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a b s t r a c t

This article contributes to the current statistical theory of deep neural networks (DNNs).
It was shown that DNNs are able to circumvent the so-called curse of dimensionality in
case that suitable restrictions on the structure of the regression function hold. In most
of those results the tuning parameter is the sparsity of the network, which describes the
number of non-zero weights in the network. This constraint seemed to be the key factor
for the good rate of convergence results. Recently, the assumption was disproved. In
particular, it was shown that simple fully connected DNNs can achieve the same rate of
convergence. Those fully connected DNNs are based on the unbounded ReLU activation
function. In this article we extend the results to smooth activation functions, i.e., to the
sigmoid activation function. It is shown that estimators based on fully connected DNNs
with sigmoid activation function also achieve the minimax rates of convergence (up to
ln n-factors). In our result the number of hidden layers is fixed, the number of neurons
per layer tends to infinity for sample size tending to infinity and a bound for the weights
in the network is given.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Deep neural networks (DNNs) have been shown great success in various tasks like pattern recognition and nonpara-
etric regression (see, e.g., the monographs [1,7,10,13,14,23]). Unfortunately, little is yet known about why this method

s so successful in practical applications. In particular, there is still a gap between the practical use and the theoretical
nderstanding, which have to be filled to provide a method which is efficient and reliable. This article is inspired to
ontribute to the current statistical theory of DNNs. The most convenient way to do this is to analyze DNNs in the context
f nonparametric regression.

.1. Nonparametric regression

In nonparametric regression a Rd
×R-valued random vector (X, Y ) satisfying E{Y 2

} < ∞ is considered. Given a sample
of size n of (X, Y ), i.e., given a data set

Dn = {(X1, Y1), . . . , (Xn, Yn)} ,
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here (X, Y ), (X1, Y1), . . . , (Xn, Yn) are i.i.d., the aim is to construct an estimator

mn(·) = mn(·,Dn) : Rd
→ R

f the so-called regression function m : Rd
→ R, m(x) = E{Y |X = x} such that the so-called L2 error∫

|mn(x) − m(x)|2PrX(dx)

s ‘‘small’’ (cf., e.g., [10] for a systematic introduction to nonparametric regression and a motivation for the L2 error).

.2. Neural networks

In order to construct such regression estimators with DNNs, the first step is to define a suitable space of functions
: Rd

→ R by using neural networks. The starting point here is the choice of an activation function σ : R → R.
raditionally, so-called squashing functions are chosen as activation function σ : R → R, which are nondecreasing and
atisfy limx→−∞ σ (x) = 0 and limx→∞ σ (x) = 1, e.g., the so-called sigmoid activation function

σ (x) =
1

1 + exp(−x)
, x ∈ R. (1)

Recently, also unbounded activation functions are used, e.g., the ReLU activation function σ (x) = max{x, 0}.
The network architecture (L, k) depends on a positive integer L called the number of hidden layers and a width vector

k = (k1, . . . , kL) ∈ NL that describes the number of neurons in the first, second, . . ., Lth hidden layer. A feedforward DNN
with network architecture (L, k) and sigmoid activation function σ is a real-valued function defined on Rd of the form

f (x) =

kL∑
i=1

c(L)1,i f
(L)
i (x) + c(L)1,0 (2)

for some c(L)1,0, . . . , c
(L)
1,kL

∈ R and for f (L)i ’s recursively defined by

f (s)i (x) = σ

⎛⎝ks−1∑
j=1

c(s−1)
i,j f (s−1)

j (x) + c(s−1)
i,0

⎞⎠ (3)

for some c(s−1)
i,0 , . . . , c(s−1)

i,ks−1
∈ R, s ∈ {2, . . . , L}, and

f (1)i (x) = σ

⎛⎝ d∑
j=1

c(0)i,j x
(j)

+ c(0)i,0

⎞⎠ (4)

for some c(0)i,0 , . . . , c(0)i,d ∈ R. The space of DNNs with L hidden layers, r neurons per layer and all coefficients bounded by
α is defined by

F(L, r, α) = {f : f is of the form (2) with k1 = k2 = · · · = kL = r, |c(ℓ)i,j | ≤ α for all i, j, ℓ}. (5)

Since the networks of this function space are only defined by its width and depth (and by a bound for the weights in the
network) we refer to this function space, as in [29] and [18] as fully connected DNNs.

1.3. Least squares estimator

A corresponding estimator can then be defined with the principle of least squares. In particular, we choose L = Ln
hidden layers, a number r = rn of neurons per hidden layer and bound α = αn for all coefficients in the network in
dependence to the sample size. The fully connected DNN regression estimator is then defined as the minimizer of the
so-called empirical L2 risk over the function space F(Ln, rn, αn), which results in

mn(·) = arg min
f∈F(Ln,rn,αn)

1
n

n∑
i=1

|f (Xi) − Yi|
2.

