

2
L2


= O


(log n)−

2βX−1
ρε


.

Case III Supersmooth density with ordinary smooth errors, cX > 0, cε = 0, βε > 1/2. In this case,

sup
(fX ,fε)∈F u,ℓ(X,ε,p)

E

∥fX −fX,h∗∥

2
L2


= O(rn,h)

:= O

(1/h)γ1 exp(−2cX (1/h)ρX )+

1
n
(1/h)γ2 +

1
np
(1/h)γ3 exp(2pcX (1/h)ρX )


,

with

γ1 = −2βX + 1 − ρX , γ2 = 2βε + 2, γ3 = [p(2βX + 2βε + 1 − ρX )+ + 1 − ρX ]+.

Minimizing rn,h yields

1/h∗
=


p

2cX (p + 1)
(log n)−

1
2cX

log(log n)γ + O(1)
1/ρX

with

γ =
γ3 − γ1

(p + 1)ρX
.

Then it holds that

sup
(fX ,fε)∈F u,ℓ(X,ε,p)

E

∥fX −fX,h∗∥

2
L2


= O


n−

p
p+1 (log n)

p/(p+1)γ1+1/(p+1)γ3
ρX


.

Estimation of the residuals
In analogy with the rates for the estimation of fX , we consider the following different cases:

Case I Both, fε and fX are ordinary smooth, cX = cε = 0, βX > 1/2, βε > 1/2. Then by Theorem 3.2 and by the definition of
F ℓ,u(X, ε, p),

sup
(fX ,fε)∈F ℓ,u(X,ε,p)

E

∥fε −fε,h∥2

L2


= O(rn,h)

:= O

(1/h)γ1 +

1
n
(1/h)γ2 +

1
n2
(1/h)γ3 +

1
np−1

(1/h)γ4 +
1
np
(1/h)γ5


,
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with

γ1 = −2βε + 1, γ2 = 2βX + 2, γ3 = 4βX + 2βε + 2, γ4 = 2(p + 1)βX + 2(p − 1)βε + p + 1,
γ5 = 2(p + 2)βX + 2pβε + p + 1.

Minimizing rn,h gives

1/h∗
≍ n

1
b ,

with

b := 2(1 + 2/(p − 1))βX + 2(1 + 1/(p − 1))βε + 1 + 1/(p − 1).

Consequently,

sup
(fX ,fε)∈F ℓ,u(X,ε,p)

E

∥fε −fε,h∗∥

2
L2


= O


n−

2βε−1
b


,

with b defined as above.
Case II Ordinary smooth fε and supersmooth fX , cX > 0, cε = 0, βε > 1/2. In this case,

sup
(fX ,fε)∈F ℓ,u(X,ε,p)

E

∥fε −fε,h∥2

L2


= O(rn,h)

:= O

(1/h)γ1 +

1
n
(1/h)γ2 exp(2cX (1/h)ρX )+

1
n2
(1/h)γ3 exp(4cX (1/h)ρX )

+
1

np−1
(1/h)γ4 exp(2cX (p + 1)(1/h)ρX )+

1
np
(1/h)γ5 exp(2cX (p + 2)(1/h)ρX )


,

with

γ1 = −2βε + 1, γ2 = [(2βX + 1 − ρX )+ + 1 − ρX ]+,

γ3 = [(2βX + 2βε + 1 − ρX )+ + 2βX + 1 − ρX ]+,

γ4 = [(p − 1)(2βX + 2βε + 1 − ρX )+ + (2βX + 1 − ρX )+ + 2βX + 1 − ρX ]+,

γ5 = [p(2βX + 2βε + 1 − ρX )+ 4βX + 1 − ρX ]+.

Then

1/h∗
=


(p − 1)

2cX (p + 1)
log n −

1
2cX

log (log n)γ + O(1)
1/ρX

with

γ = 1/(p + 1)

γ4

ρX
+ 2βε − 1


.

This implies

sup
(fX ,fε)∈F ℓ,u(X,ε,p)

E

∥fε −fε,h∗∥

2
L2


= O


(log n)−

2βε−1
ρX


.

Case III fε is supersmooth and fX is ordinary smooth. Then

sup
(fX ,fε)∈F ℓ,u(X,ε,p)

E

∥fε −fε,h∥2

L2


= O(rn,h) := O


(1/h)γ1 exp(−2cε(1/h)ρε )+

1
n
(1/h)γ2

+
1
n2
(1/h)γ3 exp(2cε(1/h)ρε )+

1
np−1

(1/h)γ4 exp(2cε(p − 1)(1/h)ρε )+
(1/h)γ5

np
exp(2cεq(1/h)ρε )


,

with

γ1 = −2βε + 1 − ρε, γ2 = 2βX + 2, γ3 = [(2βX + 2βε + 1 − ρε)+ + 2βX + 1 − ρε]+,

γ4 = [(p − 1)(2βX + 2βε + 1 − ρε)+ + 4βX + 2 − ρε]+,

γ5 = [p(2βX + 2βε + 1 − ρε)+ + 4βX + 1 − ρε]+.

