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a b s t r a c t

Liouville copulas introduced in McNeil and Nešlehová (2010) are asymmetric generaliza-
tions of the ubiquitous Archimedean copula class. They are the dependence structures of
scalemixtures of Dirichlet distributions, also called Liouville distributions. In this paper, the
limiting extreme-value attractors of Liouville copulas and of their survival counterparts
are derived. The limiting max-stable models, termed here the scaled extremal Dirichlet,
are new and encompass several existing classes of multivariate max-stable distributions,
including the logistic, negative logistic and extremal Dirichlet. As shown herein, the stable
tail dependence function and angular density of the scaled extremal Dirichlet model have
a tractable form, which in turn leads to a simple de Haan representation. The latter is used
to design efficient algorithms for unconditional simulation based on the work of Dombry
et al. (2016) and to derive tractable formulas formaximum-likelihood inference. The scaled
extremal Dirichlet model is illustrated on river flow data of the river Isar in southern
Germany.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Copula models play an important role in the analysis of multivariate data and find applications in many areas, including
biostatistics, environmental sciences, finance, insurance, and risk management. The popularity of copulas is rooted in the
decomposition of Sklar [39], which is at the heart of flexible statistical models and variousmeasures, concepts and orderings
of dependence between random variables. According to Sklar’s result, the distribution function of any random vector
X = (X1, . . . , Xd) with continuous univariate margins F1, . . . , Fd satisfies, for any x1, . . . , xd ∈ R,

Pr(X1 ≤ x1, . . ., Xd ≤ xd) = C{F1(x1), . . ., Fd(xd)},

for a unique copula C , i.e., a distribution function on [0, 1]d whose univariate margins are standard uniform. Alternatively,
Sklar’s decomposition also holds for survival functions, i.e., for any x1, . . . , xd ∈ R,

Pr(X1 > x1, . . ., Xd > xd) = Ĉ{F̄1(x1), . . ., F̄d(xd)},

where F̄1, . . . , F̄d are the marginal survival functions and Ĉ is the survival copula of X , related to the copula of X as follows.
If U is a random vector distributed as the copula C of X , Ĉ is the distribution function of 1− U .

In riskmanagement applications, the extremal behavior of copulas is of particular interest, as it describes the dependence
between extreme events and consequently the value of riskmeasures at high levels. Our purpose is to study the extremal be-
havior of Liouville copulas. The latter are defined as the survival copulas of Liouville distributions [14,17,38], i.e., distributions
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of random vectors of the form RDα, where R is a strictly positive random variable independent of the Dirichlet random vector
Dα = (D1, . . . ,Dd) with parameter vector α = (α1, . . . , αd). Liouville copulas were proposed by McNeil and Nešlehová [31]
in order to extend the widely used class of Archimedean copulas and create dependence structures that are not necessarily
exchangeable. The latter property means that for any u1, . . . , ud ∈ [0, 1] and any permutation π of the integers 1, . . . , d,
C(u1, . . . , ud) = C(uπ (1), . . . , uπ (d)). When α = 1d ≡ (1, . . . , 1), Dα = D1d is uniformly distributed on the unit simplex

Sd = {x ∈ [0, 1]d : x1 + · · · + xd = 1}. (1)

In this special case, one recovers Archimedean copulas. Indeed, according to [30], the latter are the survival copulas of random
vectors RD1d , where R is a strictly positive random variable independent of D1d . When α ̸= 1d, the survival copula of RDα is
not Archimedean anymore. It is also no longer exchangeable, unless α1 = · · · = αd.

In this article, we determine the extremal attractor of a Liouville copula and of its survival counterpart. As a by-product,
we also obtain the lower and upper tail dependence coefficients of Liouville copulas that quantify the strength of dependence
at extreme levels [25]. These results are complementary to [21], where the upper tail order functions of a Liouville copula
and its density are derived when α1 = · · · = αd, and to [20], where the extremal attractor of RDα is derived when R is light-
tailed. The extremal attractors of Liouville copulas are interesting in their own right. Because non-exchangeability of Liouville
copulas carries over to their extremal limits, the latter can be used to model the dependence between extreme risks in the
presence of causality relationships [15]. The limiting extreme-valuemodels can be embedded in a single family, termed here
the scaled extremal Dirichlet, whose members are new, non-exchangeable generalizations of the logistic, negative logistic,
and Coles–Tawn extremal Dirichletmodels given in [7].We examine the scaled extremal Dirichletmodel in detail and derive
its de Haan spectral representation. The latter is simple and leads to feasible stochastic simulation algorithms and tractable
formulas for likelihood-based inference.

The article is organized as follows. The extremal behavior of the univariate margins of Liouville distributions is first
studied in Section 2. The extremal attractors of Liouville copulas and their survival counterparts are then derived in Section 3.
When α is integer-valued, the results of [27,31] lead to closed-form expressions for the limiting stable tail dependence
functions, as shown in Section 4. Section 5 is devoted to a detailed study of the scaled extremal Dirichlet model. In Section 6,
the de Haan representation is derived and used for stochastic simulation. Estimation is investigated in Section 7, where
expressions for the censored likelihood and the gradient score are also given. An illustrative data analysis of river flow of the
river Isar is presented in Section 8, and the paper is concluded by a discussion in Section 9. Lengthy proofs are relegated to
the Appendices.

In what follows, vectors in Rd are denoted by boldface letters, x = (x1, . . . , xd); 0d and 1d refer to the vectors (0, . . . 0)
and (1, . . . , 1) in Rd, respectively. Binary operations such as x+ y or a · x, xa are understood as component-wise operations.
∥ · ∥ stands for the ℓ1-norm, viz. ∥x∥ = |x1| + · · · + |xd|, y for statistical independence. For any x, y ∈ R, let x∧ y = min(x, y)
and x ∨ y = max(x, y). The Dirac delta function Iij is 1 if i = j and zero otherwise. Finally, Rd

+
is the positive orthant [0,∞)d

and for any x ∈ R, x+ denotes the positive part of x, max(0, x).

2. Marginal extremal behavior

A Liouville random vector X = RDα is a scale mixture of a Dirichlet random vector Dα = (D1, . . . ,Dd) with parameters
α = (α1, . . . , αd) > 0d. In what follows, R is referred to as the radial variable of X and ᾱ denotes the sum of the Dirichlet
parameters, viz. ᾱ = ∥α∥ = α1+· · ·+αd. Recall that Dα has the same distribution as Z/∥Z∥, where Z1 ∼ G(α1, 1), . . . , Zd ∼
G(αd, 1) are independent Gamma variables with scaling parameter 1. The margins of X are thus scale mixtures of Beta
distributions, i.e., for each i ∈ {1, . . . , d}, Xi = RDi with Di ∼ B(αi, ᾱ − αi).

As a first step towards the extremal behavior of Liouville copulas, this section is devoted to the extreme-value properties
of the univariate margins of the vectors X and 1/X , where X is a Liouville random vector with parameters α and a strictly
positive radial part R, i.e., such that Pr(R ≤ 0) = 0. To this end, recall that a univariate random variable X with distribution
function F is in the maximum domain of attraction of a non-degenerate distribution F0, denoted F ∈M(F0) or X ∈M(F0), if
and only if there exist sequences of reals (an) and (bn) with an > 0, such that, for any x ∈ R,

lim
n→∞

F n(anx+ bn) = F0(x).

By the Fisher–Tippett Theorem, F0 must be, up to location and scale, either the Fréchet (Φρ), the Gumbel (Λ) or the Weibull
distribution (Ψρ) with parameter ρ > 0. Further recall that a measurable function f : R+ → R+ is called regularly varying
with index ρ ∈ (−∞,∞), denoted f ∈ Rρ , if for any x > 0, f (tx)/f (t)→ xρ as t →∞. If ρ = 0, f is called slowly varying.
For more details and conditions for F ∈M(F0), see, e.g., [12,35].

Because the univariate margins of X are scale mixtures of Beta distributions, their extremal behavior, detailed in
Proposition 1, follows directly from Theorems 4.1, 4.4. and 4.5 in [19].

Proposition 1. Let X = RDα be a Liouville random vector with parametersα = (α1, . . . , αd) and a strictly positive radial variable
R, i.e., Pr(R ≤ 0) = 0. Then the following statements hold for any ρ > 0:
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(a) R ∈M(Φρ) if and only if Xi ∈M(Φρ) for all i ∈ {1, . . . , d}.
(b) R ∈M(Λ) if and only if Xi ∈M(Λ) for all i ∈ {1, . . . , d}.
(c) R ∈M(Ψρ) if and only if Xi ∈M(Ψρ+ᾱ−αi ) for all i ∈ {1, . . . , d}.

Proposition 1 implies that the univariate margins of X are all in the domain of attraction of the same distribution if the
latter is Gumbel or Fréchet. This is not the case when R is in the Weibull domain of attraction. Note also that there are cases
not covered by Proposition 1, in which the univariate margins Xi are in the Weibull domain while R is not in the domain of
attraction of any extreme-value distribution. For example, when d = 2, α = (1, 1) and R = 1 almost surely, the margins of
X are standard uniform and hence in themaximum domain of attraction ofΨ1; see Example 3.3.15 in [12]. At the same time,
R is clearly neither in the Weibull, nor the Gumbel, nor the Fréchet domain of attraction.

In subsequent sections, we shall also need the extremal behavior of the univariatemargins of 1/X . The proposition below
shows that the latter is determined by the properties of 1/R. In contrast to Proposition 1, however, the univariate margins
of 1/X are always in the Fréchet domain. The proof may be found in Appendix A.

Proposition 2. Let X = RDα be a Liouville random vector with parametersα = (α1, . . . , αd) and a strictly positive radial variable
R with Pr(R ≤ 0) = 0. The following statements hold for any i ∈ {1, . . . , d}.

(a) If 1/R ∈M(Φρ) for ρ ∈ (0, αi], then 1/Xi ∈M(Φρ).
(b) If E(1/Rαi+ε) <∞ for some ε > 0, then 1/Xi ∈M(Φαi ).

3. Extremal behavior of Liouville copulas

In this section,wewill identify the extremal behavior of a Liouville randomvectorX = RDα and of the randomvector 1/X ,
assuming that Pr(R ≤ 0) = 0. As a by-product, we will obtain the extremal attractors of Liouville copulas and their survival
counterparts. To this end, recall that a random vector Y with joint distribution function H is in the maximum domain of
attraction of a non-degenerate distribution function H0, in notation H ∈ M(H0) or Y ∈ M(H0), if and only if there exist
sequences of vectors (an) in (0,∞)d and (bn) in Rd such that for all x ∈ Rd,

lim
n→∞

Hn(anx+ bn) = H0(x).

When the univariate margins F1, . . . , Fd ofH are continuous,H ∈M(H0) holds if and only if Fi ∈M(F0i) for all i ∈ {1, . . . , d},
where F01, . . . , F0d are the univariate margins of H0, and further if the unique copula C of H is in the domain of attraction of
the unique copula C0 of H0, denoted C ∈M(C0), i.e., if and only if for all u ∈ [0, 1]d,

lim
n→∞

Cn(u1/n) = C0(u).

In particular, the univariate margins of the max-stable distribution H0 must each follow a generalized extreme-value
distribution, and C0 must be an extreme-value copula. This means that for all u ∈ [0, 1]d,

C0(u) = exp[−ℓ{− ln(u1), . . .,− ln(ud)}], (2)

where ℓ : Rd
+
→ [0,∞) is a stable tail dependence function, linked to the so-called exponent measure ν viz. ν{[0d, x)c} =

ℓ(1/x), see, e.g., [35]. The latter can be characterized through an angular (or spectral) probability measure σd on Sd given in
Eq. (1) which satisfies

∫
Sd
wi dσd(w) = 1/d for all i ∈ {1, . . . , d}. For all x ∈ Rd

+
, one has

ℓ(x) = d
∫
Sd

max(w1x1, . . ., wdxd)dσd(w). (3)

Because ℓ is homogeneous of order 1, i.e., for any c > 0 and x ∈ Rd
+
, ℓ(cx) = cℓ(x), C0 can also be expressed via the Pickands

dependence function A : Sd → [0,∞) related to ℓ through ℓ(x) = ∥x∥A(x/∥x∥). Then at any u ∈ [0, 1]d,

C0(u) = exp
[
ln(u1 · · · ud)A

{
ln(u1)

ln(u1 · · · ud)
, . . .,

ln(ud)
ln(u1 · · · ud)

}]
.

When d = 2, it is more common to define the Pickands dependence function A : [0, 1] → [0, 1] through ℓ(x1, x2) =
(x1 + x2)A{x2/(x1 + x2)} so that, for all u1, u2 ∈ [0, 1],

C0(u1, u2) = exp
[
ln(u1u2)A

{
ln(u2)

ln(u1u2)

}]
. (4)

Now consider a Liouville vector X = RDα with a strictly positive radial variable. Theorem 1 specifies when X ∈ M(H0)
and identifiesH0. While part (a) follows from regular variation of X , parts (b) and (c) are special cases of the results discussed
in Section 2.2 in [20]. Details of the proof may be found in Appendix B.
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Theorem 1. Let X = RDα, Dα = (D1, . . . ,Dd), α > 0d, and Pr(R ≤ 0) = 0. Then the following statements hold.
(a) If R ∈ M(Φρ) for some ρ > 0, then X ∈ M(H0), where H0 is a multivariate extreme-value distribution with univariate

margins F01 = · · · = F0d = Φρ and a stable tail dependence function given, for all x ∈ Rd
+
, by

ℓ(x) =
Γ (ᾱ + ρ)
Γ (ᾱ)

E
[
max

{
Γ (α1)x1D

ρ

1

Γ (α1 + ρ)
, . . .,

Γ (αd)xdD
ρ

d

Γ (αd + ρ)

}]
.