For simplicity we assume here and in the sequel that the minimum above indeed exists. When this is not the case our
theoretical results also hold for any estimator which minimizes the above empirical L risk up to a small additional term.
2
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.4. Curse of dimensionality

In order to judge the quality of such estimators theoretically, usually the rate of convergence of the L2 error is
onsidered. It is well-known, that smoothness assumptions on the regression function are necessary in order to derive
on-trivial results on the rate of convergence (see, e.g., Theorem 7.2 and Problem 7.2 in [7] and Section 3 in [8]). For that
urpose, we introduce the following definition of (p, C)-smoothness.

efinition 1. Let p = q + s for some q ∈ N0 and 0 < s ≤ 1. A function m : Rd
→ R is called (p, C)-smooth, if for every

= (α1, . . . , αd) ∈ Nd
0 with

∑d
j=1 αj = q the partial derivative ∂qm/(∂xα1

1 . . . ∂xαd
d ) exists and satisfies⏐⏐⏐⏐ ∂qm

∂xα1
1 . . . ∂xαd

d
(x) −

∂qm
∂xα1

1 . . . ∂xαd
d

(z)
⏐⏐⏐⏐ ≤ C∥x − z∥s

for all x, z ∈ Rd, where ∥ · ∥ denotes the Euclidean norm.

For this function space the optimal minimax rate of convergence in nonparametric regression is given by

n−2p/(2p+d)

(see, e.g., [26]). This rate suffers from a characteristic feature in case of high-dimensional functions: If d is relatively large
compared to p, then this rate of convergence can be extremely slow. This phenomenon is well-known as the curse of
dimensionality and the only way to circumvent it is by imposing additional assumptions on the regression function. [27,28]
assumed some additive structure on the regression function and showed some optimal minimax rate of convergence
independent of the input dimension d. Other classes like a so-called single index models, in which

m(x) = g(a⊤x), x ∈ Rd

s assumed to hold, where g : R → R is a univariate function and a ∈ Rd is a d-dimensional vector were considered
in [11,12,20,30]. Related to this is the so-called projection pursuit, where the regression function is assumed to be a sum
of functions of the above form, i.e.,

m(x) =

K∑
k=1

gk(a⊤

k x), x ∈ Rd

for K ∈ N, gk : R → R and ak ∈ Rd (see, e.g., [9]). If we assume that the univariate functions in these postulated structures
are (p, C)-smooth, adequately chosen regression estimators can achieve the above univariate rates of convergence up to
some logarithmic factor (cf., e.g., Chapter 22 in [10]). [15] studied the case of a regression function, which satisfies

m(x) = g

⎛⎝ L1∑
ℓ1=1

gℓ1

⎛⎝ L2∑
ℓ2=1

gℓ1,ℓ2

(
. . .

Lr∑
ℓr=1

gℓ1,...,ℓr (x
ℓ1,...,ℓr )

)⎞⎠⎞⎠ ,

where g, gℓ1 , . . . , gℓ1,...,ℓr : R → R are (p, C)-smooth univariate functions and xℓ1,...,ℓr are single components of x ∈ Rd

(not necessarily different for two different indices (ℓ1, . . . , ℓr )). With the use of a penalized least squares estimator, they
proved that in this setting the rate n−2p/(2p+1) can be achieved.

1.5. Related results for DNNs

The rate of convergence of neural networks regression estimators has been analyzed by [3–6,16,17,22,25]. For the L2
rror of a single hidden layer neural network, [5] proves a dimensionless rate of n−1/2 (up to some logarithmic factor),
rovided the Fourier transform has a finite first moment (which basically requires that the function becomes smoother
ith increasing dimension d of X). [22] showed a rate of n(−2p/(2p+d+5))+ε for the L2 error of suitably defined single hidden

layer neural network estimator for (p, C)-smooth functions, but their study was restricted to the use of a certain cosine
squasher as the activation function. The rate of convergence of neural network regression estimators based on two layer
neural networks has been analyzed in [16]. Therein, interaction models were studied, where the regression function
satisfies

m(x) =

∑
I⊆{1,...,d},|I|=d∗

mI (xI ), x ∈ Rd

for some d∗
∈ {1, . . . , d} and mI : Rd∗

→ R (I ⊆ {1, . . . , d}, |I| ≤ d∗), where

x{i1,...,id∗ } = (x(i1), . . . , x(id∗ )) for 1 ≤ i1 < · · · < id∗ ≤ d,

and in case that all mI are (p, C)-smooth for some p ≤ 1 it was shown that suitable neural network estimators achieve a
rate of convergence of n−2p/(2p+d∗) (up to some logarithmic factor), which is again a convergence rate independent of d.
In [17], this result was extended to so-called (p, C)-smooth generalized hierarchical interaction models of order d∗, which
are defined as follows:
3
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efinition 2. Let d ∈ N, d∗
∈ {1, . . . , d} and m : Rd

→ R.
(a) We say that m satisfies a generalized hierarchical interaction model of order d∗ and level 0, if there exist a1, . . . , ad∗ ∈