We arrive at

1/h∗
=


(p − 1)
p2cε

log n −
1
2cε

log(log n)γ
1/ρε

,
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Table 1
Rates of convergence for estimating the target density.

cX = 0, cε = 0 cX = 0, cε > 0 cX > 0, cε = 0

fX n−
2βX −1

2(1+1/p)βX +2βε+1 (log n)−
2βX −1
ρε (log n)γ n−

p
p+1

f LVX n−
2βX −1

4βX +6βε+4 (log n)−
2βX −1
ρε (log n)γ n−

1
3

Table 2
Rates of convergence for estimating the noise density.

cX = 0, cε = 0 cX = 0, cε > 0 cX > 0, cε = 0

fε n
−

2βε−1
2(p+1)
p−1 βX +

2(p+1)
p−1 βε+

p+1
p−1 (log n)γ n−

p−1
p (log n)−

2βε−1
ρXf LVε n−

2βX −1
6βX +6βε+4 (log n)γ n−

1
3 (log n)−

2βε−1
ρX

with

γ =
1/p(γ3 − γ1)

ρε

which, in turn, implies

sup
(fX ,fε)∈F ℓ,u(X,ε,p)

E

∥fε −fε,h∗∥

2
L2


= O


n−

p−1
p (log n)

p−1
p γ1+

1
p γ3

ρε


.

Discussion:Wehave not considered the casewhere both, the target density and the error density, are supersmooth. Deriving
rates of convergence in this framework requires the consideration of various different subcases, leading to rather tedious
and cumbersome calculations. We omit the details and refer to [14] for a detailed discussion on the subject.

Comparison to earlier results
We have mentioned that the rates of convergence derived above differ substantially from the rate results given in [15].

To illustrate this point, the rates are listed in Tables 1 and 2.
We need to be careful about the fact that the rates of convergence given in [15] are derived under the assumption the

moments of all orders and even all exponential moments are finite, which compares to p = ∞. There is no difference in the
rate when an ordinary smooth target with supersmooth noise is being considered. In any other case, the gap in the rate is
striking.

It is interesting to note that the rates of convergence found in the present publication do also differ from the rates which
have been found for estimators in the structurally simpler case of panel data with symmetric errors, see [5] and [4]. In the
table below,f symX is understood to be the estimator for the symmetric error case, defined according to Comte et al. [4] and
δ ∈ (0, 1/2) is arbitrary (see Table 3).

Table 3
Rates of convergence for estimating fX , symmetric vs. non-symmetric error case.

cX = 0, cε = 0 cX = 0, cε > 0 cX > 0, cε = 0

fX n−
2βX −1

2(1+1/p)βX +2βε+1 (log n)−
2βX −1
ρε (log n)γ n−

p
p+1

f symX n−
2βX −1

2(βX ∨βε )+2βε (log n)−
2βX −1
ρε (log n)γ n−1+δ

The convergence rates coincide if an ordinary smooth target density with supersmooth errors is being considered. When

both, fX and fε are ordinary smooth and βX ≥ βε holds,f sym attains the rate n−
2βX−1

2βX+2βε , which is known to be optimal in
deconvolution problems. In this situation,fX shows a slightly worse performance thanf symX , which is not surprising in light
of the fact that the model with non-symmetric errors has a more complicated structure. However, it is certainly surprising
to notice that for βε ≫ (1 + 1/p)βX + 1/2, the rates forfX are substantially better than the rates forf symX .

4. Simulation studies

4.1. Some data examples

For the practical choice of the smoothing parameter, we use a leave-p-out cross validation strategy. We consider
the parameter set M = {1, . . . ,

√
n} with each parameter m corresponding to the bandwidth 1/m. Given any subset
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Table 4
Comparison of the empirical risk for the adaptive and oracle choice of the bandwidth.

n ror rad ror rad
X ∼ Γ (4, 2), ε ∼ bΓ (2, 2, 3, 3) X ∼ N (0, 1), ε ∼ bΓ (2, 2, 3, 3)

100 1.51 1.98 1.04 1.98
1000 0.34 0.76 0.19 0.44

10,000 0.15 0.40 0.07 0.16

X ∼ N (0, 1), ε ∼ mN (−2, 1, 2, 2) X ∼ bΓ (1, 1, 2, 2), ε ∼

Γ (4, 2)− 2

100 3.10 4.10 1.35 1.72
1000 1.18 3.52 0.27 0.74

10,000 0.40 0.67 0.13 0.38

N := {n1, . . . , np} ⊆ {1, . . . , n} of size p, we build an estimatorϕN
X of ϕX based on the subsample (Yk)k∈N , as well as an

estimatorϕ−N
X based on (Yk)k∉N . Form ∈ M , we may use

ℓ(ϕX ,ϕX,1/m) :=
1
n
p

 
N={n1,...,np}

∥ϕN
X F K1/

√
n −ϕ−N

X F K1/m ∥
2
L2

as an empirical approximation to the loss function

ℓ(ϕX ,ϕX,1/m) = ∥ϕX −ϕX,1/m∥
2
L2 .

Minimizing the empirical loss leads to selectingm = argmin{m ∈ M :ℓ(ϕX ,ϕX,1/m)},

and working with the bandwidthh = 1/m, thus defining the adaptive estimatorϕad
X =ϕX,h.