(b) If R ∈M(Λ), then X ∈M(H0), where for all x ∈ Rd, H0(x) =
∏d

i=1Λ(xi).
(c) If R ∈M(Ψρ) for some ρ > 0, then X ∈M(H0), where for all x ∈ Rd, H0(x) =

∏d
i=1Ψρ+ᾱ−αi (xi).

The next result, also proved in Appendix B, specifies the conditions under which 1/X ∈M(H0) and gives the form of the
limiting extreme-value distribution H0.

Theorem 2. Let X = RDα, Dα = (D1, . . . ,Dd), α > 0d, and assume that Pr(R ≤ 0) = 0. Let αM = max(α1, . . ., αd). The
following cases can be distinguished:
(a) If 1/R ∈M(Φρ) for ρ ∈ (0, αM], set I1 = {i : αi ≤ ρ}, I2 = {i : αi > ρ} and ᾱ2 =

∑
i∈I2
αi. Then 1/X ∈M(H0), where

the univariate margins of H0 are F0i = Φρ∧αi , for each i ∈ {1, . . . , d}, and the stable tail dependence function is given, for all
x ∈ Rd

+
, by

ℓ(x) =
∑
i∈I1

xi +
Γ (ᾱ − ρ)
Γ (ᾱ)

E

[
max
i∈I2

{
Γ (αi)xiD

−ρ

i

Γ (αi − ρ)

}]
=

∑
i∈I1

xi +
Γ (ᾱ2 − ρ)
Γ (ᾱ2)

E

[
max
i∈I2

{
Γ (αi)xiD̃

−ρ

i

Γ (αi − ρ)

}]
,

where (̃Di, i ∈ I2) is a Dirichlet random vector with parameters (αi, i ∈ I2) if |I2| > 1 and D̃i ≡ 1 if I2 = {i}.
(b) If E(1/Rβ ) <∞ for β > αM, then 1/X ∈M(H0), where for all x ∈ Rd, H0(x) =

∏d
i=1Φαi (xi).

Remark 1. Note that in the case of asymptotic independence between the components of X (Theorem 1 (b–c)) or 1/X
(Theorem 2 (b)), dependence between component-wise maxima of finitely many vectors may still be present. Refinements
of asymptotic independence are then needed, but these considerations surpass the scope of this paper. One option would be
to consider triangular arrays as in [23]; extremes of arrays of Liouville vectors can be obtained as a special case of extremes
of arrays of weighted Dirichlet distributions developed in [18]. Another avenueworth exploringmight be the limits of scaled
sample clouds, as in [2] and [32].

The stable tail dependence functions appearing in Theorems 1 and 2 will be investigated in greater detail in the
subsequent sections. Before proceeding, we introduce the following terminology, emphasizing that they can in fact be
embedded in one and the same parametric class.

Definition 1. For any α > 0 and ρ ∈ (−α,∞), let c(α, ρ) = Γ (α + ρ)/Γ (α) denote the rising factorial. For d ≥ 2
and α1, . . . , αd > 0 and let (D1, . . . ,Dd) denote a Dirichlet random vector with parameters α = (α1, . . . , αd) and set
ᾱ = α1 + · · · + αd. For any −min(α1, . . ., αd) < ρ < ∞, the scaled extremal Dirichlet stable tail dependence function
with parameters ρ and α is given, for all x ∈ Rd

+
, by

ℓD(x; ρ,α) = c(ᾱ, ρ)E
[
max

{
x1D

ρ

1

c(α1, ρ)
, . . .,

xdD
ρ

d

c(αd, ρ)

}]
, (5)

when ρ ̸= 0 and by max(x1, . . ., xd) when ρ = 0. For any ρ > 0, the positive scaled extremal Dirichlet stable tail
dependence function ℓpD with parameters ρ and α is given, for all x ∈ Rd

+
, by ℓpD(x; ρ,α) = ℓD(x; ρ,α), while for any

0 < ρ < min(α1, . . ., αd), the negative scaled extremal Dirichlet stable tail dependence function ℓnD is given, for all x ∈ Rd
+
,

by ℓnD(x; ρ,α) = ℓD(x;−ρ,α).

Remark 2. As will be seen in Section 5, distinguishing between the positive and negative scaled extremal Dirichlet models
makes the discussion of their properties slightly easier because the sign of ρ impacts the shape of the corresponding
angular measure. When ρ → 0, ℓD(x; ρ,α) becomes max(x1, . . ., xd), the stable tail dependence function corresponding to
comonotonicity, while when ρ →∞, ℓD(x; ρ,α) becomes x1 + · · · + xd, the stable tail dependence function corresponding
to independence. Note also that ρ ∈ (−∞,∞) can be allowed, with the convention that all variables whose indices i are
such that ρ ≤ −αi are independent, i.e., ℓnD is then of the form given in Theorem 2 (a).

From Theorems 1 and 2, we can now easily deduce the extremal behavior of Liouville copulas and their survival
counterparts. To this end, recall that a Liouville copula C is defined as the survival copula of a Liouville random vector
X = RDα with Pr(R ≤ 0) = 0. The following corollary follows directly from Theorem 2 upon noting that C is also the
unique copula of 1/X .

Corollary 1. Let C be the unique survival copula of a Liouville random vector X = RDα with Pr(R ≤ 0) = 0. Let αM =

max(α1, . . ., αd) and set I1 = {i : αi ≤ ρ}, I2 = {i : αi > ρ}. Then the following statements hold.
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(a) If 1/R ∈M(Φρ) for ρ ∈ (0, αM] and |I2| > 1, then C ∈M(C0), where C0 is an extreme-value copula of the form (2)whose
stable tail dependence function is given, for all x ∈ Rd

+
, by

ℓ(x) =
∑
i∈I1

xi + ℓnD(x{2}; ρ,α{2}),

where and x{2} = (xi, i ∈ I2), α{2} = (αi, i ∈ I2). If 1/R ∈M(Φρ) for ρ ∈ (0, αM] and |I2| ≤ 1, then C ∈M(Π ), whereΠ is
the independence copula given, for all u ∈ [0, 1]d, byΠ (u) = u1 · · · ud.

(b) If E(1/Rβ ) <∞ for β > αM, then C ∈M(Π ).

Remark 3. Observe that Corollary 1 (a) in particular implies that when d = 2, α1 < α2 and 1/R ∈M(Φρ) for α1 ≤ ρ < α2,
C ∈ M(Π ). Also note that when α1 = · · · = αd ≡ α and 1/R ∈ M(Φρ) for ρ ∈ (0, α), the result in Corollary 1 (a) can be
derived from formula (5) in Proposition 3 in [21] by relating the tail order function to the stable tail dependence function
when the tail order equals 1.

The survival counterpart Ĉ of a Liouville copula C is given as the distribution function of 1 − U , where U is a random
vector distributed as C . As C is the unique survival copula of X , Ĉ is the unique copula of X . The following result thus follows
directly from Theorem 1.

Corollary 2. Let Ĉ be the unique copula of a Liouville random vector X = RDα with Pr(R ≤ 0) = 0. Then the following statements
hold.

(a) If R ∈ M(Φρ) for ρ > 0, then Ĉ ∈ M(C0), where C0 is an extreme-value copula of the form (2) with the positive scaled
extremal Dirichlet stable tail dependence function given, for all x ∈ Rd

+
, by ℓpD(x; ρ,α).

(b) If R ∈M(Λ) or R ∈M(Ψρ) with ρ > 0, then Ĉ ∈M(Π ), whereΠ is the independence copula.

4. The case of integer-valued Dirichlet parameters

When α is integer-valued, Liouville distributions are particularly tractable because their survival function is explicit. In
this section, we will use this fact to derive closed-form expressions for the positive and negative scaled extremal Dirichlet
stable tail dependence functions. To this end, first recall the notion of theWilliamson transform. The latter is related toWeyl’s
fractional integral transform and was used to characterize d-monotone functions in [43]; it was adapted to non-negative
random variables in [30].

Definition 2. Let X be a non-negative random variable with distribution function F , and let k ≥ 1 be an arbitrary integer.
The Williamson k-transform of X is given, for all x > 0, by

WkF (x) =
∫
∞

x

(
1−

x
r

)k−1
dF (r) = E

(
1−

x
X

)k−1
+

.

For any k ≥ 1, the distribution of a positive random variable X is uniquely determined by itsWilliamson k-transform, the
formula for the inverse transform being explicit [30,43]. If ψ = WkF , then, for all x > 0,

F (x) = W −1k ψ(x) = 1−
k−2∑
j=0

(−1)jxjψ (j)(x)
j!

−
(−1)k−1xk−1ψ (k−1)

+ (x)
(k− 1)!

,

where for all j ∈ {1, . . . , k − 2}, ψ (j) is the jth derivative of ψ and ψ (k−1)
+ is the right-hand derivative of ψ (k−2). These

derivatives exist because aWilliamson k-transformψ is necessarily k-monotone [43]. This means thatψ is differentiable up
to order k − 2 on (0,∞) with derivatives satisfying (−1)jψ (j)

≥ 0 for all j ∈ {0, . . . , k − 2} and such that (−1)k−2ψ (k−2) is
non-increasing and convex on (0,∞). Moreover, ψ(x)→ 0 as x→∞ and if F (0) = 0, ψ(x)→ 1 and x→ 0.

Now let C be a Liouville copula corresponding to a Liouville random vector X = RDα with integer-valued parameters
α = (α1, . . . , αd) and a strictly positive radial part R, i.e., Pr(R ≤ 0) = 0. Let ψ be the Williamson ᾱ-transform of R and set
Iα = {0, . . . , α1 − 1} × · · · × {0, . . . , αd − 1}. By Theorem 2 in [31], one then has, for all x ∈ Rd

+
,

Pr(X > x) = H̄(x) =
∑

(j1,...,jd)∈Iα

(−1)j1+···+jd
ψ (j1+···+jd)(x1 + · · · + xd)

j1! · · · jd!

d∏
i=1

xjii . (6)

In particular, the margins of X have survival functions satisfying, for all x > 0 and i ∈ {1, . . . , d},

Pr(Xi > x) = H̄i(x) =
αi−1∑
j=0

(−1)jxjψ (j)(x)
j!

= 1− W −1αi
ψ(x). (7)
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By Sklar’s Theorem for survival functions, the Liouville copula C is given, for all u ∈ [0, 1]d, by

C(u) = H̄{H̄−11 (u1), . . . , H̄−1d (ud)}.

Although this formula is not explicit, it is clear from Eqs. (6) and (7) that C depends on the distribution of X only through
the Williamson ᾱ-transform ψ of R and the Dirichlet parameters α. For this reason, we shall denote the Liouville copula in
this section by Cψ,α and refer to ψ as its generator, reiterating that ψ must be an ᾱ-monotone function satisfying ψ(1) = 0
and ψ(x) → 0 as x → ∞. When α = 1d, Cψ,1 is the Archimedean copula with generator ψ , given, for all u ∈ [0, 1]d by
Cψ,1(u) = ψ{ψ−1(u1)+ · · · +ψ−1(ud)}. Because the relationship betweenψ and R is one-to-one ([30] Proposition 3.1), we
will refer to R as the radial distribution corresponding to ψ .

Now suppose that 1/R ∈M(Φρ) with ρ ∈ (0, 1). By Theorem 2 in [27], this condition is equivalent to 1−ψ(1/·) ∈ R−ρ .
It further follows from Corollary 1 (a) that Cψ,α ∈ M(C0) where C0 is an extreme-value copula with the negative scaled
extremal Dirichlet stable tail dependence function ℓnD(·; ρ,α). This is because ρ < 1 ≤ min(α1, . . ., αd) so that I1 = ∅ in
Corollary 1 (a). Eq. (6) and the results of [27] can now be used to derive the following explicit expression for ℓnD, as detailed
in Appendix C.

Proposition 3. Let Cψ,α be a Liouville copula with integer-valued parameters α = (α1, . . . , αd) and generator ψ . If 1−ψ(1/·) ∈
R−ρ for some ρ ∈ (0, 1), then Cψ,α ∈M(C0), where C0 is an extreme-value copula with scaled negative extremal Dirichlet stable
tail dependence function ℓnD as given in Definition 1. Furthermore, for all x ∈ Rd

+
,

ℓnD(x; ρ,α) = Γ (1− ρ)

⎡⎣ d∑
j=1

{
xj

c(αj,−ρ)

}1/ρ
⎤⎦ ρ

×

⎛⎜⎜⎜⎜⎜⎝1− ρ
∑

(j1, . . . , jd) ∈ Iα
(j1, . . . , jd) ̸= (0, . . . , 0)

Γ (j1 + · · · + jd − ρ)
Γ (1− ρ)

d∏
i=1

1
Γ (ji + 1)

⎡⎢⎣
{

xi
c(αi,−ρ)

}1/ρ
∑d

k=1

{
xk

c(αk,−ρ)

}1/ρ
⎤⎥⎦

ji

⎞⎟⎟⎟⎟⎟⎠ .

When α = 1d, the index set Iα reduces to the singleton {0}, and the expression for ℓnD given in Proposition 3 simplifies,
for all x ∈ Rd

+
, to the stable tail dependence function of the Gumbel–Hougaard copula, viz.

ℓnD(x; ρ, 1d) =
(
x1/ρ1 + · · · + x1/ρd

)ρ
.

The Liouville copula Cψ,1d , which is the Archimedean copula with generator ψ , is thus indeed in the domain of attraction of
the Gumbel–Hougaard copula with parameter 1/ρ, as shown, e.g., in [6,27].

Remark 4. When α = 1d and 1− ψ(1/·) ∈ R−1, it is shown in Proposition 2 of [27] that Cψ,1 is in the domain of attraction
of the independence copula. However, when α is integer-valued but such that max(α1, . . ., αd) > 1, regular variation of
1 − ψ(1/·) does not suffice to characterize those cases in Corollary 1 that are not covered by Proposition 3. This is because
by Theorem 2 of [27], 1/R ∈M(Φρ) for ρ ≥ 1, 1/R ∈M(Λ) and 1/R ∈M(Ψρ) for ρ > 0 all imply that 1 − ψ(1/·) ∈ R−1.
At the same time, by Corollary 1, Cψ,α ∈M(Π ) clearly does not hold in all these cases.

