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Abstract

The main goal of this article is to characterize the class of bivariate Gompertz distributions recently derived by
Marshall & Olkin (2015) through functional equations. As a by-product, new properties of these distributions are
obtained and discussed.
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1. Introduction and preliminaries

This paper is motivated by a recent article of Marshall & Olkin [12] in which the authors derived
bivariate Gompertz distributions based on a bivariate version of a functional equation due to Kaminsky [5].
Specifically, let X be a non-negative continuous random variable whose survival function Sx satisfies, for
all x > 0 and t > 0, the aging equation

Sx(xz+1t)

S = (ox (@) 1)

for some function ¢ : [0,00) — [0, 00). Kaminsky [5] shows that X must then have a Gompertz distribution
defined, for all x > 0, by
Sx () = exp{—c(e" — 1)} (2)
with parameters a,c > 0; furthermore, ¢ is then given, for all £ > 0, by ¢(t) = e®*. When ¢(t) = 1 for all
t > 0, the functional equation (1) reduces to the well-known lack of memory property that characterizes the
exponential distribution.
If parameters a and c in (2) are replaced by —a and —c, respectively, the resulting expression is

Sx(z) = exp{c(e™® — 1)}, (3)

termed “negative Gompertz distribution” by Marshall & Olkin [10]. In this case, Sx(z) — e ¢ # 0 as
x — 00, i.e.,, Sx(x) in (3) is not a proper survival function.
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A slightly different characterization of the Gompertz distribution is given by Marshall & Olkin [10]. The
difference comes from the fact that Kaminsky [5] defines the survival function of a random variable X by
Pr(X > x) while Marshall & Olkin [10] adopt the usual one, i.e., Sx(x) = Pr(X > z). The following result
takes this minor adjustment into account.

Theorem 1. Suppose that X is an absolutely continuous non-negative random variable such that Sx(x) > 0
for all x > 0. Then Sx satisfies Equation (1) for some a > 0 and some function ¢ that does not depend on
x if and only if either

(i) Sx(z) =€ % and ¢(t) =1, or
(ii) Sx is a Gompertz distribution (2) and ¢(t) = e, or
(iii) Sx is given by Equation (3) and ¢(t) = e .

The exponential and Gompertz survival functions are thus solutions of Kaminsky’s functional equa-
tion (1). The negative Gompertz law (3) is also a solution, but the corresponding survival function is not
proper.

The proof of Theorem 1 (ii) is given in Marshall & Olkin [10]. However, it is not clear (at least to the
present author) how these authors arrived at Equation (18) from the first relation on p. 373. Luckily, a
brilliant demonstration of the same statement can be found in Marshall & Olkin [11]; see their Proposition
6.

Marshall & Olkin [12] investigated two bivariate versions of Kaminsky’s functional equation (1) obtaining
the corresponding bivariate Gompertz distributions. Below, we revisit the analysis of the stronger version
they consider, which pertains to the functional equation

S(x+z,y+1)

S = 1Sy, 0

where S(z,y) = Pr(X > z,Y > y) is the joint survival function of non-negative continuous random variables
X and Y and ¢ : [0,00)? — [0,00) is some function of z and t only. Under the assumption that S has
Gompertz marginals given by (2), Marshall & Olkin [12] show in their Proposition 3.1 that the solution of
the functional equation (4) is the bivariate Gompertz distribution given, for all z,y > 0, by

S(x,y) = exp{—c(e®* ™™ — 1)} ()

with parameters a,b > 0 and ¢ > 1. Note in passing that there exist many other versions of the bivariate
distribution with Gompertz marginals in the literature; see, e.g., Mardia [8] and Marshall & Olkin [12].

The purpose of this note is to characterize the class (5) of bivariate Gompertz distributions by relaxing the
requirement that the margins should be Gompertz. Section 2 also provides a second characterization of (5),
but based on a specific product representing the sum of components of the underlying hazard gradient vector.
We conclude with a discussion presenting other properties of bivariate Gompertz laws (5). In particular, it
happens that (5) is generated by the Gumbel-Barnett copula.