Simulation experiments indicate that the procedure works reasonably well with p = 10. However, it is evident that even
for small sample sizes, the complexity of the algorithm explodes and the procedure is numerically intractable. To deal with
this problem, we use a modified algorithm. We subdivide {1, . . . , n} into n/5 disjoint blocks B1, . . . , Bn/5 of size 5 and build
our leave-10-out estimators, based on the subsets Nk = Bk ∪ Bk+1, k = 1, . . . , n/5 − 1.

We work with a Gaussian kernel and try the procedure for the following target densities and errors:

(i) X has a Γ (4, 2) distribution and ε has a bilateral Gamma distribution with parameters 2, 2, 3, 3, that is, the corre-
sponding density is the convolution of a Γ (2, 2)-density, supported on R+ and a Γ (3, 3)-density, supported on R−. In
the sequel, we abbreviate this type of distributions by bΓ (2, 2, 3, 3).

(ii) X has a bΓ (1, 1, 2, 2)-distribution and the errors are, up to a location shift,Γ (4, 2)-distributed, that is, ε+2 ∼ Γ (4, 2).
In the sequel, we write ε ∼ Γ (4, 2)− 2. (The location shift is necessary to ensure that E[ε] = 0 holds true.)

(iii) X has a standard normal distribution, X ∼ N (0, 1) and ε ∼ bΓ (2, 2, 3, 3).
(iv) X has again a standard normal distribution. ε is a mixture of two normal distributions with parameters −2, 1 and 2, 2.

We use the notation ε ∼ mN (−2, 1, 2, 2).

We run the procedure for n = 100, 1000, 10,000 observations. Based on 500 repetitions of the adaptive procedure, we
calculate the empirical riskrad and compare this quantity to the empirical riskror of the ‘‘estimator’’ with oracle choice of
the bandwidth. Here, the oracle bandwidth h∗ is understood to be the minimizer of the loss itself. More precisely, with

m∗
= argmin{m ∈ M : ℓ(ϕX ,ϕX,1/m)},

the oracle choice of the bandwidth is h∗
= 1/m∗.

The values, multiplied by 100, are summarized in Table 4.

4.2. Comparison to the symmetric error case

We have mentioned that so far, the model of repeated observations has mainly been studied under the additional
assumption that the error terms are symmetric. In Section 3, it turned out that our rates of convergence are, in some cases,
better than the rate results presented in [5] or [4]. So far, it is not clear if this gap in the rate is due to a sub-optimal upper
bound in the mentioned papers or to a different performance of the estimators themselves. Simulation studies indicate
that the estimator which has been designed to handle the case of skew errors does indeed outperform, in some cases, the
standard estimator for the symmetric error case. Before having a look at some data examples, let us give a brief outline on
the estimation strategy for the symmetric error case: In the panel data model, suppose that ε has a symmetric distribution.
In this case,

Yj,1 − Yj,2 = εj,1 − εj,2
d
= εj,1 + εj,2, j = 1, . . . , n.
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Consequently, ϕY1−Y2 = ϕ2
ε . An unbiased estimator of ϕ2

ε can then be built from the data set (Yj,1−Yj,2)j=1,...,n. Taking square
roots gives an estimatorϕε of ϕε and a regularized version of this estimator is plugged in the denominator. Again ϕY can
be estimated directly from the data. For the details, we refer to [4]. In the sequel, we denote byϕsym

X the estimator for the
symmetric error case.

As indicated by the theory, it turns out thatϕX performs substantially better thanϕsym
X if the error density is very smooth,

in comparison to the target density. To illustrate this phenomenon, we have a look at the following examples:

(i) X has a Γ (2, 4)-distribution and ε ∼ bΓ (3, 2, 3, 2).
(ii) X ∼ bΓ (1, 2, 1, 2) an ε ∼ bΓ (4, 3, 4, 3).

When we consider target densities which are very smooth, in comparison to the error density, the estimator discussed in
the present paper does, on small or medium sample sizes, still perform slightly better than the estimator for the symmetric
error case. However, this difference in the performance is small and vanishes completely as the sample size increases. For
illustration, we consider the following examples:

(iii) X ∼ bΓ (4, 3, 4, 3) and ε ∼ bΓ (1, 2, 1, 2).
(iv) X ∼ N (0, 1) and ε ∼ bΓ (3, 5, 3, 5).

In Table 5, based on 500 repetitions of the estimation procedure (with oracle choice of the bandwidth), we compare the
empirical riskror ofϕX to the empirical riskr sym,or ofϕsym

X . The values are multiplied by 100.

Table 5
Comparison of the performance ofϕsym

X andϕX .

n ror r sym,or ror r sym,or
X ∼ Γ (2, 4), ε ∼ bΓ (3, 5, 3, 5) X ∼ bΓ (1, 2, 1, 2) ε ∼

bΓ (4, 3, 4, 3)

100 9.72 25.31 4.37 12.09
1000 5.92 15.75 2.44 8.02

10,000 3.96 10.38 1.49 5.25

X ∼ bΓ (4, 3, 4, 3), ε ∼ bΓ (1, 2, 1, 2) X ∼ N (0, 1), ε ∼ bΓ (3, 5, 3, 5)

100 0.93 1.45 0.63 0.90
1000 0.32 0.42 0.18 0.25

10,000 0.06 0.06 0.08 0.07

Conclusion: Our simulation studies indicate that our estimator is, in some cases, preferable to the estimation procedures
designed for the symmetric error case. In other cases, the performance of both procedures is practically identical.