Next, let Ĉψ,α be the survival copula of a Liouville copula Cψ,α, i.e., the distribution function of 1 − U , where U is a
random vector with distribution function Cψ,α. The results of [27] can again be used to restate the conditions under which
Ĉψ,α ∈M(C0) in terms of ψ and to give an explicit expression for the stable tail dependence function of C0.

Proposition 4. Let Ĉψ,α be the survival copula of a Liouville copula Cψ,α with integer-valued parameters α and a generator ψ .
Then the following statements hold.
(a) If ψ ∈ R−ρ for some ρ > 0, then Ĉψ,α ∈ M(C0), where C0 has a positive scaled extremal Dirichlet stable tail dependence

function ℓpD as given in Definition 1. The latter can be expressed, for all x ∈ Rd
+
, as

ℓpD(x; ρ,α) =
Γ (1+ ρ)
Γ (ρ)

d∑
k=1

∑
1≤i1<···<ik≤d

(−1)k+1

⎡⎢⎣
⎧⎨⎩

k∑
j=1

xij
c(αij , ρ)

⎫⎬⎭
−1/ρ

⎤⎥⎦
−ρ

×

∑
(j1,...,jk)∈I(αi1 ,...,αik )

Γ (j1 + · · · + jk + ρ)
j1! · · · jk!

k∏
m=1

⎡⎢⎢⎢⎣
{

xim
c(αim , ρ)

}−1/ρ
∑k

j=1

{
xij

c(αij , ρ)

}−1/ρ
⎤⎥⎥⎥⎦

jm

.

(b) If ψ ∈M(Λ) or ψ ∈M(Ψρ) for some ρ > 0, C̄ψ,α ∈M(Π ), whereΠ is the independence copula.
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When α = 1d, the expression for ℓpD in part (a) of Proposition 4 simplifies, for all x ∈ Rd
+
, to

ℓpD(x; ρ, 1d) =
∑

A ⊆ {1, . . . , d}, A ̸= ∅

(−1)|A|+1
(∑

i∈A

x−1/ρi

)−ρ
,

which is the stable tail dependence function of the Galambos copula [24]. When ψ ∈ R−ρ for some ρ > 0, Ĉψ,1d is thus
indeed in the domain of attraction of the Galambos copula, as shown, e.g., in [27].

5. Properties of the scaled extremal Dirichlet models

In this section, the scaled extremal Dirichlet model with stable tail dependence function given in Definition 1 is
investigated in greater detail. In Section 5.1 we derive formulas for the so-called angular density and relate the positive and
negative scaled extremal Dirichlet models to classical classes of stable tail dependence functions. In Section 5.2 we focus
on the bivariate case and derive explicit expressions for the stable tail dependence functions and, as a by-product, obtain
formulas for the tail dependence coefficients of Liouville copulas.

5.1. Angular density

The first property worth noting is that the positive and negative scaled extremal Dirichlet models are closed under
marginalization. Indeed, letting xi → 0 for some arbitrary 1 ≤ i ≤ d, we can easily derive from Lemma 2 that for any
α > 0d, ρ > 0, and any x ∈ Rd

+
, ℓpD(x; ρ,α) → ℓpD(x−i; ρ,α−i) as xi → 0, where for any y ∈ Rd, y−i denotes the

vector (y1, . . . , yi−1, yi+1, . . . , yd). Similarly, for any 1 ≤ i ≤ d, α > 0d, 0 < ρ < min(α1, . . ., αd), and any x ∈ Rd
+
,

ℓnD(x; ρ,α)→ ℓnD(x−i; ρ,α−i) as xi → 0.
Since none of the scaled extremal Dirichletmodels placesmass on the vertices or facets of the simplex Sd when ρ ̸= 0, the

density of the angularmeasure σd completely characterizes the stable tail dependence function and hence also the associated
extreme-value copula. This so-called angular density of the scaled extremal Dirichlet models is given below and derived in
Appendix D.

Proposition 5. Let d ≥ 2 and set α1, . . . , αd > 0 and ᾱ = α1 + · · · + αd. For any ρ > −min(α1, . . ., αd), let also
c(α, ρ) = (c(α1, ρ), . . . , c(αd, ρ)), where c(α, ρ) is as in Definition 1. Then for any −min(α1, . . ., αd) < ρ < ∞, ρ ̸= 0,
the angular density of the scaled extremal Dirichlet model with parameters ρ > 0 and α is given, for allw ∈ Sd, by

hD(w; ρ,α) =
Γ (ᾱ + ρ)

d|ρ|d−1
∏d

i=1 Γ (αi)

⎡⎣ d∑
j=1

{
c(αj, ρ)wj

}1/ρ⎤⎦−ρ−ᾱ d∏
i=1

{c(αi, ρ)}αi/ρw
αi/ρ−1
i .

The angular density of the positive scaled extremal Dirichlet model with parameters ρ > 0 and α is given, for all w ∈ Sd,
by hpD(w; ρ,α) = hD(w; ρ,α), while the angular density of the negative scaled extremal Dirichlet model with parameters
0 < ρ < min(α1, . . ., αd) and α is given, for allw ∈ Rd

+
, by hnD(w; ρ,α) = hD(w;−ρ,α).

From Proposition 5, it is easily seen that when α = 1d, the angular density hpD reduces, for any ρ > 0 andw ∈ Sd, to the
angular density of the symmetric negative logistic model; see, e.g., Section 4.2 in [7]. In general, the angular density hpD is
not symmetric unless α = α1d.

The positive scaled Dirichlet model can thus be viewed as a new asymmetric generalization of the negative logistic model
which does not place any mass on the vertices or facets of Sd, unless at independence or comonotonicity, i.e., when ρ →∞
and ρ → 0, respectively. Furthermore, hpD can also be interpreted as a generalization of the Coles–Tawn extremal Dirichlet
model. Indeed, hpD(x; 1,α) is precisely the angular density of the latter model given, e.g., in Equation (3.6) in [7]. Similarly,
the negative scaled extremal Dirichlet model is a new asymmetric generalization of Gumbel’s logistic model [16]. Indeed,
when α = 1d, hnD simplifies to the logistic angular density, given, e.g., on p. 381 in [7].

Figs. 1 and 2 illustrate the various shapes of hpD and hnD that obtain through various choices of α and ρ. The asymmetry
whenα ̸= α1d is clearly apparent. For the same value of ρ, the shapes of the angular density can be quite different depending
on α. In view of the aforementioned closure of both the positive and negative scaled extremal Dirichlet models under
marginalization, this means that thesemodels are able to capture strong dependence in some pairs of variables (represented
by a mode close to 1/2 of the angular density) and at the same time weak dependence in others pairs (represented by a
bathtub shape).

5.2. The bivariate case

When d = 2, the stable tail dependence functions of the positive and negative scaled extremal Dirichlet models have a
closed-form expression in terms of the incomplete beta function given, for any t ∈ (0, 1) and α1, α2 > 0, by

B(t;α1, α2) =
∫ t

0
xα1−1(1− x)α2−1dx.
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Fig. 1. Angular density of the scaled extremal Dirichlet model. Left panel: ρ = 4/5 and α = (2, 1/2) (black full), ρ = 1/4 and α = (1/10, 1/10) (red
dashed), ρ = 1/4 and α = (1/2, 1/2) (blue dotted). Right panel: ρ = −1/4 and α = (2, 1/2) (black full), α = (2/5, 2/5) (red dashed) and α = (1/2, 1/2)
(blue dotted).

Fig. 2. Angular density of the scaled extremal Dirichlet model with α = (1, 1/2, 1/5), ρ = 1/5 (top left) and α = (1/5, 1/5, 1/5), ρ = 1/5 (bottom left),
α = (5/4, 2, 1), ρ = −2/5 (top right) and α = (5/4, 5/4, 5/4), ρ = −2/5 (bottom right). The colors correspond to log density values and range from red
(high density) to blue (low density). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

When t = 1, this integral is the beta function, viz. B(α1, α2) = Γ (α1)Γ (α2)/Γ (α1 + α2). A direct calculation yields the
corresponding Pickands dependence function, for any t ∈ [0, 1], ApD(t; ρ, α1, α2) = ℓpD(1− t, t; ρ, α1, α2), i.e.,

ApD(t; ρ, α1, α2) =
(1− t)

B(α2, α1 + ρ)
B
[

{c(α2, ρ)(1− t)}1/ρ

{c(α2, ρ)(1− t)}1/ρ + {c(α1, ρ)t}1/ρ
;α2, α1 + ρ

]
+

t
B(α1, α2 + ρ)

B
[

{c(α1, ρ)t}1/ρ

{c(α2, ρ)(1− t)}1/ρ + {c(α1, ρ)t}1/ρ
;α1, α2 + ρ

]
.
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Fig. 3. Pickands dependence function of the scaled extremal Dirichlet model. Left panel: ρ = 4/5 and α = (2, 1/2) (black full), ρ = 1/4 and
α = (1/10, 1/10) (red dashed), ρ = 1/4 and α = (1/2, 1/2) (blue dotted). Right panel: ρ = −1/4 and α = (2, 1/2) (black full), α = (2/5, 2/5) (red
dashed) and α = (1/2, 1/2) (blue dotted).

When α1 = α2 = 1, ApD becomes the Pickands dependence function of the Galambos copula, viz. ApD(t; ρ, 1, 1) =
1 −

{
t−1/ρ + (1 − t)−1/ρ

}−ρ , as expected given that the positive scaled extremal Dirichlet model becomes the symmetric
negative logistic model in this case.

Similarly, for any t ∈ [0, 1], the Pickands dependence function AnD(t; ρ, α1, α2) = ℓnD(1− t, t; ρ, α1, α2) equals

AnD(t; ρ, α1, α2) =
(1− t)

B(α1 − ρ, α2)
B
[

{(1− t)c(α2,−ρ)}1/ρ

{tc(α1,−ρ)}1/ρ + {(1− t)c(α2,−ρ)}1/ρ
;α1 − ρ, α2

]
+

t
B(α2 − ρ, α1)

B
[

{tc(α1,−ρ)}1/ρ

{tc(α1,−ρ)}1/ρ + {(1− t)c(α2,−ρ)}1/ρ
;α2 − ρ, α1

]
.

When α1 = α2 = 1, AnD simplifies to the stable tail dependence function of the Gumbel extreme-value copula, viz.
AnD(t; ρ, 1, 1) =

{
t1/ρ + (1 − t)1/ρ

}ρ . This again confirms that the negative scaled extremal Dirichlet model becomes the
symmetric logistic model when α1 = α2 = 1. The Pickands dependence functions ApD and AnD are illustrated in Fig. 3, for
the same choices of parameters and the corresponding angular density shown in Fig. 1.

The above formulas for ApD and AnD now easily lead to expressions for their upper tail dependence coefficients. Recall
that for an arbitrary bivariate copula C , the lower and upper tail dependence coefficients of [25] are given by

λℓ(C) = lim
u→0

C(u, u)
u

, λu(C) = 2− lim
u→1

C(u, u)− 1
u− 1

= lim
u→0

Ĉ(u, u)
u

,

where Ĉ is the survival copula of C , provided these limits exist.When C is bivariate extreme-valuewith Pickands dependence
function A, it follows easily from (4) that λℓ(C) = 0 and λu(C) = 2− 2A(1/2).

Now suppose that CpD
ρ,α is a bivariate extreme-value copula with positive scaled extremal Dirichlet Pickands dependence

function ApD and parameters ρ > 0 and α1, α2 > 0. Then

λu(CpD
ρ,α) = 2−

1
B(α2, α1 + ρ)

B
{

c(α2, ρ)1/ρ

c(α2, ρ)1/ρ + c(α1, ρ)1/ρ
;α2, α1 + ρ

}
−

1
B(α1, α2 + ρ)

B
{

c(α1, ρ)1/ρ

c(α2, ρ)1/ρ + c(α1, ρ)1/ρ
;α1, α2 + ρ

}
. (8)

Similarly, if CnD
ρ,α is a bivariate extreme-value copula with negative scaled extremal Dirichlet Pickands dependence function

AnD and parameters α1, α2 > 0 and 0 < ρ < min(α1, α2), then

λu(CnD
ρ,α) = 2−

1
B(α1 − ρ, α2)

B
{

c(α2,−ρ)1/ρ

c(α1,−ρ)1/ρ + c(α2,−ρ)1/ρ
;α1 − ρ, α2

}
+

1
B(α2 − ρ, α1)

B
{

c(α1,−ρ)1/ρ

c(α1,−ρ)1/ρ + c(α2,−ρ)1/ρ
;α2 − ρ, α1

}
. (9)

In the symmetric case α1 = α2 ≡ α, Expressions (8) and (9) simplify to

λu(CpD
ρ,α) = 2−

2
B(α, α + ρ)

B
(
1
2
;α, α + ρ

)
, λu(CnD

ρ,α) = 2−
2

B(α − ρ, α)
B
(
1
2
;α − ρ, α

)
.

Formulas (8) and (9) lead directly to expressions for the tail dependence coefficients of Liouville copulas. This is because if
C ∈ M(C0), where C0 is an extreme-value copula with Pickands tail dependence function A0, λu(C) = 2 − 2A0(1/2) ([29]
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Proposition 7.51). Similarly, if Ĉ ∈M(C∗0 ), where C∗0 is an extreme-value copula with Pickands tail dependence function A∗0,
λℓ(C) = 2− 2A∗0(1/2). The following corollary is thus an immediate consequence of Corollaries 1 and 2.