2. Characterizations of bivariate Gompertz law (5)

This section reports two characterizations of the bivariate Gompertz distribution (5) based on a two-
dimensional version of Kaminsky’s functional equation (4). A bivariate version of Theorem 1 is given
first. A conditional specification of the bivariate Gompertz law will result as a consequence. The second
characterization of (5) is related to the underlying hazard vector.

Let X be a non-negative absolutely continuous random variable with density fx and, for all x > 0,
let Rx(x) = —In{Sx(x)} be the corresponding hazard function (cumulative hazard rate). Denote by
rx(x) = fx(z)/Sx(x) the force of mortality (failure, hazard rate) function which uniquely determines the
distribution. The hazard rate rx can be equivalently defined by

d

rx(x) = —%1D{SX($>} = %Rx(w),
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where Rx (z) = [i rx (u)du.
It is assumed hereafter that Y is also a non-negative absolutely continuous random variable. A function
S :[0,00)% — [0,1] is a proper joint survival function defined by S(z,y) = Pr(X > z,Y > y) if and only if

lim S(z,y)=1, lim S(z,y)=0, (6)
z,y—0 z,Yy—00
and
782 S >0
920y (z,y) =

if S(z,y) is differentiable in a neighborhood of (x,y). Let R(x,y) = —In{S(z,y)} be a bivariate hazard
function. The above inequality can be rewritten as

2
o Svt) = S(. ) (1 (0 9)ra(e, ) — el ) 20, ")

where )

0 0
7“1(%2!) = %R(%y% Tz(%y) = @R(aj’y>’ and  ria(z,y) = mR($7y)~

2.1. First characterization

The first characterization calls on the notion of dependence function, which is different from the concept of
copula. Let Rx and Ry be the marginal hazard functions (cumulative failure rates) of X and Y respectively,
ie., for all z,y > 0, Sx(x) = exp{—Rx(x)} and Sy (y) = exp{—Ry (y)}. Then one can write

S(z,y) = exp{—Rx(z) — Ry (y) + D(z,y)},

where D(z,y) is the so-called dependence function of the random vector (X, Y); see Sibuya [15]. Equivalently,
D(xz,y) can be defined, for all z,y > 0, by

B S(z,y)
D@y)=1n {sxmsy@} ®

and may serve as a (local) measure of dependence between random variables X and Y. When X and Y are
non-negative random variables, D(x,y) satisfies the boundary conditions D(0,y) = D(x,0) = 0.

Marshall & Olkin [12] noted that the solutions of the functional equation (4) are not guaranteed to be
proper survival functions, so conditions (6) and (7) must be verified. For example, the bivariate analogue
of (3) given by

S(z,y) = exp{e(e™** ™" — 1)} (9)

is a solution of (4), but it is not a proper survival function; see Remark 1(d).
The following characterizing statement is an exact bivariate analogue of Theorem 1.

Theorem 2. The joint survival function S satisfies (4) for some function ¢(z,t) : [0,00)% — [0,00) that
does not depend on x > 0 and y > 0 if and only if either

(i) S(z,y) = e =% and ¢(z,t) = 1 for z,t > 0 and some a,b > 0, or
(i) S(x,y) is given by (5) and ¢(z,t) = e***+* for z,t > 0 and some a,b > 0,c > 1, or

(iii) S(z,y) is given by (9) and ¢(z,t) = e=**7b for 2, > 0 and some a,b,c > 0.

Observe that Sibuya’s dependence function D(z,y) specified by (8) exhibits interesting connections with
important cases of dependencies as follows. One has D(z,y) = 0 if and only if X and Y are independent,
corresponding to item (i). Also, D(z,y) < 0if and only if X and Y are negative quadrant dependent (NQD),
ie., S(z,y) < Sx(x)Sy(y) for all =,y > 0, which is the case in item (ii). Similarly, D(z,y) > 0 if and only
if X and Y are positive quadrant dependent (PQD), linked to item (iii) of Theorem 2.