However, if the errors are unknown it is clear that in practical applications, one cannot be sure if the symmetry
assumption on the errors is satisfied, so we conclude that it is preferable, in either case, to work with the procedure which
is designed for the non-symmetric case.

5. Proofs

5.1. Proof of Theorem 3.1

We start by providing some auxiliary results to prepare the proof of Theorem 3.1. In the sequel, we use the following
short notation.

R(u) :=
1

ψ(u)
−

1ψ(u) ; c(u) :=
∂

∂u1

ψ(0, u)−
∂

∂u1
ψ(0, u); cj(u) := iYj,1eiuYj,2 −

∂

∂u1
ψ(0, u);

b(u) := ψ(0, u)− ψ(0, u) and Ψ ′(u2) :=
∂

∂u1
logψ(0, u2).

Moreover,

∆(u) :=

 u

0


∂
∂u1
ψ(0, u2)ψ(0, u2)

−

∂
∂u1
ψ(0, u2)

ψ(0, u2)


du2.

First, we consider the deviation of 1/ψ from its target:

Lemma 5.1. It holds that for some positive constant C depending on p,

E
 1
ψ(0, u)

−
1ψ(0, u)

2p ≤ C min
 n−p

|ψ(0, u)|4p
,

1
|ψ(0, u)|2p


.
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Proof. Consider first the case where |ψ(0, u)| ≥ n−1/2. We start by observing that

E

|b(u)|2p ≤ 4p


E

|ψ(0, u)− ψ(0, u)|2p+ E


|ψ(0, u)− ψ(0, u)|2p.

By Rosenthal’s inequality, for some constant C depending on p,

E

|ψ(0, u)− ψ(0, u)|2p ≤

C
np
.

Moreover, by definition of ψ ,

E

|ψ(0, u)− ψ(0, u)|2p ≤ E


|ψ(0, u)| + n−1/2

2p
1{|ψ(0,u)|≤n−1/2}


≤ 4pn−p.

Consequently, E

|b(u)|2p ≤ Cn−p. Now, 1

ψ(0, u)
−

1ψ(0, u)
2p =

 b(u)
ψ(0, u)ψ(0, u)

2p ≤ 4p


|b(u)|2p
|ψ(0, u)|4p

+
|b(u)|4p

|ψ(0, u)|4p|ψ(0, u)|2p

.

We have

E


|b(u)|2p
|ψ(0, u)|4p


≤ C

n−p

|ψ(0, u)|4p

and, since 1/|ψ(0, u)| ≤
√
n by definition,

E


|b(u)|4p
|ψ(0, u)|4p|ψ(0, u)|2p


≤ C

n−p

|ψ(0, u)|4p
.

On the other hand, for |ψ(0, u)| ≤ n−1/2, we have the series of inequalities

E
 1
ψ(0, u)

−
1ψ(0, u)

2p ≤ 4p
 1

|ψ(0, u)|2p
+ E

 1

|ψ(0, u)|2p


≤ 4p
 1

|ψ(0, u)|2p
+ np


≤ 4p

 2
|ψ(0, u)|2p


.

This completes the proof. �

The following result gives control on∆:

Lemma 5.2. Assume that E[|Y1|
2p

] < ∞. Then for some positive constant C,

E

|∆(u)|1{|∆(u)|>1}


≤ CG(X, ε, u, p)

1
np


|u|

0

1
|ψ(0, u2)|2

du2

p

with

G(X, ε, u, p) = (∥ϕ′′

Xϕε + E[ε2]ϕXϕε∥L1 + ∥ϕ′

Xϕε∥
2
L2)

p
+

 |u|

0
|Ψ ′(x)|2 dx

p
+

up1{p≥2}E[|Y1|
2p

]

np−1
+ E1/2

[|Y1|
2p

].

Moreover

E

|∆(u)|2p1{|∆(u)|≤1}


≤ CG(X, ε, u, p)

1
np


|u|

0

1
|ψ(0, u2)|2

du2

p

.

Proof. We can estimate∆(u) =

  u

0


∂
∂u1
ψ(0, u2)ψ(0, u2)

−

∂
∂u1
ψ(0, u2)

ψ(0, u2)


du2

 ≤

  u

0


∂
∂u1
ψ(0, u2)−

∂
∂u1
ψ(0, u2)

ψ(0, u2)


du2


+

  u

0

∂

∂u1
ψ(0, u2)R(u2) du2

+   u

0


∂

∂u1

ψ(0, u2)−
∂

∂u1
ψ(0, u2)


R(u2) du2


=: ∆1(u)+∆2(u)+∆3(u).
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Rosenthal’s inequality (see, for example, [11]) gives for some constant C depending only on p:

E

∆1(u)2p


= E

  u

0


∂
∂u1
ψ(0, u2)−

∂
∂u1
ψ(0, u2)

ψ(0, u2)


du2

2p = E
1n

n
j=1

 u

0

cj(u2)

ψ(0, u2)
du2

2p
≤ C


1
np


E
  u

0

cj(u2)

ψ(0, u2)
du2

2p

+
1

n2p−1
E
  u

0

cj(u2)

ψ(0, u2)
du2

2p

.