Corollary 3. Suppose that C is the survival copula of a Liouville random vector RDα with parameters α > 0 and a radial part R
such that Pr(R ≤ 0) = 0. Then the following statements hold.

(a) If R ∈M(Φρ) for some ρ > 0, λℓ(C) = λu(C
pD
ρ,α) is given by Eq. (8).

(b) If R ∈M(Λ) or R ∈M(Ψρ) for some ρ > 0, λℓ(C) = 0.
(c) If 1/R ∈M(Φρ) for some 0 < ρ < α1 ∧ α2, λu(C) = λu(CnD

ρ,α) is given by Eq. (9).
(d) If 1/R ∈M(Φρ) for ρ > α1 ∧ α2 or if E(1/Rβ ) <∞ for β > α1 ∨ α2, λu(C) = 0.

The role of the parametersα andρ is best explained ifwe consider the reparametrization∆α = |α1−α2| andΣα = α1+α2.
As is the case for the Dirichlet distribution, the level of dependence is higher for large values of Σα . Furthermore, λu is
monotonically decreasing in ρ. Higher levels of extremal asymmetry, as measured by departures from the diagonal on the
copula scale, are governed by both Σα and ∆α . The larger Σα , the lower the asymmetry. Likewise, the larger ∆α , the more
the asymmetry. Contrary to the case of extremal dependence, the behavior in ρ is not monotone. For the negative scaled
extremal Dirichlet model, asymmetry is maximal when ρ ≈ α1 ∧ α2. When Σα is small, smaller values of ρ induce larger
asymmetry, but this is not the case for larger values of Σα where the asymmetry profile is convex with a global maximum
attained for larger values of ρ.

6. de Haan representation and simulation algorithms

Random samples from the scaled extremal Dirichlet model can be drawn efficiently using the algorithms recently
developed in [10]. We first derive the so-called de Haan representation in Section 6.1 and adapt the algorithms from [10] to
the present setting in Section 6.2.

6.1. de Haan representation

First, introduce the following family of univariate distributions, which we term the scaled Gamma family and denote by
SG(a, b, c). It has three parameters a, c > 0 and b ̸= 0 and a density given, for all x > 0, by

f (x; a, b, c) =
|b|
Γ (c)

a−bcxbc−1 exp
{
−

( x
a

)b}
. (10)

Observe that when Z ∼ G(c, 1) is a Gamma variable with shape parameter c > 0 and scaling parameter 1, Y d
= aZ1/b is

scaled Gamma SG(a, b, c). Consequently, E (Y ) = aΓ (c + 1/b)/Γ (c) < ∞ provided that b < −1/c . The scaled Gamma
family includes several well-known distributions as special cases, notably the Gamma when b = 1, theWeibull when c = 1
and b > 0, the inverse Gamma when b = −1, and the Fréchet when c = 1 and b < 0. When b > 0, the scaled Gamma is the
generalized Gamma distribution of [41], albeit in a different parametrization.

Now consider the parameters α = (α1, . . . , αd) with α > 0d and ρ > −min(α1, . . ., αd), ρ ̸= 0. Let V be a random
vector with independent scaled Gamma margins Vi ∼ SG{1/c(αi, ρ), 1/ρ, αi}, where for α > 0, c(α, ρ) = Γ (α + ρ)/Γ (α)
as in Definition 1. If Z is a random vector with independent Gamma margins Zi ∼ G(αi, 1) then for all i ∈ {1, . . . , d},
Vi

d
= Zρi /c(αi, ρ). Furthermore, recall that ∥Z∥ ∼ G(ᾱ, 1) is independent of Z/∥Z∥, which has the same distribution as the

Dirichlet vector Dα = (D1, . . . ,Dd). One thus has, for all x ∈ Rd
+
,

E
{
max
1≤i≤d

(xiVi)
}
= E

[
max
1≤i≤d

{
xiZ

ρ

i

c(αi, ρ)

}]
= E (∥Z∥ρ) E

[
max
1≤i≤d

{
xiD

ρ

i

c(αi, ρ)

}]
= ℓD(x; ρ,α), (11)

where ℓD is as in Definition 1, given that E (∥Z∥ρ) = c(ᾱ, ρ).
When ρ = 1, the positive scaled Dirichlet extremal model becomes the Coles–Tawn Dirichlet extremal model, Vi ∼

G(αi, 1) and Eq. (11) reduces to the representation derived in [37]. When α = 1d, ℓD becomes the stable tail dependence
function of the negative logistic model, Vi is Weibull and Eq. (11) is the representation in Appendix A.2.4 of [10]. Similarly,
when ρ < 0 and α = 1d, the negative scaled Dirichlet extremal model becomes the logistic model, Vi is Fréchet and Eq. (11)
is the representation in Appendix A.2.4 of [10]. The requirement that ρ > −min(α1, . . ., αd) ensures that the expectation of
Vi is finite for all i ∈ {1, . . . , d}.

Eq. (11) implies that the max-stable random vector Y with unit Fréchet margins and extreme-value copula with stable
tail dependence function ℓD(·; ρ,α) admits the de Haan (9) spectral representation

Y d
= max

k∈N
ζkV k, (12)

where Z = {ζk}∞k=1 is a Poisson point process on (0,∞) with intensity ζ−2dζ and V k is an i.i.d. sequence of random vectors
independent of Z . Furthermore, the univariate margins of V k are independent and such that Vkj ∼ SG{1/c(αj, ρ), 1/ρ, αj}

for all j ∈ {1, . . . , d}with E (V k) = 1d for all k ∈ N.
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6.2. Unconditional simulation

The de Haan representation (12) offers, among other things, an easy route to unconditional simulation of max-stable
random vectors that follow the scaled Dirichlet extremal model, as laid out in [10] in themore general context of max-stable
processes. To see how thiswork applies in the present setting, fix an arbitrary j0 ∈ {1, . . . , d} and recall that the j0th extremal
function φ+j0 is given, almost surely, as ζkV k such that Yj0 = ζkVkj0 . From Eq. (12) and Proposition 1 in [10] it then directly

follows that φ+j0 /Yj0
d
= (Wj01/Wj0j0 , . . . ,Wj0d/Wj0j0 ), where W j0 = (Wj01, . . . ,Wj0d) is a random vector with density given,

for all x ∈ Rd
+
, by

|1/ρ|
Γ (αj0 )

c(αj0 , ρ)
αj0 /ρx

αj0 /ρ

j0
exp

[
−{c(αj0 , ρ)xj0}

1/ρ]
×

d∏
j=1,j̸=j0

|1/ρ|
Γ (αj)

c(αj, ρ)αj/ρx
αj/ρ−1
j exp

[
−{c(αj, ρ)xj}1/ρ

]
.

This means that the components of W j0 are independent and such that Wj0j ∼ SG{1/c(αj, ρ), 1/ρ, αj} when j ̸= j0 and
Wj0j0 ∼ SG{1/c(αj0 , ρ), 1/ρ, αj0 + ρ}. In other words, Wj0j0 ∼ Zρj0/c(αj0 , ρ) where Zj0 ∼ G(αj0 + ρ, 1), while for all j ̸= j0,

Wj0j
d
= Zρj /c(αj, ρ) where Zj ∼ G(αj, 1).

The exact distribution of φ+j0 /Yj0 given above now allows for an easy adaptation of the algorithms in [10]. To draw an
observation from the extreme-value copula with the scaled Dirichlet stable tail dependence function ℓD with parameters
α > 0d and ρ > −min(α1, . . ., αd), ρ ̸= 0, one can follow Algorithms 1 and 2 below. The first procedure corresponds to
Algorithm 1 in [10] and relies on [36]; the second is an adaptation of Algorithm 2 in [10].

Algorithm 1 Exact simulations from the extreme-value copula based on spectral densities.
1: Simulate E ∼ E(1) .
2: Set Y = 0.
3: while 1/E > min(Y1, . . . , Yd) do
4: Simulate J from the uniform distribution on {1, . . . , d}.
5: Simulate independent Zj ∼ G(αj, 1) for j ∈ {1, . . . , d} \ J and ZJ ∼ G(αJ + ρ, 1).
6: Set Wj ← Zρj /c(αj, ρ), j = 1, . . . , d.
7: Set S ← W/∥W∥.
8: Update Y ← max{Y , dS/E}.
9: Simulate E∗ ∼ E(1) and update E ← E + E∗.
10: return U = exp(−1/Y ).

Algorithm 2 Exact simulations based on sequential sampling of the extremal functions.
1: Simulate Z1 ∼ G(α1 + ρ, 1) and Zj ∼ G(αj, 1), j ∈ {2, . . . , d}.
2: ComputeW whereWj ← Zρj /c(αj, ρ), j ∈ {1, . . . , d}.
3: Simulate E1 ∼ E(1).
4: Set Y ← W/(W1E1).
5: for k ∈ {2, . . . , d} do
6: Simulate Ek ∼ E(1).
7: while 1/Ek > Yk do
8: Simulate independent Zk ∼ G(αk + ρ, 1) and Zj ∼ G(αj, 1), j ∈ {1, . . . , d}, j ̸= k .
9: Set W = (W1, . . . ,Wd) whereWj ← Zρj /c(αj, ρ), j ∈ {1, . . . , d}.
10: if Wi/(WkEk) < Yi for all i ∈ {1, . . . , k− 1} then
11: Update Y ← max{Y ,W/(WkEk)}.
12: Simulate E∗ ∼ E(1) and update Ek ← Ek + E∗.
13: return U = exp(−1/Y ).

Note that S obtained in Step 7 of Algorithm 1 has the angular distribution σd of ℓD; see Theorem 1 in [10]. Similar
algorithms for drawing samples from the angular distribution of the extremal logistic and Dirichlet models were obtained
in [3]. Algorithm 2 requires a lower number of simulations and is more efficient on average, cf. [10]. Both algorithms are
easily implemented using the function rmev in the mev package within the R Project for Statistical Computing [34], which
returns samples of max-stable scaled extremal Dirichlet vectors with unit Fréchet margins, i.e., Y in Algorithms 1 and 2.

7. Estimation

The scaled extremal Dirichlet model can be used to model dependence between extreme events. To this end, several
schemes can be envisaged. For example, one can consider the block-maxima approach, given that max-stable distributions
are the most natural for such data. Another option is peaks-over-threshold models. Yet another alternative, used in [13]
for the Brown–Resnick model, is to approximate the conditional distribution of a random vector with unit Fréchet margins
given that the j0th component exceeds a large threshold by the distribution of φ+j0 /Yj0 discussed in Section 6.2.
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Here, we focus on the multivariate tail model of [28]; see also Section 16.4 in [29]. To this end, let X1, . . . ,Xn be a
random sample from some unknown multivariate distribution H with continuous univariate margins which is assumed to
be in the maximum domain of attraction of a multivariate extreme-value distribution H0. To model the tail of H , its margins
Fj, j = 1, . . . , d can first be approximated using the univariate peaks-over-threshold method. For all x above some high
threshold uj, one then has

Fj(x) ≈ F̃j(x; ηj, ξj) = 1− νj

(
1+ ξj

(x− uj)
ηj

)−1/ξj
+

, (13)

where νj = 1 − Fj(uj), and ηj > 0 and ξj are the parameters of the generalized Pareto distribution. Furthermore, for w
sufficiently close to 1d, the copula of H can be approximated by the extreme-value copula C0 of H0, so that, for x ≥ u,
H(x) ≈ H̃(x) = C0{F̃1(x1), . . . , F̃d(xd)}. The parameters of this multivariate tail model, i.e., the parameters θ of the stable tail
dependence function ℓ0 of C0 as well as the marginal parameters ν, η and ξ can be estimated using likelihood methods; this
allows, e.g., for Bayesian inference, generalized additivemodeling of the parameters andmodel selection based on likelihood-
ratio tests. For a comprehensive review of likelihood inference methods for extremes, see, e.g., [22].

The multivariate tail model can be fitted in low-dimensions using the censored likelihood L(X; ν, η, ξ, θ) =
∏n

i=1Li
(X i; ν, η, ξ, θ), where for each i ∈ {1, . . . , n},

Li(X i; u, ν, η, ξ, θ) =
∂mi H̃(y1, . . . , yd)
∂yj1 · · · ∂yjmi

⏐⏐⏐⏐⏐
y=max(X i,u)

=
∂mi exp{−ℓ0(1/y)}
∂yj1 · · · ∂yjmi

⏐⏐⏐⏐⏐
y=t{max(X i,u)}

mi∏
k=1

Jjk (Xijk ). (14)

In this expression, the indices j1, . . . , jmi are those of the components of X i exceeding the thresholds u and for x ≥ u,
t(x) = (t1(x1), . . . , td(xd)), where for each j ∈ {1, . . . , d},

tj(xj) = −
1

ln{F̃j(xj; ηj, ξj)}
, Jj(xj) =

νj

ηj

{
1+ ξj

(xj − uj)
ηj

}−1/ξj−1 1

[ln{F̃j(xj; ηj, ξj)}]2F̃j(xj; ηj, ξj)
. (15)

The censored likelihood L(X; ν, η, ξ, θ) can be maximized either over all parameters at once, or the marginal parameters ν, η
and ξ can be estimated fromeach univariatemargin separately, so that only the estimate of θ is obtained throughmaximizing
L. When d is large, one can also maximize the likelihood in [40] that uses the tail approximation H̄(x) ≈ 1− ℓ(1/x). In either
case, ℓ0 and the higher-order partial derivatives of ℓ0(1/x) need to be computed.