3
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PROOF. Assume first that the functional equation (4) is satisfied. Substitute z =t =0 in (4) to get
S(zv) S(zy)
5(z,0) Sx(2)Sy (y)

for all z,y > 0. Taking logarithms on both sides of the last identity and using (8), one finds that, for all
2,y 20,

= {5(0,)}*, e, — {Sy(y)}P=0-1

D(z,y) = {6(2,0) =1} In{Sy (y)}.
Similarly, setting y = 2 = 0 in (4) allows one to deduce that, for all z,¢ > 0,

D(z,t) = {$(0,t) — 1} n{Sx (2)}.
Given that these two forms of Sibuya’s dependence function must be equal, one has, for all z,y > 0,

D(z,y) = {¢(x,0) — 1} In{Sy ()} = {¢(0,y) = 1} n{Sx (2)}. (10)
We will consider three basic cases, corresponding to items (i), (ii) and (iii) of Theorem 2.

Case 1. Assume that X and Y are independent, i.e., D(z,y) = 0 for all z,y > 0. It follows from (10) that,
for all z,y > 0,
$(2,0) —1=¢(0,y) =1=0

and hence ¢(x,y) =1 in (4). Therefore, one has, for all x,y, z,t > 0,

Sz +z,y+1t)

S(Z,t) :S(Z’,y)

This functional equation was studied by Marshall & Olkin [9] and the corresponding solution is given by
S(z,y) = e~ for all 2,5 > 0 and some a, b > 0.

Case 2. Let X and Y be NQD, by which we mean D(z,y) < 0 for all z,y > 0. Given that In{Sx (z)}
and In{Sy (y)} < 0 always hold, it follows from (10) that ¢(x,0) —1 > 0 and ¢(0,y) —1 > 0 for all z,y
In addition,

<0
> 0.
In{Sx ()} = —c{¢(2,0) =1} and  In{Sy(y)} = —c{¢(0,y) — 1}

should be satisfied for some constant ¢ > 0. This means that, for some ¢ > 0,

Sx (x) = exp[—c{¢(z,0) —1}] and Sy (y) = exp[—c{¢(0,y) - 1}].
Substituting these expressions into the right-hand side of S(z,y) = Sx (2){Sy (v)}?®®, one deduces that

S(z,y) = exp[—c{o(z,0)¢(0,y) — 1}]. (11)

Now set z = 0 in (4) to obtain S(z,y +t)/Sy (t) = {S(z,4)}*®" and apply (11) to conclude that, for all
y,t 20,

¢(0,y + 1) = ¢(0,)9(0,1).
The latter identity is a Cauchy functional equation with solution ¢(0,y) = €% for some b > 0; see, e.g.,
Proposition A.2 in Marshall & Olkin [10], p. 702. The trivial solution ¢(0,y) = 0 for all y > 0 can be
rejected because ¢(0,y) > 1 always holds. Therefore, Sy (y) = exp[—c{e®” — 1}] for some b, ¢ > 0.

By analogy, putting ¢ = 0 in (4) one gets ¢(x,0) = e** and hence Sx(x) = exp[—c{e® — 1}] for some
a,c > 0. Thus, substituting ¢(z,0) = e and ¢(0,y) = e* in (11) we get to the bivariate Gompertz
distribution (5). Applying condition (7) implies that ¢ > 1. Clearly, from (5) one can obtain Gompertz
marginal distributions Sx () = exp[—c{e®® — 1}] and Sy (y) = exp[—c{e® — 1}], but with parameter ¢ > 1.