Using Fubini’s theorem, the Cauchy–Schwarz inequality and Lemma A.1, we derive that

E
  u

0

cj(u2)

ψ(0, u2)
du2

2 =

 u

0

 u

0

Cov(cj(x),cj(y))
ψ(0, x)ψ(0,−y)

dx dy

=

 u

0

 u

0

E[(iY1)
2ei(x−y)Y2 ]

ψ(0, x)ψ(0,−y)
dx dy −

 u

0

 u

0

E[iY1eixY2 ]E[iY1e−iyY2 ]

ψ(0, x)ψ(0,−y)
dx dy

≤

 u

0

 u

0

|E[(iY1)
2ei(x−y)Y2 ]|

|ψ(0, x)|2
dx dy ≤ sup

x∈[0,u]

 u

0
|E[(iY1)

2ei(x−y)Y2 ]| dy
 u

0

1
|ψ(0, y)|2

dy

≤

∥ϕ′′

Xϕε + E[ε2]ϕXϕε∥L1
  u

0

1
|ψ(0, y)|2

dy.

For p ≥ 2, the Cauchy–Schwarz inequality gives

1
n2p−1

E
  u

0

cj(u2)

ψ(0, u2)
du2

2p ≤
1

n2p−1

 u

0

1
|ψ(0, u2)|2

du2

p

E
 u

0
|cj|2 du2

p
≤

4pE[|Yj|
2p

]

n2p−1
up
 u

0

1
|ψ(0, u2)|2

du2

p

.

We have thus shown

E

∆1(u)2p


≤ CG(X, ε, p, u)


1
n


|u|

0

1
|ψ(0, u2)|2

du2

p

.

Next, thanks to Lemma 5.1 and the Hölder inequality,

E

∆2(u)2p


= E

  u

0

∂

∂u1
ψ(0, u2)R(u2) du2

2p = E
  u

0
Ψ ′(u2)ψ(0, u2)R(u2)

2p
≤


|u|

0
|Ψ ′(x)|2 dx

p

E
 |u|

0
|ψ(0, u2)|

2
|R(u2)|

2 du2

p
≤


|u|

0
|Ψ ′(x)|2 dx

p |u|

0

1
|ψ(0, u2)|2

du2

p−1  |u|

0

1
|ψ(0, u2)|2

|ψ(0, u2)|
4pE

|R(u2)|

2p

du2

≤
C
np


|u|

0
|Ψ ′(x)|2 dx

p |u|

0

1
|ψ(0, u2)|2

du2

p

≤ CG(X, ε, p, u)

1
n


|u|

0

1
|ψ(0, u2)|2

du2

p

.

Finally, another application of Lemma 5.1 and the Hölder inequality gives

E

∆3(u)p


= E

  u

0


∂

∂u1

ψ(0, u2)−
∂

∂u1
ψ(0, u2)


R(u2) du2

p = E
  u

0
c(u2)R(u2) du2

p

≤


|u|

0

1
|ψ(0, u2)|2

du2

p−1  |u|

0

|ψ(0, u2)|
2pE

|c(u2)R(u2)|

p


|ψ(0, u2)|2
du2

≤


|u|

0

1
|ψ(0, u2)|2

du2

p−1  |u|

0

|ψ(0, u2)|
2pE

1
2


|c(u2)|

2p

E

1
2


|R(u2)|

2p


|ψ(0, u2)|2
du2

≤ C
E

1
2 [|Y1|

2p
]

np


|u|

0

1
|ψ(0, u2)|2

du2

p

≤ CG(X, ε, p, u)

1
n


|u|

0

1
|ψ(0, u2)|2

du2

p

.

We set

Aj = Aj(u) := {|∆(u)| > 1} ∩ {argmaxk=1,2,3 |∆k(u)| = j}.
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Wemay use the fact that on Aj,∆(u) ≤ 3∆j(u) as well as∆j(u) > 1/3, to conclude that

E

|∆(u)|1{|∆(u)|>1}


≤ 3


E

|∆1(u)|1A1


+ E


|∆2(u)|1A2


+ E


|∆3(u)|1A3


≤ 32p


E

|∆1(u)|2p


+ E


|∆2(u)|2p


+ E


|∆3(u)|p


.

Combining this inequality with the moment bounds on the ∆j(u), we have shown that for a constant C depending only
on p,

E

|∆(u)|1{|∆(u)|>1}


≤ CG(X, ε, p, u)

1
np


1

|ψ(0, u2)|2
du2

p

.

Next, we define

Bj := {|∆(u)| ≤ 1} ∩ {max{∆k(u)|k = 1, 2, 3} = j}, j = 1, 2, 3.

It holds that

E

|∆(u)|2p1{|∆(u)|≤1}


≤ 9p


E[∆1(u)2p1B1 ] + E[∆2(u)2p1B2 ] + E


|∆(u)|p1B3


≤ 9p


E[∆1(u)2p1B1 ] + E[∆2(u)2p1B2 ] + E[∆3(u)p1B3 ]


.