When ℓ0 is the scaled extremal Dirichlet stable tail dependence function ℓD(·; ρ,α) given in Definition 1with parameters
α > 0 and ρ > −min(α1, . . ., αd), ρ ̸= 0, its expression is not explicit. However, ℓD can be calculated numerically using
adaptive numerical cubature algorithms for integrals of functions defined on the simplex, as implemented in, e.g., the R
package SimplicialCubature. Given the representation in Eq. (5), ℓD is also easily approximated using Monte Carlo
methods. Instead of employing Eq. (5) directly and sampling from the Dirichlet vector Dα, one can use the more efficient
importance sampling estimator

ℓ̂D(1/u, ρ,α) =
1
B

B∑
i=1

max1≤j≤d
[
{c(αj, ρ)uj}

−1Dρij
]

1
d

∑d
j=1 c(αj, ρ)−1D

ρ

ij

,

where Di ∼ d−1
∑d

j=1D(α+ Ijρ1d) is sampled from a Dirichlet mixture.
The partial derivatives of ℓD can be calculated using the following result, shown in Appendix E.

Proposition 6. Let ℓD be the scaled extremal Dirichlet stable tail dependence function with parameters α > 0d and
−min(α1, . . ., αd) < ρ <∞, ρ ̸= 0. Then, for any x ∈ Rd

+
,

∂dℓD(1/x)
∂x1 · · · ∂xd

= −dhD(x; ρ,α) = −
Γ (ᾱ + ρ)

|ρ|d−1
∏d

i=1 Γ (αi)

⎡⎣ d∑
j=1

{
c(αj, ρ)xj

}1/ρ⎤⎦−ρ−ᾱ d∏
i=1

{c(αi, ρ)}αi/ρx
αi/ρ−1
i , (16)

where hD is as given in Proposition 5. Furthermore, for all k ∈ {1, . . . , d− 1} and x ∈ Rd
+
,

∂kℓD(1/x)
∂x1 · · · ∂xk

= −

∫
∞

0
tk

k∏
i=1

f
(
xit;

1
c(αi, ρ)

,
1
ρ
, αi

) d∏
i=k+1

F
(
xit;

1
c(αi, ρ)

,
1
ρ
, αi

)
dt,

where f (; a, b, c) and F (; a, b, c) denote, respectively the density and distribution function of the scaled Gamma distribution with
parameters a, c > 0 and b ̸= 0 given in Eq. (10). Furthermore, if γ (c, x) =

∫ x
0 tc−1e−tdt denotes the lower incomplete gamma

function, then for x > 0, F (x; a, b, c) = γ {c, (x/a)b}/Γ (c)when b > 0while F (x; a, b, c) = 1− γ {c, (x/a)b}/Γ (c)when b < 0.

Other estimating equations could be used to circumvent the calculation of ℓD(1/x) and its partial derivatives. An
interesting alternative to likelihoods in the context of proper scoring functions is proposed in [8]. Specifically, the authors
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Fig. 4. Daily river flow of the Isar river at three sites.

advocate the use of the gradient score, adapted by them for the peaks-over-threshold framework,

δw(x) =
d∑

i=1

(
2wi(x)

∂wi(x)
∂xi

∂ ln h(x)
∂xi

+ w2
i (x)

[
∂2 ln h(x)
∂x2i

+
1
2

{
∂ ln h(x)
∂xi

}2
])

for a differentiableweighting functionw(x), unit Fréchet observations x and density h(x) thatwould correspond in the setting
of the scaled extremal Dirichlet to dhD(x; ρ,α). Explicit expressions for the derivatives of ln dhD may be found in Appendix E.
The parameter estimates are obtained as the solution to argmaxθ∈Θ

∑n
i=1δw(xi)IR(xi/u)>1, where θ = (ρ,α) is the vector of

parameters of the model and R is a differentiable risk functional, usually the ℓp norm for some p ∈ N. Although the gradient
score is not asymptoticallymost efficient, weighting functions can be designed to reproduce approximate censoring, lending
the method robustness and tractability.

8. Data illustration

In this section, we illustrate the use of the scaled extremal Dirichlet model on a trivariate sample of daily river flow data
of the river Isar in southern Germany; this dataset is a subset of the one analyzed in [1]. All the code can be downloaded
from https://github.com/lbelzile/ealc. For this analysis, we selected data measured at Lenggries (upstream), Pupplinger Au
(in themiddle) andMunich (downstream). To ensure stationarity of the series and given that themost extreme events occur
during the summer, we restricted our attention to the measurements for the months of June, July and August. Since the sites
are measuring the flow of the same river, dependence at extreme levels is likely to be present, as is indeed apparent from
Fig. 4. Directionality of the river may further lead to asymmetry in the asymptotic dependence structure, suggesting that the
scaled extremal Dirichlet model may be well suited for these data. Furthermore, given that other well-known models like
the extremal Dirichlet, logistic and negative logistic are nested within this family, their adequacy can be assessed through
likelihood ratio tests.

To remove dependence between extremes over time, we decluster each series and retain only the cluster maxima based
on three-day runs. Rounding of the measurements has no impact on parameter estimates and is henceforth neglected. The
multivariate tail model outlined in Section 7 is next fitted to the cluster maxima. The thresholds u = (u1, u2, u3) were
selected to be the 92% quantiles using the parameter stability plot of [42] (not shown here). Next, set θ = (η, ξ,α, ρ), where
η and ξ are the marginal parameters of the generalized Pareto distribution in Eq. (13) and ρ and α are the parameters of the
scaled Dirichlet model. To estimate θ, the trivariate censored likelihood (14) could be used. To avoid numerical integration

https://github.com/lbelzile/ealc
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Fig. 5. Marginal QQ-plots for the three sites based on pairwise composite likelihood estimates for the scale and shape parameters obtained from the
scaled Dirichlet model, retaining marginal exceedances of the 92% quantiles. The pointwise confidence intervals were obtained from the transformed Beta
quantiles of the order statistics.

Table 1
Generalized Pareto parameter estimates and standard errors (in parenthesis) for the trivariate river example for four different models.

η1 η2 η3 ξ1 ξ2 ξ3

Scaled Dirichlet 123.2 (7.5) 84.4 (5) 68.1 (4.2) 0.05 (0.04) -0.03 (0.04) 0.02 (0.04)
Neg. logistic 117.1 (6.8) 86.2 (5.1) 70 (4.3) 0.08 (0.04) -0.05 (0.04) 0 (0.04)
Logistic 117.3 (6.8) 86.6 (5.1) 70.4 (4.3) 0.08 (0.04) -0.05 (0.04) 0 (0.04)
Ext. Dirichlet 114.4 (6.8) 84.3 (4.9) 68.2 (4.1) 0.12 (0.04) -0.02 (0.04) 0.04 (0.04)
Marginal 129.1 (14.5) 95.1 (10.6) 76 (8.7) -0.01 (0.08) -0.15 (0.08) -0.08 (0.08)

and because of the relative robustness to misspecification, we employed the pairwise composite log-likelihood lC of [28]
instead; the loss of efficiency in this trivariate example is likely small. Specifically, we maximized

lC (θ) =
n∑

i=1

d−1∑
j=1

d∑
k=j+1

[
ln g{tj(xij), tk(xik); θ, tj(uj), tk(uk)} + Ixij>uj ln Jj(xij)+ Ixik>uk ln Jk(xik)

]
,

where

g(yj, yk; θ, uj, uk) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp{−ℓ(1/uj, 1/uk)}, yj ≤ uj, yk ≤ uk
−∂ℓ(1/yj, 1/uk)/∂yj exp{−ℓ(1/yj, 1/uk)}, yj > uj, yk ≤ uk
−∂ℓ(1/uj, 1/yk)/∂yk exp{−ℓ(1/uj, 1/yk)}, yj ≤ uj, yk > uk[{
∂ℓ(1/yj, 1/yk)/∂yj

} {
∂ℓ(1/yj, 1/yk)/∂yk

}
− dhD(yj, yk)

]
exp{−ℓ(1/yj, 1/yk)}, yj > uj, yk > uk

where ℓ = ℓD and for all j ∈ {1, . . . , d}, tj and Jj are as in Eq. (15).
Uncertainty assessment can be done in the same way as for general estimating equations. Specifically, let g(θ) denote

an unbiased estimating function and define the variability matrix J, the sensitivity matrix H and the Godambe information
matrix G as

J = E
(
∂g(θ)
∂θ

∂g(θ)
∂θ

⊤
)
, H = −E

(
∂2g(θ)
∂θ∂θ⊤

)
, G = HJ−1H. (17)

The maximum composite likelihood estimator is strongly consistent and asymptotically normal, centered at the true
parameter θ with covariance matrix given by the inverse Godambe matrix G−1.

Using the pairwise composite log-likelihood lC , we fitted the scaled extremal Dirichlet model as well as the logistic and
negative logistic models that correspond to the negative and positive scaled extremal Dirichlet models, respectively, and the
parameter restrictionα = 1d. The estimates of themarginal generalized Pareto parameters η and ξ are given in Table 1. As the
estimateswere obtained bymaximizing ℓC , their values depend on the fittedmodel; the line labeled ‘‘Marginal’’ corresponds
to fitting the generalized Pareto distribution to threshold exceedances of each one of the three series separately. Themarginal
QQ-plots displayed in Fig. 5 indicate a good fit of the model as well.

The estimates of the dependence parameters α and ρ are given in Table 2. The last line displays the maximum gradient
score estimates were obtained from the raw data, i.e., ignoring the clustering, after transforming the observations to the
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Table 2
Dependence parameters estimates and standard errors (in parenthesis) for the trivariate river example.

α1 α2 α3 ρ

Scaled Dirichlet 0.76 (0.3) 1.65 (0.82) 2.03 (1.15) −0.32 (0.1)
Neg. logistic 1 1 1 0.36 (0.02)
Logistic 1 1 1 0.28 (0.01)
Ext. Dirichlet 3.34 (0.52) 10.2 (2.84) 12.78 (3.93) 1
Gradient score 1 2.72 2.66 −0.39

Fig. 6. Angular density plots for the three models, the negative logistic (left), logistic (middle) and scaled Dirichlet (right). The colors correspond to log
density values and range from red (high density) to blue (low density). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

standard Fréchet scale using the probability integral transform. We retained only the 10% largest values based on the ℓp
norm with p = 20; this risk functional is essentially a differentiable approximation of ℓ∞. We selected the weight function
w(x, u) = x[1 − exp{−(∥x∥p/u − 1)}] based on [8] to reproduce approximate censoring. The estimates are similar to the
composite maximum likelihood estimators, though not efficient.

The angular densities of the fitted logistic, negative logistic and scaled extremal Dirichlet models are displayed in Fig. 6.
The right panel of this figure shows asymmetry caused by a few extreme events that only happened downstream. Whether
this asymmetry is significant can be assessed through composite likelihood ratio tests; recall that the logistic model, the
negative logistic model and the extremal Dirichlet model of [7] are all nested within the scaled extremal Dirichlet model. To
this end, consider a partition of θ = (ψ,λ) into a q dimensional parameter of interestψ and a 3d+1−q dimensional nuisance
parameter λ, and the corresponding partitions of the matricesH, J and G. Let θ̂C = (ψ̂C , λ̂C ) denote the maximum composite
likelihood parameter estimates and θ̂0 = (ψ0, λ̂0) the restricted parameter estimates under the null hypothesis that the
simpler model is adequate. The asymptotic distribution of the composite likelihood ratio test statistic 2{ln lC (θ̂C )− ln lC (θ̂0)}
has the same distribution as c1Z1+· · ·+cqZq, where Z1, . . . , Zq are independent χ2

1 variables and ci are the eigenvalues of the
q×qmatrix (Hψψ−HψλH−1λλHλψ)G

−1
ψψ; see [26].We estimated the inverse Godambe informationmatrix,G−1, by the empirical

covariance of B nonparametric bootstrap replicates. The sensitivity matrix H was obtained from the Hessian matrix at the
maximum composite likelihood estimate and the variabilitymatrix J from Eq. (17). Since the Coles–Tawn extremal Dirichlet,
negative logistic and logistic models are nested within the scaled Dirichlet family, we test for a restriction to these simpler
models; the respective approximate P-values were 0.003, 0.74 and 0.78. These values suggest that while the Coles–Tawn
extremal Dirichlet model is clearly not suitable, there is not sufficient evidence to discard the logistic and negative logistic
models. The effects of possible model misspecification are also visible for the Coles–Tawn extremal Dirichlet model, as the
parameter values ofα1, α2 andα3 are very large (viz. Table 2) and this induces negative bias in the shape parameter estimates,
as can be seen from Table 1.

9. Discussion

In this article, we have identified extremal attractors of copulas and survival copulas of Liouville random vectors RDα,
where Dα has a Dirichlet distribution on the unit simplex with parameters α, and R is a strictly positive random variable
independent of Dα. The limiting stable tail dependence functions can be embedded in a single family, which can capture
asymmetry and provides a valid model in dimension d. The latter is novel and termed here the scaled extremal Dirichlet;
it includes the well-known logistic, negative logistic as well as the Coles–Tawn extremal Dirichlet models as special cases.
In particular, therefore, this paper is first to provide an example of a random vector attracted to the Coles–Tawn extremal
Dirichlet model, which was derived by enforcing moment constraints on a simplex distribution rather than as the limiting
distribution of a random vector.
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A scaled extremal Dirichlet stable tail dependence function ℓD has d+ 1 parameters, ρ and α. The parameter vector α is
inherited from Dα and induces asymmetry in ℓD. The parameter ρ comes from the regular variation of R at zero and infinity,
respectively; this is reminiscent of the extremal attractors of elliptical distributions [33]. The magnitude of ρ has impact on
the strength of dependence while its sign changes the overall shape of ℓD. Having d + 1 parameters, the scaled extremal
Dirichlet model may not be sufficiently rich to account for spatial dependence, unlike the Hüsler–Reiss or the extremal
Student-t models, which have one parameter for each pair of variables and are thus easily combined with distances. Also, it
is less flexible than Dirichlet mixtures [4], which are however hard to estimate in high dimensions and require sophisticated
machinery. To achieve greater flexibility, the scaled extremal Dirichlet model could perhaps be extended by working with
more general scale mixtures, such as of the weighted Dirichlet distributions considered, e.g., in [18].