Case 8. Assume that X and Y are PDQ, i.e., D(z,y) > 0. Because In{Sx(z)} <0 and In{Sy (y)} <0, it
follows from (10) that ¢(z,0) —1 < 0 and ¢(0,y) —1 <0 for all =,y > 0. Therefore,

In{Sx(z)} = c{¢(z,0) — 1} azd In{Sy (y)} = c{¢(0,y) — 1}
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should be fulfilled for some constant ¢ > 0. Similar steps as in Case 2 lead to the conclusion that S(z,y) is
given by (9). Hence, if (4) is satisfied, then statements (i), (ii) and (iii) are true.

To complete the proof, it remains to check that if (i), (ii) or (iii) are fulfilled, then (4) is valid as well.
This is easily done. O

Remark 1. One can extract the following consequences from the proof.
(a) A joint distribution with independent marginals satisfies (4) if and only if the marginals are exponen-

tially distributed; see item (i).

(b) The bivariate Gompertz distribution (5) is NQD (see Case 2), but not PQD as stated by Marshall &
Olkin [12] in their Proposition 3.2.

(¢) Univariate Gompertz distributions (2) with a parameter ¢ € (0,1) cannot serve as marginals of the
bivariate Gompertz distribution (5).

(d) The joint survival function S(z,y) given by (9) is not proper, given that it does not satisfy conditions
(6). In fact, limy y—.00 S(z,y) =€~ # 0 for ¢ > 0.

Observe that the function ¢(z,t) in (4) cannot be arbitrary, but should be separable, i.e., represented as
a product of two continuous functions of z and ¢ only. Setting = 0 in (4), one gets
S(z,y+1)
S(z,t)

Using (11), Sy (y) = exp[—c{¢(0,y) — 1}] and ¢(0,y + t) = ¢(0,y)¢(0,¢) in the latter relation imply that,
for all z,t > 0,

— {S(0,)}=0 = {8y (3)}*=.

¢(2,1) = ¢(2,0)9(0, 1).
Let a(z) = ¢(z,0) and G(t) = ¢(0,t). So, hereafter we will consider the function ¢(z,t) in (4) as a product

o(z,t) = a(2)B(t), with «(0)=p4(0)=1.

Remark 2. Theorem 2 suggests that the bivariate Gompertz distribution (5) can be derived via conditional
specifications. More precisely, substituting either z =¢ =0 or y = z =0 in (4), one gets

Pr(Y >y | X >z)={Pr(Y >9)}*® and Pr(X >z|Y >y)={Pr(X > z)}’¥),
respectively. These relations can be written as
Pr(Y >y | X > z) = exp{—Ry (y)a(z)} (12)
and

Pr(X >z |Y >y) = exp{—Rx(x)3(y)}, (13)

where Rx and Ry are the cumulative hazard functions of X and Y, respectively.

The model specified by (12) and (13) is a particular case of a bivariate model introduced by Navarro &
Sarabia [13], who defined proportional hazard rate conditional distributions. Applying Theorem 3.1 from
Navarro & Sarabia [13], one can conclude that the most general bivariate survival function satisfying (12)
and (13) is given, for all z,y > 0 and some ¢ > 1, by

S(x,y) = exp{—Rx(x) — Ry (y) — ¢ 'Rx(2)Ry (y)}.
Therefore, the bivariate Gompertz distribution (5) can be generated under additional assumption that
the marginal distributions are Gompertz distributed. Thus, we proved the following.
Corollary 1. If (12) — (13) are satisfied and if S has Gompertz marginals (2) with ¢ > 1, then S is given
by (5).

In fact, the latter statement is equivalent to Proposition 3.1 of Marshall & Olkin [12].
5
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2.2. A characterization via hazard gradient vector

The hazard gradient vector (r1(z,y),r2(x,y)) uniquely determines the joint distribution of (X,Y) via

S(z,y) :exp{—/ozrl(t,O)dt—Ayrg(:c,t)dt}; (14)

see, e.g., Johnson & Kotz [4]. Pinto & Kolev [14] characterized a class of distributions having a Sibuya-type
bivariate lack of memory property through the relation given, for all x,y > 0, by

7“1(-'177y) + 7"2(58, y) = A1($> + AQ(y)

for some continuous non-decreasing functions A;, As. In Theorem 3, the bivariate Gompertz distribution
(5) will be characterized by a specific product form representation of the sum 71 (z,y) + r2(x, y).