This implies, using again the moment bounds on the∆j,

E

|∆(u)|2p1{|∆(u)|≤1}


≤ CG(X, ε, p, u)


1
n


|u|

0

1
|ψ(0, u2)|2

du2

p

. �

We can now prove the upper bounds forfX,h:
Proof of Theorem 3.1. Parseval’s identity gives

E
f −fh2L2 ≤ 2

f − Kh ∗f
2
L2 +

1
π


|F Kh(u)|2E


|ϕX (u)−ϕX (u)|2


du.

We use the trivial observation that |ϕX (u) −ϕX (u)| ≤ |ϕX (u) −ϕmod
X (u)|, as well as the fact that for z ∈ C with |z| ≤ 1,

|1 − exp(z)| ≤ 2|z| holds, to derive that

|ϕX (u)−ϕX (u)|21{|∆(u)|≤1} ≤ |ϕX (u)−ϕmod
X (u)|21{|∆(u)|≤1}

= |ϕX (u)(1 −ϕmod
X (u)/ϕX (u))|21{|∆(u)|≤1} = |ϕX (u)(1 − exp(∆(u)))|21{|∆(u)|≤1}

≤ 2|ϕX (u)∆(u)|21{|∆(u)|≤1}.

On the other hand, using the fact that |ϕX (u)−ϕX (u)| ≤ 2, as well as the Markov-inequality, we can estimate

|ϕX (u)−ϕX (u)|2p1{|∆(u)|>1} ≤ 4p
|∆(u)|1{|∆(u)|>1}.

Lemma 5.1, Lemma 5.2 and (A4) thus give

E

|ϕX (u)−ϕX (u)|2


≤ 2|ϕX (u)|2E


|∆(u)|21{|∆(u)|≤1}


+ 4E


|∆(u)|1{|∆(u)|>1}


≤

CG(X, ε, 1, u)
n

|ϕX (u)|2


|u|

0

1
|ψ(0, u2)|2

du2 + CG(X, ε, p, u)

1
n


|u|

0

1
|ψ(0, u2)|

du2

p

≤
CCXG(X, ε, 1, u)

n


|u|

0

1
|ϕε(u2)|2

du2 + CG(X, ε, p, u)

1
n


|u|

0

1
|ψ(0, u2)|

du2

p

.

Hence, by assumption on the support of K, 1/h

−1/h
|Kh(u)|2E


|ϕX (u)−ϕX (u)|2


du ≤

CCXG(X, ε, 1, 1/h)
n

 1/h

−1/h


|u|

0

1
|ϕε(z)|2

dz du

+
CG(X, ε, p, 1/h)

np

 1/h

−1/h


|u|

0

1
|ψ(0, u2)|

du2

p

du.

This completes the proof. �



44 F. Comte, J. Kappus / Journal of Multivariate Analysis 140 (2015) 31–46

5.2. Proof of Theorem 3.2

Lemma 5.3. Let q ≥ p. Assume that E[|Y1|
2q

] < ∞. Then for some positive constant C depending only on p and q,

E
 1
ϕX (u)

−
1ϕX (u)

2p ≤ C
G(X, ε, p, u)

|ϕX (u)|2p


1
n

 u

0

1
|ψ(0, u2)|2

du2

p

+
G(X, ε, q, u)
|ϕX (u)|4pnq−p

 u

0

1
|ψ(0, u2)|2

du2

q

+
1

np|ϕX (u)|4p


.

Proof. We have

E
 1
ϕX (u)

−
1ϕX (u)

2p = E

|ϕX (u)−ϕX (u)|2p

|ϕX (u)ϕX (u)|2p


.

Using the definition ofϕmod
X , as well as the fact that | exp(z)| ≥ 1/e holds for z ∈ C, |z| ≤ 1, we derive that

|ϕmod
X (u)|1{|∆(u)|≤1} = |ϕX (u)|| exp(∆(u))|1{|∆(u)|≤1} ≥ 1/e|ϕX (u)|1{|∆(u)|≤1}.

Consequently, by definition ofϕX andϕX ,

|ϕX (u)|1{|∆(u)|≤1} ≥ |ϕX (u)|1{|∆(u)|≤1} =


|ϕmod

X (u)|1
{|ϕmod

X (u)|≤1} + 1
{|ϕmod

X (u)|≥1}


1{|∆(u)|≤1}

≥
1
e
|ϕX (u)|1{|∆(u)|≤1}.

Next,

|ϕX (u)−ϕX (u)|2p ≤ 4p

|ϕX (u)−ϕX (u)|2p + |ϕX (u)−ϕX (u)|2p


and it holds that

E

|ϕX (u)−ϕX (u)|2p


= E


|ϕX (u)−ϕX (u)|2p1{|ϕX (u)|≤n−1/2}


≤ E


(|ϕX (u)| + n−1/2)2p1{|ϕX (u)|≤n−1/2}


≤ 4pn−p.

We use Lemma 5.2 to conclude that

E

|ϕX (u)−ϕX (u)|2p

|ϕX (u)ϕX (u)|2p
1{|∆(u)|≤1}


≤

E

|ϕX (u)−ϕX (u)|2p1{|∆(u)|≤1}


1/e2p|ϕX (u)|4p

≤
2|ϕX (u)|2pE[|∆(u)|2p1{|∆(u)|≤1}] + n−p

1/e2p|ϕX (u)|4p

≤ C
G(X, ε, p, u)

|ϕX (u)|2p


1
n

 u

0

1
|ψ(0, u2)|2

du2

p

+
1

np|ϕX (u)|4p


.