Nonetheless, the scaled extremal Dirichlet model may naturally find applications whenever asymmetric extremal
dependence is suspected; the latter may be caused, e.g., by causal relationships between the variables [15]. The stochastic
structure of the scaled extremal Dirichlet model has several major advantages, that make the model easy to interpret,
estimate and simulate from. Its angular density has a simple form; in contrast to the asymmetric generalizations of the
logistic and negative logistic models, this model does not place anymass on the vertices and lower-dimensional facets of the
unit simplex. Another plus is the tractability of both the de Haan representation and the extremal functions, both expressible
in terms of independent scaled Gamma variables; this allows for feasible inference and stochastic simulation. While the
scaled extremal Dirichlet stable tail dependence function ℓD does not have a closed form in general, closed-form algebraic
expressions exist when α is integer-valued and in the bivariate case. Model selection for well-known families of extreme-
value distributions can be performed through likelihood ratio tests. Another potentially useful feature is that ρ ∈ (−∞,∞)
can be allowed, with the convention that all variables whose indices i are such that−ρ ≤ −αi are independent.
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Appendix A. Proofs from Section 2

Proof of Proposition 2. To prove parts (a) and (b), recall that 1/Xi is distributed as 1/(RDi), where Di ∼ B(αi, ᾱ − αi) is
independent of R. Furthermore, it is easy to show that 1/Di ∈ M(Φαi ), which implies that E(1/Dβi ) < ∞ for any β < αi.
The extremal behavior of 1/Xi will thus be determined by the extremal behavior of either 1/R or 1/Di, depending on which
one has a heavier tail. Indeed, Breiman’s Lemma [5] implies that 1/Xi ∈ M(Φρ) if 1/R ∈ M(Φρ) for some ρ < αi and that
1/Xi ∈M(Φαi ) if E(1/R

αi+ε) <∞ for some ε > 0. Finally, the fact that 1/Xi ∈M(Φαi ) when 1/R ∈M(Φαi ) follows directly
from the Corollary to Theorem 3 in [11]. □

The following lemma is a side result of Proposition 2, which is needed in the subsequent proofs.

Lemma 1. Suppose that X = RDα . If 1/R ∈M(Φαi ) for some i ∈ {1, . . . , d}, then

lim
x→∞

Pr (1/R > x)
Pr (1/Xi > x)

= 0.

Proof of Lemma 1. Because 1/R ∈M(Φαi ), Pr(1/R > x) is regularly varying with index−αi. In particular, for any b ∈ (0, 1),
Pr(1/R > xb)/Pr(1/R > x)→ b−αi as x→∞. An application of Fatou’s lemma thus gives

lim inf
x→∞

Pr(1/Xi > x)
Pr(1/R > x)

= lim inf
x→∞

∫ 1

0

Pr(1/R > xb)
Pr(1/R > x)

fDi (b)db ≥
∫ 1

0

b−1(1− b)ᾱ−αi−1

B(αi, ᾱ − αi)
db = ∞

and hence the result. □

Appendix B. Proofs from Section 3

First recall the following property of the Dirichlet distribution, which is easily shown using the transformation formula
for Lebesgue densities.

Lemma 2. Let Dα be a Dirichlet random vector with parameters α. Then for any k ∈ {2, . . . , d} and any collection of distinct
indices 1 ≤ i1 < · · · < ik ≤ d,

(Di1 , . . . ,Dik )
d
= Bi1,...,ik × D(αi1 ,...,αik )

,

where Bi1,...,ik ∼ B(αi1+· · ·+αik , ᾱ−(αi1+· · ·+αik )) is independent of the k-variate Dirichlet vector D(αi1 ,...,αik )
with parameters

(αi1 , . . . , αik ).
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Proof of Theorem 1. In order to prove part (a), recall that ∥X∥ d
= R is independent of X/∥X∥ d

= Dα. Because R ∈ M(Φρ),
there exists a sequence (bn) of constants in (0,∞) such that, for any Borel set B ⊆ Sd and any r > 0,

lim
n→∞

n Pr
(
∥X∥ > bnr,

X
∥X∥
∈ B

)
= lim

n→∞
n Pr(R > bnr) Pr(Dα ∈ B) = r−ρ Pr(Dα ∈ B).

By Corollary 5.18 in [35], X ∈M(H0) where for all x ∈ Rd
+
,

H0(x) = exp
[
−E

{
max

(
Dρ1
xρ1
, . . .,

Dρd
xρd

)}]
.

Let B(·, ·) denote the Beta function. The univariate margins of H0 are given, for all i ∈ {1, . . . , d} and x > 0, by

F0i(x) = exp
{
−x−ρE(Dρi )

}
= exp

{
−x−ρ

B(ρ + αi, ᾱ − αi)
B(αi, ᾱ − αi)

}
= exp

{
−x−ρ

Γ (αi + ρ)Γ (ᾱ)
Γ (ᾱ + ρ)Γ (αi)

}
for i ∈ {1, . . . , d}. The copula of H0 then satisfies, for all u ∈ [0, 1]d,

C0(u) = H0{F−101 (u1), . . . , F−10d (ud)} = exp
(
−
Γ (ᾱ + ρ)
Γ (ᾱ)

E
[
max
1≤i≤d

{
(− ln ui)Γ (αi)D

ρ

i

Γ (αi + ρ)

}])
.

By Eq. (2), the stable tail dependence function of C0 thus indeed equals, for all x ∈ Rd
+
,

ℓ(x) =
Γ (ᾱ + ρ)
Γ (ᾱ)

E
[
max

{
x1Γ (α1)D

ρ

1

Γ (α1 + ρ)
, . . .,

xdΓ (αd)D
ρ

d

Γ (αd + ρ)

}]
.

The part (b) follows directly from Proposition 2.2 in [20] upon setting p = 1 and taking, for i ∈ {1, . . . , d} and j ∈ {1, . . . , d},
λij = 1 whenever i = j and λij = 0 otherwise.

To prove part (c), recall first that from Proposition 1, for i ∈ {1, . . . , d}, Xi ∈M(Ψρ+ᾱ−αi ) and hence there exist sequences
(ani) ∈ (0,∞), (bni) ∈ R, such that for all x ∈ R,

lim
n→∞

n Pr(Xi > anix+ bni) = − ln{Ψρ+ᾱ−αi (x)}.

Next, observe that as in the proof of Proposition 5.27 in [35], X ∈ M(H0) follows if for all 1 ≤ i < j ≤ d and xk such that
Ψρ+ᾱ−αk (xk) > 0 for k ∈ {i, j},

lim
n→∞

n Pr(Xi > anixi + bni, Xj > anjxj + bnj) = 0. (B.1)

To prove that (B.1) indeed holds, it suffices to assume that d = 2. This is because for arbitrary indices 1 ≤ i < j ≤ d, Lemma 2
implies that (Xi, Xj)

d
= R∗(B, 1 − B), where B ∼ B(αi, αj), R∗

d
= RY is independent of B and Y ∼ B(αi + αj, ᾱ − αi − αj) is

independent of B and R. Because Pr(R∗ ≤ 0) = 0, Theorem 4.5 in [19] implies that R∗ ∈M(Ψρ+ᾱ−αi−αj ) when R ∈M(Ψρ) for
some ρ > 0. Thus suppose that d = 2 and write (D1,D2) ≡ (B, 1− B), where B ∼ B(α1, α2). Fix arbitrary x1, x2 ∈ R are such
that Ψρ+ᾱ−αi (xi) > 0 for i ∈ {1, 2}. Then because for any a, c > 0 and b ∈ (0, 1), max{a/b, c/(1− b)} ≥ a+ c , one has

0 ≤ Pr(X1 > an1x1 + bn1, X2 > an2x2 + bn2) = Pr
{
R > max

(
an1x1 + bn1

B
,
an2x2 + bn2

1− B

)}
≤ Pr(R > an1x1 + bn1 + an2x2 + bn2).

In order to prove Eq. (B.1), it thus suffices to show that

lim
n→∞

n Pr(R > an1x1 + bn1 + an2x2 + bn2) = 0. (B.2)

This however follows immediately from the fact that if R ∈ M(Ψρ) for some ρ > 0, the upper end-point r of R, viz.
r = sup{x : Pr(R ≤ x) < 1}, is finite. Because for i = 1, 2, r is also the upper endpoint of Xi, anixi + bni → r as n→∞. This
means that there exists n0 ∈ N so that for all n ≥ n0, an1x1+bn1+an2x2+bn2 > r and Pr(R > an1x1+bn1+an2x2+bn2) = 0.
This proves Eq. (B.1) and hence also Theorem 1(c). Note that alternatively, part (c) could be proved using Theorem 2.1 in [20]
similarly to the proof of Proposition 2.2 therein. □



L.R. Belzile, J.G. Nešlehová / Journal of Multivariate Analysis 160 (2017) 68–92 85

The proof of Theorem 2 requires the following technical lemma.

Lemma 3. Suppose that Dα = (D1, . . . ,Dd) is a Dirichlet random vector with parameters α. Further let R be a positive random
variable independent of Dα such that Pr(R ≤ 0) = 0, and let X = RDα . Then for any 1 ≤ i < j ≤ d and any xi, xj ∈ (0,∞),

lim
n→∞

n Pr
(

1
Xi
> anixi,

1
Xj
> anjxj

)
= 0

if either:

(i) 1/R ∈ M(Φρ) with ρ ∈ [αi ∧ αj, α1 ∨ α2], and for k ∈ {i, j}, (ank) is a sequence of positive constants such that
n Pr(1/Xk > ankxk)→ x−(αk∧ρ)k as n→∞;

(ii) E(1/Rβ ) < ∞ for some β > αi ∨ αj and for k ∈ {i, j}, (ank) is a sequence of positive constants such that n Pr(1/Xk >

ankxk)→ x−αkk as n→∞.

Proof of Lemma 3. Observe first that when d > 2, Lemma 2 implies that (Xi, Xj)
d
= R∗(B, 1− B), where R∗ y B, B ∼ B(αi, αj)

and R∗ = RY , with Y y R and Y ∼ B(αi + αj, ᾱ − αi − αj). Now note that 1/Y ∈ M(Φαi+αj ). Thus if 1/R ∈ M(Φρ) for
ρ ∈ [αi ∧ αj, α1 ∨ α2], ρ < αi + αj and Breiman’s Lemma implies that 1/R∗ ∈ M(Φρ). Further, if E(1/Rβ ) < ∞ for some
β ∈ (αi ∨ αj, αi + αj), E{1/(R∗)β} <∞ given that E(1/Y β ) <∞. We can thus assume without loss of generality that d = 2
and α1 ≤ α2; we shall also write (D1,D2) ≡ (B, 1− B), where B ∼ B(α1, α2).

To prove part (i), note first that the existence of the sequences (ani), (anj) follows from Proposition 2, by which 1/Xk ∈

M(Φρ∧αk ) for k ∈ {i, j}, and the Poisson approximation (12 Proposition 3.1.1). Next, observe that for any constants a, c > 0
and any b ∈ (0, 1),

ac
a+ c

≤ ab ∨ c(1− b) < a ∨ c. (B.3)

Indeed, when b < c/(a+c), ab∨c(1−b) = c(1−b) and c(1−b) ∈ (ac/(a+c), c), whilewhen b ≥ c/(a+c), ab∨c(1−b) = ab
and ab ∈ [ac/(a+ c), a). To show the claim in part (i), distinguish the cases below:

Case I. α1 = α2. Here, ρ = α1 = α2 and X1
d
= X2, so that an1/an2 → 1 by the Convergence to Types Theorem [35]. By

Eq. (B.3),

0 ≤ n Pr
(

1
X1
> an1x1,

1
X2
> an2x2

)
= n Pr

[
1
R
> max{an1x1B, an2x2(1− B)}

]
≤ n Pr

(
1
R
>

an1an2x1x2
an1x1 + an2x2

)
. (B.4)

Because (x1x2)/{(an1/an2)x1 + x2} → (x1x2)/(x1 + x2) as n→∞,

lim
n→∞

n Pr
(

1
X1
>

an1an2x1x2
an1x1 + an2x2

)
=

(
x1x2

x1 + x2

)−α1
.

Furthermore, by Lemma 1, given that (an1an2x1x2)/(an1x1 + an2x2)→∞ as n→∞,

lim
n→∞

Pr
(
1/R > an1an2x1x2

an1x1+an2x2

)
Pr
(
1/X1 >

an1an2x1x2
an1x1+an2x2

) = 0,

so that the right-hand side in Eq. (B.4) tends to 0 as n→∞, and this implies the claim.
Case II. α1 < α2 and ρ = α2. Then for i ∈ {1, 2}, there exists a slowly varying function Li such that ani = n1/αiLi(n). Hence

an2/an1 → 0 and (x1x2)/{x1 + x2(an2/an1)} → x2 as n→∞. Consequently,

lim
n→∞

n Pr
(

1
X2
>

an1an2x1x2
an1x1 + an2x2

)
= x−α22 .