Theorem 3. The proper joint survival function S satisfies, for all x,y,z,t > 0, the functional equation

S+ z,y+1)

g = 1Sy (15)

for some differentiable functions a, 3 : [0,00) — [1,00) if and only if, for some E >0,

(2, y) + ra(w,y) = BAi(2)Aa(y), (16)

where the functions Ay and As necessarily take the form Ay(x) = a(x) = e and Ax(y) = B(y) = e for
some a,b > 0.

PROOF. Let the functional equation (15) be satisfied for some differentiable functions «, 8 : [0, 00) — [1, 00).
Relation (10) can be rewritten, for all z,y > 0, as

{a(z) —1{-InSy(y)} ={B(y) — 1{-InSx(z)}. (17)
Differentiating (17) with respect to y gives
{a(z) = L}y (y) = B'(y){—InSx ()},

where ry is the hazard rate of Y. From the proof of Theorem 2, it is known hat S(x,y) is a proper survival
function if (X,Y) is NQD. Substitute —InSx(z) = c¢f{a(z) — 1} with ¢ > 0 and a(z) > 1 in the last
expression to obtain

ry (y) = ¢f'(y)-

Putting x = ¢t = 0 in (15), taking logarithms and differentiating with respect to y gives ro(x,y) =
a(z)ry (y) and replacing ry (y) = ¢f’(y) in the last equation, one gets

ra(z,y) = ca()B'(y).
Similarly, r1(z,y) = co/(z)B(y), and therefore
ri(z,y) + ra(a,y) = e (2)B(y) + ()6 (y)}-
Hence, in order for (16) to be valid, the equation
E Ay (x)A2(y) = o{d(2)B(y) + ()" (y)}
should be satisfied for all functions and constants involved. This is possible only if

o (2)B(y) = adi(z)Az(y) agd a(@)F'(y) = bA1(z) Az (y)
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for some a,b > 0. The solution of this system of differential equations is
a(z) = Ai(z) = e and  B(y) = As(y) = €.

Finally, the constant E is determined by E = ¢(a + b).
Inversely, assume that (16) is fulfilled with A;(z) = a(x) = €2, As(y) = B(y) = e and E = c(a + b)
for some a,b,c > 0. Retracing the steps backwards, one deduces that

ri(z,y) = caexp{ax + by} and ro(x,y) = cbexp(az + by).

In view of (14) and the above expressions, one can reconstruct the joint survival function S, viz.

x y
S(z,y) = exp {— / cae dt — / cbea:”btdt} ,
0 0

which gives the bivariate Gompertz distribution (5) with ¢ > 1. However, the latter is characterized by the
functional equation (15), according to Theorem 2 (ii) and the proof is complete. O

Remark 3.

(a) If X and Y are independent and satisfy (15), it follows from Theorem 2 (i) that S(z,y) = exp(—az—by).
In this case ri(x,y) +rz2(x,y) = a+b, i.e., (16) is fulfilled with A, (z) = As(y) = c =1 for all z,y > 0.
Conversely, if the sum 71 (x,y) + ro(z,y) is a constant for all z,y > 0, then X and Y are necessarily
independent and exponentially distributed; see Kulkarni [6].

(b) If S is given by (9), then relation (16) is fulfilled with A;(z) = =%, Ay(z) = ™% and E = —c(a+b)
for some a, b, ¢ > 0, but the corresponding survival function is improper as noted in Remark 1(d).