Next, using the fact that by definition ofϕX , |1/ϕX (u)| ≤
√
n holds, as well as the fact that 1ϕX (u)

 ≤ 2
 1
ϕX (u)

+ 2
 1ϕX (u)

−
1

ϕX (u)

 = 2
 1
ϕX (u)

+ 2
|ϕX (u)−ϕX (u)|
|ϕX (u)ϕX (u)|

,

we conclude that

E

|ϕX (u)−ϕX (u)|2p

|ϕX (u)ϕX (u)|2p
1{|∆(u)|>1}


≤ 4p

E

|ϕX (u)−ϕX (u)|2p1{|∆(u)|>1}


|ϕX (u)|4p

+ np
E

|ϕX (u)−ϕX (u)|4p1{|∆(u)|>1}


|ϕX (u)|4p


≤ 8p

E

|∆(u)|1{|∆(u)|>1}


+ n−p

|ϕX (u)|4p
+ np

E

|∆(u)|1{|∆(u)|>1}


+ n−2p

|ϕX (u)|4p


≤

CG(X, ε, q, u)
|ϕX (u)|4p


np

1
n

 u

0

1
|ψ(0, u2)|2

du2

q

+
1
np


.

This completes the proof of the lemma. �
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Proof of Theorem 3.2. By Parseval’s inequality and by assumption on the support of K,

E

∥fε −fε,h∥2

L2


≤ 2∥fε − Kh ∗fε∥2

L2 +
1
π

 1/h

−1/h
E

|ϕε(u)−ϕε(u)|2 du.

It holds that

|ϕε(u)−ϕε(u)|2 =

ψ(0, u)ϕX (u)
−

ψ(0, u)ϕX (u)

2 ≤ 3


|ψ(0, u)− ψ(0, u)|2
|ϕX (u)|2

+ |ψ(0, u)− ψ(0, u)|2 1
ϕX (u)

−
1ϕX (u)

2 + |ψ(0, u)|2
 1
ϕX (u)

−
1ϕX (u)

2.
Since ψ(0, u) is a characteristic function and ψ(0, u) its empirical counterpart,

E[|ψ(0, u)− ψ(0, u)|2]
|ϕX (u)|2

≤ n−1 1
|ϕX (u)|2

.

Lemma 5.3 and assumption (A5) yield

|ψ(0, u)|2E
 1
ϕX (u)

−
1ϕX (u)

2
≤ C |ψ(0, u)|2

G(X, ε, 1, u)
|ϕX (u)|2

1
n

 u

0

1
|ψ(0, z)|2

dz +
G(X, ε, q, u)
|ϕX (u)|4nq−1

 u

0

1
|ψ(0, z)|2

dz
q

+
n−1

|ϕX (u)|4


≤ C |ϕε(u)|2

G(X, ε, 1, u)
n

 u

0

1
|ψ(0, z)|2

dz +
G(X, ε, q, u)
|ϕX (u)|2nq−1

 u

0

1
|ψ(0, z)|2

dz
q

+
1

n|ϕX (u)|2


≤ CCε

G(X, ε, 1, u)
n

 u

0

1
|ϕX (z)|2

dz +
G(X, ε, 1, u)
|ϕX (u)|2nq−1

 u

0

1
|ϕX (z)|2

dz
 u

0

1
|ψ(0, z)|2

dz
q−1

+
1

n|ϕX (u)|2


.

Finally, using the Cauchy–Schwarz inequality and again Lemma 5.3, we derive that

E

|ψ(0, u)− ψ(0, u)|2 1

ϕX (u)
−

1ϕX (u)

2 ≤ E
1
2


|ψ(0, u)− ψ(0, u)|4E 1

2

 1
ϕX (u)

−
1ϕX (u)

4
≤

C
n

G(X, ε, 2, u) 12
|ϕX (u)|2n

 u

0

1
|ψ(0, u2)|2

du2 +
G(X, ε, 2q, (u))

1
2

|ϕX (u)|4nq−1

 u

0

1
|ψ(0, u2)|2

du2

q

+
1

n|ϕX (u)|4


.

Putting the above together, we have shown that for some positive constant C , 1/h

−1/h
E
ϕε(u)−ϕε(u)2 du ≤ CCε

G(X, ε, 1, 1/h)
n

 1/h

−1/h


|u|

0

1
|ϕX (z)|2

dz du

+
G(X, ε, q, 1/h)

nq−1

 1/h

−1/h

1
|ϕX (u)|2


|u|

0

1
|ϕX (z)|2

dz


|u|

0

1
|ψ(0, z)|2

dz
q−1

du

+
G(X, ε, 2, 1/h)1/2

n2

 1/h

−1/h

1
|ϕX (u)|2


|u|

0

1
|ψ(0, z)|2

dz

du

+
G(X, ε, 2q, 1/h)1/2

nq

 1/h

−1/h

1
|ϕX (u)|4


|u|

0

1
|ψ(0, z)|2

dz
q

+
1
n2

 1/h

−1/h

1
|ϕX (u)|4

du

,

which gives the statement of the theorem. �

Appendix

Lemma A.1. The following holds for the partial derivatives of ψ :