Moreover, by Lemma 1, given that (an1an2x1x2)/(an1x1 + an2x2)→∞ as n→∞,

lim
n→∞

Pr
(
1/R > an1an2x1x2

an1x1+an2x2

)
Pr
(
1/X2 >

an1an2x1x2
an1x1+an2x2

) = 0,

so that again the right-hand side in Eq. (B.4) tends to 0 as n→∞.
Case III. α1 < α2 and ρ ∈ [α1, α2). In this case, 1/X1 ∈ M(Φα1 ) and 1/X2 ∈ M(Φρ). Therefore, either directly when

ρ > α1 or by Lemma 1, one can easily deduce that

lim
x→∞

Pr(1/R > x)
Pr(1/X1 > x)

= 0. (B.5)
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At the same time, Breiman’s Lemma [5] implies that

lim
x→∞

Pr(1/R > x)
Pr(1/X2 > x)

=
1

E{1/(1− B)ρ}
=

B(α1, α2)
B(α1, α2 − ρ)

. (B.6)

Hence, for any b ∈ (0, 1), the limit of n Pr {1/R > an2x2(1− b)} as n→∞ equals

lim
n→∞

n Pr {1/X2 > an2x2(1− b)}
Pr {1/R > an2x2(1− b)}
Pr {1/X2 > an2x2(1− b)}

= {x2(1− b)}−ρ
B(α1, α2)

B(α1, α2 − ρ)

so that

lim
n→∞

∫ 1

0
n Pr{1/R > an2x2(1− b)}

bα1−1(1− b)α2−1

B(α1, α2)
db = n Pr(1/X2 > an2x2) = x−ρ2

= x−ρ2

∫ 1

0

bα1−1(1− b)α2−ρ−1

B(α1, α2 − ρ)
db =

∫ 1

0
lim
n→∞

n Pr{1/R > an2x2(1− b)}
bα1−1(1− b)α2−1

B(α1, α2)
db. (B.7)

Given that for any b ∈ (0, 1), Pr{1/R > an1x1b, 1/R > an2x2(1− b)} ≤ Pr{1/R > an2x2(1− b)},∫ 1

0
lim inf
n→∞

(
n
[
Pr{1/R > an2x2(1− b)} − Pr{1/R > an1x1b, 1/R > an2x2(1− b)}

])bα1−1(1− b)α2−1

B(α1, α2)
db

≤ lim inf
n→∞

∫ 1

0
n
[
Pr{1/R > an2x2(1− b)} − Pr{1/R > an1x1b, 1/R > an2x2(1− b)}

]bα1−1(1− b)α2−1

B(α1, α2)
db

by Fatou’s Lemma. Because of Eq. (B.7), this inequality simplifies to

x−ρ2 −

∫ 1

0
lim sup
n→∞

[
n Pr{1/R > an1x1b, 1/R > an2x2(1− b)}

]bα1−1(1− b)α2−1

B(α1, α2)
db

≤ x−ρ2 − lim sup
n→∞

∫ 1

0
n Pr{1/R > an1x1b, 1/R > an2x2(1− b)}

bα1−1(1− b)α2−1

B(α1, α2)
db

and hence

0 ≤ lim sup
n→∞

{
n Pr(1/X1 > an1x1, 1/X2 > an2x2)

}
≤

∫ 1

0
lim sup
n→∞

[
n Pr{1/R > an1x1b, 1/R > an2x2(1− b)}

] bα1−1(1− b)α2−1

B(α1, α2)
db.

To show the desired claim, it thus suffices to show that for arbitrary b ∈ (0, 1),

lim
n→∞

n Pr{1/R > an1x1b, 1/R > an2x2(1− b)} = 0. (B.8)

To this end, fix b ∈ (0, 1) and observe that an1/an2 → ∞. Indeed, if ρ > α1, this follows directly from the fact that
an1 = n1/α1L1(n) and an2 = n1/ρL2(n) for some slowly varying functions L1, L2. When ρ = α1, suppose that lim infn→∞an1/an2
were finite. Then there exists a subsequence ank1/ank2 such that ank1/ank2 → a as k→∞ for some a ∈ [0,∞). Hence, for a
fixed ε > 0 and all k ≥ k0, ank1/ank2 ≤ a+ ε. Using the latter observation and Eq. (B.6),

lim
k→∞

nk Pr(1/R > ank1) ≥ lim
k→∞

nk Pr{1/R > ank2(a+ ε)}

= lim
k→∞

nk Pr{1/X2 > ank2(a+ ε)}
Pr{1/R > ank2(a+ ε)}
Pr{1/X2 > ank2(a+ ε)}

= (a+ ε)−ρ
B(α1, α2)

B(α1, α2 − ρ)
> 0.

At the same time, by Eq. (B.5),

lim
k→∞

nk Pr(1/R > ank1) = lim
k→∞

nk Pr(1/X1 > ank1)
Pr(1/R > ank1)
Pr(1/X1 > ank1)

= 0

and hence a contradiction. Therefore, lim infn→∞an1/an2 = ∞ and hence an1/an2 →∞ as n→∞. Because an1b > an2(1−b)
if and only if b > an2/(an1 + an2) and an2/(an1 + an2)→ 0 as n→∞, there exists n0 such that for all n ≥ n0,

n Pr{1/R > an1x1b, 1/R > an2x2(1− b)} = n Pr(1/R > an1x1b) = n Pr(1/X1 > an1x1b)
Pr(1/R > an1x1b)
Pr(1/X1 > an1x1b)

.

The last expression tends to 0 as n→∞ by Eq. (B.5) and hence Eq. (B.8) indeed holds.
To prove part (iv), first recall that by Proposition 2 (b), 1/Xi ∈ M(Φαi ) for i ∈ {1, 2}, and hence there exist scaling

sequences (an1) and (an2). Recall that for each i ∈ {1, 2}, ani = n1/αiLi(n) for some slowly varying function Li. As in the proof
of part (i), n Pr(1/X1 > an1x1, 1/X2 > an2x2) can be bounded above by the right-hand side in Eq. (B.4). Markov’s inequality
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further implies that for β ∈ (α2, α1 + α2) such that E(1/Rβ ) <∞,

n Pr
(
1
R
>

an1an2x1x2
an1x1 + an2x2

)
≤ nE

(
1/Rβ

) (an1x1 + an2x2)β

(an1an2x1x2)β
=

E
(
1/Rβ

)
(x1x2)β

{
x1

n1/α2−1/βL2(n)
+

x2
n1/α1−1/βL1(n)

}β
.

The right-most expression tends to 0 as n→∞ because for any i ∈ {1, 2} and ρ > 0, nρLi(n)→∞. □

Proof of Theorem 2. First note that a positive random vector Y is in the maximum domain of attraction of a multivariate
extreme-value distribution H0 with Fréchet margins if and only if there exist sequences of positive constants (ani) ∈ (0,∞),
i ∈ {1, . . . , d}, so that, for all y ∈ Rd

+
,

lim
n→∞

n{1− Pr(Y1 ≤ an1y1, . . ., Yd ≤ andyd)} =

lim
n→∞

n

⎧⎨⎩
d∑

k=1

∑
1≤i1<···<ik≤d

(−1)k+1 Pr(Yi1 > ani1yi1 , . . ., Yik > anikyik )

⎫⎬⎭ = − lnH0(y). (B.9)

This multivariate version of the Poisson approximation holds by the same argument as in the univariate case ([12]
Proposition 3.1.1).

To prove part (a), suppose that 1/R ∈ M(Φρ) for some ρ ∈ (0, αM ]. By Proposition 2, one then has that for any i ∈ I1,
1/(RDi) ∈M(Φαi ). For any i ∈ I1, let (ani) be a sequence of positive constants such that, for all x > 0, n Pr{1/(RDi) > anix} →
x−αi as n→∞; such a sequence exists by the univariate Poisson approximation (12 Proposition 3.1.1). The same result also
guarantees the existence of a sequence (an) of positive constants such that, for all x > 0, n Pr(1/R > anx)→ x−ρ as n→∞.
Now set, for any i ∈ I2,

bi = E
(
D−ρi

)
=
Γ (αi − ρ)Γ (ᾱ − αi)

Γ (ᾱ − ρ)
×

Γ (ᾱ)
Γ (αi)Γ (ᾱ − αi)

=
Γ (ᾱ)/Γ (ᾱ − ρ)
Γ (αi)/Γ (αi − ρ)

, (B.10)

and define, for any i ∈ I2 and n ∈ N, ani = b1/ρi an. As detailed in the proof of Proposition 2 (a), Breiman’s Lemma then implies
that, for all i ∈ I2 and x > 0,

lim
n→∞

n Pr
{

1
RDi

> anix
}
= lim

n→∞
n Pr

{
1
R
> an(b

1/ρ
i x)

} Pr
{

1
RDi
> an(b

1/ρ
i x)

}
Pr
{

1
R > an(b

1/ρ
i x)

} = x−ρb−1i bi = x−ρ,

given that for all i ∈ I2, Di ∼ B(αi, ᾱ − αi).
Next, fix an arbitrary x ∈ (0,∞)d, k ∈ {2, . . . , d} and indices 1 ≤ i1 < · · · < ik ≤ d. To calculate the limit of

n Pr(1/(RDi1 ) > ani1xi1 , . . ., 1/(RDik ) > anikxik ), two cases must be distinguished.
Case I: {i1, . . . , ik} ∩ I1 ̸= ∅. In this case, suppose, without loss of generality, that i1 ∈ I1. Then

0 ≤ n Pr
(

1
RDi1

> ani1xi1 , . . .,
1

RDik
> anikxik

)
≤ n Pr

(
1

RDi1
> ani1xi1 ,

1
RDi2

> ani2xi2

)
.

Now either i2 ∈ I1, in which case ρ ≥ αi1 ∨ αi2 , or i2 ∈ I2, so that αi1 ≤ ρ < αi2 . Either way, Lemma 3 implies that

lim
n→∞

n Pr
(

1
RDi1

> ani1xi1 ,
1

RDi2
> ani2xi2

)
= 0

and consequently n Pr{1/(RDi1 ) > ani1xi1 , . . ., 1/(RDik ) > anikxik} → 0 as n→∞.
Case II: {i1, . . . , ik}∩ I1 = ∅. In this case, let Zi1,...,ik = max(xi1 (bi1 )

1/ρDi1 , . . ., xik (bik )
1/ρDik ) and observe that for any ε > 0

such that ρ + ε < min(α1, . . ., αd),

E

(
1

Zρ+εi1,...,ik

)
≤ x−ρ−εi1

b−(ρ+ε)/ρi1
E

(
1

Dρ+εi1

)
<∞.

Therefore, by Breiman’s Lemma,

lim
n→∞

n Pr
(

1
RDi1

> ani1xi1 , . . .,
1

RDik
> anikxik

)
= lim

n→∞
n Pr

(
1

RZi1,...,ik
> an

)
= E

(
Z−ρi1,...,ik

)
= E

[{
max
1≤j≤k

(
xijb

1/ρ
ij

Dij

)}−ρ]
= E

[
min
1≤j≤k

{(
xijDij

)−ρ
bij

}]
.

Putting the above calculations together, one then has, for any x ∈ Rd
+
,

lim
n→∞

n
{
1− Pr

(
1

RD1
≤ an1x1, . . .,

1
RDd
≤ andxd

)}
=

∑
i∈I1

x−αii +

|I2|∑
k=1

∑
{i1,...,ik}⊆I2
i1<···<ik

(−1)k+1E

[
min
1≤j≤k

{(
xijDij

)−ρ
bij

}]
.
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Furthermore, one can readily establish by induction that for any t ∈ Rd,
|I2|∑
k=1

∑
{i1,...,ik}⊆I2
i1<···<ik

(−1)k+1 min(ti1 , . . ., tik ) = max
i∈I2

(ti).

Hence, for any x ∈ Rd
+
,

lim
n→∞

n
{
1− Pr

(
1

RD1
≤ an1x1, . . .,

1
RDd
≤ andxd

)}
=

∑
i∈I1

x−αii + E
[
max
i∈I2

{
(xiDi)

−ρ

bi

}]
.

By the multivariate Poisson approximation (B.9), 1/X ∈M(H0), where for all x ∈ Rd
+
,

H0(x) = exp

⎛⎝−∑
i∈I1

x−αii − E
[
max
i∈I2

(
(xiDi)−ρ

bi

}]⎞⎠ .
The univariate margins of H0 are given, for all i ∈ I1, by F0i(x) = x−αi and for all i ∈ I2, F0i(x) = exp(−x−ρ). By Sklar’s
Theorem, the unique copula of H0 is given, for all u ∈ [0, 1]d, by (2), where for all x ∈ Rd

+
,

ℓ(x) =
∑
i∈I1

xi + E

{
max
i∈I2

(
xiD
−ρ

i

bi

)}
.

The first expression for ℓ follows immediately from Eq. (B.10). The second expression is readily verified using Lemma 2, given
the fact that if B ∼ Beta(ᾱ2, ᾱ − ᾱ2), E(B−ρ) = Γ (ᾱ2 − ρ)Γ (ᾱ)/Γ (ᾱ − ρ)Γ (ᾱ2).

To prove part (b), recall that by Proposition 2 (b), 1/Xi ∈M(Φαi ). Hence, there exist sequences of positive constants (ani),
i ∈ {1, . . . , d}, such that for all i ∈ {1, . . . , d} and all x > 0, n Pr(1/(RDi) > anix)→ x−αi as n→∞. By Lemma 2 (ii), it also
follows that for arbitrary x ∈ (0,∞)d, k ∈ {2, . . . , d} and indices 1 ≤ i1 < · · · < ik ≤ d,

0 ≤ lim
n→∞

n Pr
(

1
RDi1

> ani1xi1 , . . .,
1

RDik
> anikxik

)
≤ lim

n→∞
n Pr

(
1

RDi1
> ani1xi1 ,

1
RDi2

> ani2xi2

)
= 0.