The components of the hazard gradient vector r; and 7o are failure rates of the conditional distributions
Pr(X >z |Y >y) and Pr(Y >y | X > z), respectively; see, e.g., Johnson and Kotz [4]. As a consequence
of Corollary 1, the expressions 71 (z,y) = co/(2)B(y) and ra(z,y) = ca(z)'(y) obtained in the proof of
Theorem 3 will lead to (5) if the marginals are Gompertz.

3. Discussion

Along with few other distributions, the Gompertz distribution (2) satisfies the so-called law of uniform
seniority; see, e.g., Greville [3]. For independent and identically distributed random variables X and Y, this
law states that, for all z,y,z > 0,

PriX>z+2,Y>y+z|X>z,Y>y)=Pr(X >w+z2| X >w), (18)

where w does not depend upon z.

If X and Y are Gompertz random variables given by (2), w is a solution of the equation e¥ = e* 4 ¢,
Thus, two Gompertz variates of different ages (z and y) may be replaced by a single Gompertz variate of
age w = w(z,y) in the above conditional probabilities. Equation (18) can be rewritten, for all z,y, z > 0, as

Sx(x+2) Sy (y+ 2) _ Sx{w(r,y)+ 2}
Sx(x)  Sy(y) Sx{w(z,y)}
A simple reliability interpretation in terms of series systems based on the latter relation is given by Marshall &
Olkin [10]; see their Proposition A.1 on p. 370 as well.

By relaxing the independence assumption between the variables in (18), one is led to the following
bivariate version of the law of uniform seniority, valid for all z,y, z,t > 0,

S(x+z,y+1t) _ S{z4+w(z,y),t +w(z,y)}
S(z,y) g{w(x, y), w(z,y)}

(19)
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for some function w : [0,00)? — [0,00) of x and y only. Alternative extensions are also possible.

Relation (19) suggests the following reliability interpretation and related question. Suppose that two
items survive to respective ages x and y. Under what condition does the series system composed by (depen-
dent) aged components have the same life distribution of some age w = w(z,y), independent of z and ¢?

Let us further assume that S is defined by the bivariate Gompertz distribution (5). After some algebra,
one can conclude that the answer to the above question, and the solution of functional equation (19), is
given by

w(:my) = Y.

aro  Tato

Observe that this expression is not a characterizing property of the bivariate Gompertz law. However,
relation (19) may serve as a starting point for new reliability and actuarial applications of bivariate Gompertz
laws and for introducing a weaker version of the bivariate, setting the clock back to zero property (satisfied
by (5) and few other bivariate distributions); see Kulkarni & Patkure [7].

From Sklar’s representation theorem (see, e.g., [1]), one can see that the unique copula associated with
the bivariate Gompertz distribution (5) is the Gumbel-Barnett copula, defined for all uw,v € (0, 1), by

mmnm@}.

c

C(u,v) = uvexp {—

Of course, infinitely many other types of bivariate Gompertz distributions could be generated through cop-
ulas; see, e.g., [2] for an overview of copula models. For example, if the marginals are Gompertz distributed,
the Gumbel-Hougaard copula with parameter ¢ € (0, 1], defined for all u,v € (0,1), by

C(u,v) = exp{—(| lnu|"/* + [Inv|'/*)}

will generate the bivariate Gompertz distribution considered by [8].

The characterizations presented herein are based on the strong version of bivariate Kaminsky’s functional
equation (4). As a consequence, it was established that the function ¢(z,t) in (4) cannot be arbitrary, but
should be presented as a product a(z)5(¢) of two differentiable functions of z and ¢ only.

Finally, it would be valuable to investigate further the weak version of bivariate Kaminsky’s functional
equation specified, for all x,y,t > 0, by

Sx+t,y+t)
2w rHI Ty g p(t)

S = 1Sy,
where ¥ : [0,00) — [0,00) is some function of ¢ only. The detailed analysis presented by Marshall & Olkin
[12] demonstrates that corresponding solutions offer more interesting possibilities for applications.
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