∂k

∂uk
1
ψ(0, u2) = E


(iY1)

keiu2Y2


=

k
m=0


k
m


E[(iε)k−m

]ϕε(u2)ϕ
(k)
X (u2).
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Proof. By definition of ψ and by independence of X, ε1 and ε2,

∂k

∂uk
1
ψ(0, u2) = E

 ∂k
∂uk

1
eiu1Y1+iu2Y2 |u1=0


= E


(iY1)

keiu2Y2


=

k
m=0


k
m


E

(iX)m(iε1)k−meiu2Xeiu2ε2


=

k
m=0


k
m


E[(iε)k−m

]E[(iX)meiu2X ]E[eiu2ε]

=

k
m=0


k
m


E[(iε)k−m

]ϕε(u2)ϕ
(m)
X (u2). �

References

[1] Carol Alexander, Emese Lazar, Normal mixture GARCH(1,1), Applications to exchange rate modelling, J. Appl. Econometrics 21 (2006) 307–336.
[2] Stéphane Bonhomme, Jean-Marc Robin, Generalized nonparametric deconvolution with an application to earning dynamics, Rev. Econ. Stud. 77 (2)

(2010) 491–533.
[3] Raymond J. Carroll, Peter Hall, Optimal rates of convergence for deconvolving a density, J. Amer. Statist. Assoc. 83 (404) (1988) 1184–1186.
[4] Fabienne Comte, Adeline Samson, Julien Stirnemann, Deconvolution estimation of onset of pregnancy with replicate observations, Scand. J. Stat. 41

(2014) 325–345.
[5] Aurore Delaigle, Peter Hall, Alexander Meister, On deconvolution with repeated measurements, Ann. Statist. 36 (2) (2008) 665–685.
[6] Peter J. Diggle, Peter Hall, A Fourier approach to nonparametric deconvolution of a density estimate, J. Roy. Statist. Soc. Ser. B 55 (2) (1993) 523–531.
[7] Sam Efromovich, Density estimation for the case of supersmooth measurement errors, J. Amer. Statist. Assoc. 92 (1997) 526–535.
[8] Fabienne Comte, Celine Duval, Valentine Genon-Catalot, Johanna Kappus, Estimation of the jump size density in a mixed compound Poisson process.

Archive ouverte HAL: hal-01010409v1, 2014.
[9] Fabienne Comte, Yves Rozenholc, Marie-Luce Taupin, Penalized contrast estimator for adaptive density deconvolution, Canad. J. Statist. (34) (2006)

431–452.
[10] Jianqing Fan, On the optimal rates of convergence for nonparametric deconvolution problems, Ann. Statist. 19 (3) (1991) 1257–1272.
[11] Rustam Ibragimov, Shaturgun Sharakhmetov, The exact constant in the Rosenthal inequality for random variables with mean zero, Theory Probab.

Appl. 46 (1) (2002) 127–132.
[12] Jan Johannes, Deconvolution with unknown error distribution, Ann. Statist. 37 (5a) (2009) 2301–2323.
[13] Johanna Kappus, Gwenaëlle Mabon, Adaptive density estimation in deconvolution problems with unknown error distribution, Electron. J. Stat. 8 (2)

(2014) 2879–2904.
[14] Claire Lacour, Rates of convergence for nonparametric deconvolution, C. R. Math. Acad. Sci. Paris 324 (11) (2006) 877–883.
[15] Tong Li, Quang Vuong, Nonparametric estimation of the measurement error model using multiple indicators, J. Multivariate Anal. 65 (2) (1998)

139–165.
[16] Alexander Meister, On the effect of misspecifying the error density in a deconvolution problem, Canad. J. Statist. 32 (4) (2004) 439–449.
[17] Michael H. Neumann, On the effect of estimating the error density in nonparametric deconvolution, J. Nonparametr. Stat. 7 (4) (1997) 307–330.
[18] Michael H. Neumann, Deconvolution from panel data with unknown error distribution, J. Multivariate Anal. 98 (2006) 1955–1968.
[19] Marianna Pensky, Brani Vidakovic, Adaptive wavelet estimator for nonparametric density deconvolution, Ann. Statist. 27 (6) (1999) 2033–2053.
[20] Leonard A. Stefanski, Rates of convergence of some estimators in a class of deconvolution problems, Statist. Probab. Lett. 9 (1990) 229–235.
[21] Leonard A. Stefanski, Raymond J. Carroll, Deconvoluting kernel density estimators, Statistics 21 (1990) 129–184.

http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref1
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref2
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref3
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref4
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref5
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref6
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref7
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref9
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref10
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref11
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref12
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref13
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref14
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref15
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref16
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref17
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref18
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref19
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref20
http://refhub.elsevier.com/S0047-259X(15)00092-5/sbref21

	Density deconvolution from repeated measurements without symmetry assumption on the errors
	Introduction
	Statistical model an estimation procedure
	Risk bounds and rates of convergence
	Non-asymptotic risk bounds
	Rates of convergence

	Simulation studies
	Some data examples
	Comparison to the symmetric error case

	Proofs
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	Appendix
	References