Thus, by Eq. (B.9), 1/X is in the domain of attraction of the multivariate extreme-value distribution given, for all x ∈ Rd
+
, by

H0(x) = exp(−x−α11 − · · · − x−αdd ), as was to be showed. □

Appendix C. Proofs from Section 4

Proof of Proposition 3. In view of Corollary 1 and Theorem 2 in [27], it only remains to derive the explicit expression for
ℓnD. Because 1−ψ(1/·) ∈ R−ρ , there exists a slowly varying function L such that for all x > 0, 1−ψ(1/x) = x−ρL(x). Given
that the distribution functionψ(1/·) is in the domain of attraction ofΦρ , the Poisson approximation implies that there exists
a sequence (an) of positive constants such that, for all x > 0,

lim
n→∞

n [1− ψ{1/(anx)}] = lim
n→∞

n(anx)−ρL(anx) = x−ρ . (C.1)

Furthermore, by Equation (A6) in the proof of Theorem 2 (a) in [27], one has, for any j ∈ {1, . . . , ᾱ − 2},

lim
x→∞

(−1)jx−jψ (j)(1/x)
κjx−ρL(x)

= 1, (C.2)

where κj = ρΓ (j− ρ)/Γ (1− ρ). Now for all i ∈ {1, . . . , d}, Eq. (7) yields, for any x > 0,

n Pr
(

1
Xi
> anx

)
= n

{
1− H̄i

(
1
anx

)}
= n(anx)−ρL(anx)

⎧⎨⎩1−
αi−1∑
j=1

(−1)j(anx)−jψ (j)(1/anx)
j!(anx)−ρL(anx)

⎫⎬⎭ .
Given that an →∞ as n→∞, the last expression converges by Eqs. (C.1) and (C.2) as n→∞ to

x−ρ

⎧⎨⎩1−
αi−1∑
j=1

κj

j!

⎫⎬⎭ = x−ρ

⎧⎨⎩1− ρ
αi−1∑
j=1

Γ (j− ρ)
Γ (j+ 1)Γ (1− ρ)

⎫⎬⎭ = x−ρ
c(αi,−ρ)
Γ (1− ρ)

.

The Poisson approximation thus implies that, as n→∞, for all i ∈ {1, . . . , d} and x > 0,

H̄n
i

(
1
anx

)
→ exp

{
−x−ρ

c(αi,−ρ)
Γ (1− ρ)

}
. (C.3)
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For any x ∈ (0,∞)d, let 1/(anx) = {1/(anx1), . . . , 1/(anxd)} and denote by x̄H the harmonic mean of x, viz. x̄H =
d/(1/x1 + · · · + 1/xd). From Eq. (6) one then has

n
{
1− H̄

(
1
anx

)}

= n
(
anx̄H
d

)−ρ
L
(
anx̄H
d

)⎧⎪⎪⎨⎪⎪⎩1−
∑

(j1,...,jd)∈Iα
(j1,...,jd)̸=0d

(−1)j1+···+jd
(

an x̄H
d

)−j1−···−jd
ψ (j1+···+jd)

(
d

an x̄H

)
j1! · · · jd!

(
an x̄H
d

)−ρ
L
(

an x̄H
d

) d∏
i=1

(
x̄H
dxi

)ji

⎫⎪⎪⎬⎪⎪⎭ .
By Eq. (C.2), the right most expression in the curly brackets converges, as n→∞, to

1− ρ
∑

(j1,...,jd)∈Iα
(j1,...,jd)̸=0d

Γ (j1 + · · · + jd − ρ)
Γ (1− ρ)j1! · · · jd!

d∏
i=1

(
x̄H
dxi

)ji

= 1− ρ
∑

(j1,...,jd)∈Iα
(j1,...,jd)̸=0d

Γ (j1 + · · · + jd − ρ)
Γ (1− ρ)

d∏
i=1

1
Γ (ji + 1)

(
1/xi

1/x1 + · · · + 1/xd

)ji
.

Furthermore, Eq. (C.1) implies that, as n→∞,

n
(
anx̄H
d

)−ρ
L
(
anx̄H
d

)
→

(
1
x1
+ · · · +

1
xd

)ρ
.

Consequently, as n→∞, n{1− H̄(1/anx)} → − lnH0(x), where

− lnH0(x) =
(

1
x1
+ · · · +

1
xd

)ρ ⎧⎪⎪⎨⎪⎪⎩1− ρ
∑

(j1,...,jd)∈Iα
(j1,...,jd)̸=0d

Γ (j1 + · · · + jd − ρ)
Γ (1− ρ)

d∏
i=1

1
Γ (ji + 1)

⎛⎝ 1/xi∑d
j=1

1
xj

⎞⎠ji
⎫⎪⎪⎬⎪⎪⎭ .

By Eq. (B.9), 1/X ∈M(H0). From Eq. (C.3), the univariate margins of H0 are scaled Fréchet, and Sklar’s theorem implies that
the unique copula of H0 is of the form (2) with stable tail dependence function as in Proposition 3. □

Proof of Proposition 4. In view of Corollary 2 and Theorem 1 in [27], it only remains to compute the expression for ℓpD
given in part (a). Suppose thatψ ∈ R−ρ for some ρ > 0. This means that there exists a slowly varying function such that for
all x > 0, ψ(x) = x−ρL(x). Because ψ is itself a survival function, ψ ∈M(Φρ) and by the univariate Poisson approximation,
there exists a sequence (an) of strictly positive constants such that, for all x > 0,

lim
n→∞

nψ(anx) = x−ρ . (C.4)

Furthermore, by Equation (A1) in the proof of Theorem 1 (a) in [27], one has, for any j ∈ {1, . . . , ᾱ − 1},

lim
x→∞

(−1)jxjψ (j)(x)
ψ(x)

= c(j, ρ). (C.5)

Now let X be the Dirichlet random vector with parameters α and radial part R whose Williamson ᾱ-transform is ψ . Denote
the distribution function of X by H and its univariate margins by F1, . . . , Fd. Then for all i ∈ {1, . . . , d}, Eqs. (C.4) and (C.5)
imply that

lim
n→∞

nF̄i(anx) = lim
n→∞

n
αi−1∑
j=0

(−1)j(anx)jψ (j)(anx)
j!

= x−ρ
αi−1∑
j=0

Γ (j+ ρ)
Γ (ρ)Γ (j+ 1)

=
x−ρc(αi, ρ)
Γ (ρ + 1)

(C.6)

and hence, by the Poisson approximation, F n
i (x)→ exp{−x−ρc(αi, ρ)/Γ (ρ + 1)} as n→∞.

Next, for arbitrary k ∈ {1, . . . , d} and 1 ≤ i1 < · · · < ik ≤ d, let I(αi1 ,...,αik ) = {0, . . . , αi1 − 1} × · · · × {0, . . . , αik − 1}. For
any x ∈ (0,∞)d, Eqs. (6), (C.4) and (C.5) imply that

lim
n→∞

n Pr(Xi1 > xi1 , . . ., Xik > xik ) = lim
n→∞

n
∑

(j1,...,jk)∈I(αi1 ,...,αik )

(−1)j1+···+jk
ψ (j1+···+jk){an(xi1 + · · · + xik )}

j1! · · · jk!

k∏
m=1

(anxim )
jm

= (xi1 + · · · + xik )
−ρ

∑
(j1,...,jk)∈I(αi1 ,...,αik )

Γ (j1 + · · · + jk + ρ)
Γ (ρ)j1! · · · jk!

k∏
m=1

(
xim

xi1 + · · · + xik

)jm

.
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Therefore, for any x ∈ (0,∞)d,

lim
n→∞

n

⎧⎨⎩
d∑

k=1

∑
1≤i1<···<ik≤d

(−1)k+1 Pr(Xi1 > anxi1 , . . ., Xik > anxik )

⎫⎬⎭ = − lnH0(x),

where

− lnH0(x) =
d∑

k=1

∑
1≤i1<···<ik≤d

(−1)k+1(xi1 + · · · + xik )
−ρ

∑
(j1,...,jk)∈I(αi1 ,...,αik )

Γ (j1 + · · · + jk + ρ)
Γ (ρ)j1! · · · jk!

k∏
m=1

(
xim

xi1 + · · · + xik

)jm

.

By Eq. (B.9), X ∈ M(H0). As argued above, the univariate margins of H0 are given, for all i ∈ {1, . . . , d} and x > 0, by
exp{−x−ρc(αi, ρ)/Γ (ρ + 1)}. Sklar’s theorem thus implies that the unique copula of H0 is of the form (2) with stable tail
dependence function indeed as given by the expression in part (a). □

Appendix D. Proofs from Section 5

Proof of Proposition 5. First, we show that for any ρ > −min(α1, . . ., αd), ρ ̸= 0,

E
[
max
1≤i≤d

{
xiD

ρ

i

c(αi, ρ)

}]
=

Γ (ᾱ)

|ρ|d−1
∏d

i=1 Γ (αi)

∫
Sd

max(xiti)

[
d∑

i=1

{c(αi, ρ)ti}1/ρ
]−ρ−ᾱ d∏

i=1

{c(αi, ρ)}αi/ρ(ti)αi/ρ−1dt . (D.1)

Indeed, using the fact that (D1, . . . ,Dd)
d
= Z/∥Z∥, where Zi ∼ G(αi, 1), i ∈ {1, . . . , d}, are independent,

E
[
max
1≤i≤d

{
xiD

ρ

i

c(αi, ρ)

}]
=

∫
Rd
+

max
1≤i≤d

{
xiz

ρ

i

c(αi, ρ)

}
(z1 + · · · + zd)−ρ

d∏
i=1

e−zizαi−1i

Γ (αi)
dz.

Make a change of variable ti = {z
ρ

i /c(αi, ρ)}/
∑d

j=1z
ρ

j /c(αj, ρ) for i ∈ {1, . . . , d − 1} and w =
∑d

j=1z
ρ

j /c(αj, ρ). For ease of
notation, set also td = 1 − (t1 + · · · + td−1). Then, for i ∈ {1, . . . , d}, zi = {c(αi, ρ)tiw}1/ρ and the absolute value of the
Jacobian is

|J| =
1
|ρ|d

wd/ρ−1
d∏

i=1

c(αi, ρ)1/ρ t
1/ρ−1
i .

Therefore,

E
[
max
1≤i≤d

{
xiD

ρ

i

c(αi, ρ)

}]
=

1

|ρ|d
∏d

i=1 Γ (αi)

∫
Sd

max
1≤i≤d

(xiti)

[
d∑

i=1

{c(αi, ρ)ti}1/ρ
]−ρ d∏

i=1

c(αi, ρ)αi/ρ t
αi/ρ−1
i

×

∫
∞

0
wᾱ/ρ−1e−w

1/ρ∑d
i=1{c(αi,ρ)ti}

1/ρ
dwdt .

Eq. (D.1) now follows from the fact that∫
∞

0
wᾱ/ρ−1e−w

1/ρ∑d
i=1{c(αi,ρ)ti}

1/ρ
dw = |ρ|Γ (ᾱ)

[
d∑

i=1

{c(αi, ρ)ti}1/ρ
]−ᾱ
.

The expression for hD now follows directly from Eqs. (3) and (D.1), while the formulas for hpD and hnD obtain upon setting
ρ = ρ and ρ = −ρ, respectively. □

Appendix E. Proofs from Section 7

Proof of Proposition 6. For each k ∈ {1, . . . , d}, the formula for the kth order mixed partial derivatives of ℓD(1/x)
can be established from Eq. (12). Indeed, if V denotes a random vector with independent scaled Gamma components
Vi ∼ SG{1/c(αi, ρ), 1/ρ, αi}, then the point process representation Eq. (12) implies that, for all x ∈ Rd

+
,

ℓD(1/x) =
∫
∞

0
Pr
(
Vi

t
> xi for at least one i ∈ {1, . . ., d}

)
dt =

∫
∞

0

[
1−

d∏
i=1

F
{
xit;

1
c(αi, ρ)

,
1
ρ
, αi

}]
dt. (E.1)
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For any k ∈ {1, . . . , d}, the expression on the right-hand side of Eq. (E.1) can be differentiated with respect to x1, . . . , xk
under the integral sign. This gives the formulas for ∂ℓD(1/x)/∂x1 · · · ∂xk. When k = d, Eq. (E.1) implies that

∂dℓD(1/x)
∂x1 · · · ∂xd

= −

∫
∞

0
td

d∏
i=1

f
{
xit;

1
c(αi, ρ)

,
1
ρ
, αi

}
dt

=
1
ρd

d∏
j=1

c(αj, ρ){c(αj, ρ)xj}αj/ρ−1

Γ (αj)

∫
∞

0
tαj/ρ exp

⎡⎣−t1/ρ d∑
j=1

{c(αj, ρ)xj}1/ρ

⎤⎦ dt

=
Γ (ᾱ + ρ)

ρd−1
[∑d

j=1{c(αj, ρ)xj}1/ρ
]ᾱ+ρ d∏

j=1

c(αj, ρ){c(αj, ρ)xj}αj/ρ−1

Γ (αj)
,

where the last equality follows uponmaking the change of variable u =
∑d

j=1{c(αj, ρ)xj}1/ρ t1/ρ . Alternatively, Theorem 1 in
[7] implies that the dth order mixed partial derivative of ℓD(1/x) equals−d∥x∥−d−1hD(x/∥x∥; ρ,α), which indeed simplifies
to−dhD(x; ρ,α) given that hD(x/∥x∥; ρ,α) = ∥x∥d+1hD (x; ρ,α).

Finally, the formulas for F (x; a, b, c) follow immediately from the fact that the scaled Gamma distribution is also the
distribution of the random variable aZ1/b, where Z is Gamma with shape c and unit scaling. □

Derivation of the gradient score. Straightforward calculations show that

∂ ln dhD(x)
∂xi

= −
(ᾱ + ρ)c(αi, ρ)1/ρx

1/ρ−1
i

ρ
∑d

j=1{c(αj, ρ)xj}1/ρ
+

(
αi

ρ
− 1

)
1
xi

∂2 ln dhD(x)
∂xi∂xk

= −
(ᾱ + ρ)c(αi, ρ)1/ρx

1/ρ−1
i

ρ
∑d

j=1{c(αj, ρ)xj}1/ρ

[(
1
ρ
− 1

)
Iik
xi
−

c(αk, ρ)1/ρx
1/ρ−1
k

ρ
∑d

j=1{c(αj, ρ)xj}1/ρ

]
−

(
αi

ρ
− 1

)
Iik
x2i
.

Appendix F. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jmva.2017.05.008.
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