Rd and f : Rd∗

→ R such that

m(x) = f (a⊤

1 x, . . . , a
⊤

d∗x) for all x ∈ Rd.

b) We say that m satisfies a generalized hierarchical interaction model of order d∗ and level ℓ + 1, if there exist K ∈ N,
k : Rd∗

→ R (k ∈ {1, . . . , K }) and f1,k, . . . , fd∗,k : Rd
→ R (k ∈ {1, . . . , K }) such that f1,k, . . . , fd∗,k (k ∈ {1, . . . , K }) satisfy

a generalized hierarchical interaction model of order d∗ and level ℓ and

m(x) =

K∑
k=1

gk
(
f1,k(x), . . . , fd∗,k(x)

)
for all x ∈ Rd.

(c) We say that the generalized hierarchical interaction model defined above is (p, C)-smooth, if all functions occurring
in its definition are (p, C)-smooth according to Definition 1.

It was shown that for such models suitably defined multilayer neural networks (in which the number of hidden layers
depends on the level of the generalized interaction model) achieve the rate of convergence n−2p/(2p+d∗) (up to some
logarithmic factor) in case p ≤ 1. [6] showed that this result even holds for p > 1 provided the squashing function
is suitably chosen. Similar rate of convergence results as in [6] have been shown in [25] for neural network regression
estimates using the ReLU activation function. Here slightly more general function spaces, which fulfill some composition
assumption, were studied. [18] generalized the function space to so-called hierarchical composition models, i.e., functions
which fulfill the following definition.

Definition 3. Let d ∈ N and m : Rd
→ R.

a) We say that m satisfies a hierarchical composition model of level 0 with order and smoothness constraint P , if there
xists a K ∈ {1, . . . , d} such that

m(x) = x(K ) for all x ∈ Rd.

b) We say that m satisfies a hierarchical composition model of level ℓ + 1 with order and smoothness constraint P , if
there exist (p, K ) ∈ P , C > 0, g : RK

→ R and f1, . . . , fK : Rd
→ R, such that g is (p, C)-smooth, f1, . . . , fK satisfy a

hierarchical composition model of level ℓ with order and smoothness constraint P and

m(x) = g(f1(x), . . . , fK (x)) for all x ∈ Rd

1.6. Fully connected DNNs

[18] showed for simple fully connected DNN regression estimators with ReLU activation function a rate of convergence
of max(p,K )∈P n−2p/(2p+K ). The networks regarded therein are only defined by its width and depth and contrary to [6]
and [25] no further sparsity constraint is needed. Reversely, this means, that not the number of nonzero weights, but
the number of overall weights of the network is restricted. We see two main advantages in restricting a network in this
sense: First, the characterization of a network by its width and depth (and therefore by its overall number of weights)
implies the ones in terms of the nonzero weights, while it is not true the other way around. An example is given in Figs. 1
and 2 for the network class F(2, 5, α).

Here we see that both, sparsely connected and fully connected networks, are contained in the network class F(2, 5, α),
while a network with full connectivity (between neurons of consecutive layers) as in Fig. 1 is not contained in a network
class where the number of nonzero weights is restricted by 20. Second, the easy topology of the networks enables us an
easy and fast implementation of a corresponding estimator. For instance, as shown in Listing 1, we can easily implement
a least squares DNN regression estimator with the help of Python’s packages tensorflow and keras. Remark that this
example already uses the sigmoid activation function which fits to the theoretical results of this article.

Listing 1: Python code for fitting of fully connected neural networks to data xlearn and ylearn

model = Sequential ( )
model . add(Dense (d , ac t iva t ion=" sigmoid " , input_shape =(d , ) ) )
for i in np . arange ( L ) :

model . add(Dense (K , ac t iva t ion=" sigmoid " ) )
model . add(Dense (1 ) )
model . compile ( optimizer="adam" ,

loss ="mean_squared_error " )
model . f i t ( x=x_learn , y=y_learn )
4
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Fig. 1. A fully connected network of the class F(2, 5, α) defined as in (5).

Fig. 2. A sparsely connected network of the class F(2, 5, α) defined as in (5).

.7. Main result in this article

[18] analyzes networks with ReLU activation function. We question ourselves if we can show the same rate of
onvergence for fully connected DNN regression estimators with smooth activation function. In this article we show
hat this is the case. In particular, we show that we derive a similar rate of convergence as in [6,18,25] for simple fully
onnected DNNs with sigmoid activation function. In these networks the number of hidden layer is fixed, the number of
eurons per layer tends to infinity for sample size tending to infinity and a bound for the weights in the network is given.
n the proofs the approximation results presented in [21] are essential.

.8. Notation and outline

Throughout the paper, the following notation is used: The sets of natural numbers, natural numbers including 0 and
eal numbers are denoted by N, N0 and R, respectively. For z ∈ R, we denote the smallest integer greater than or equal to
by ⌈z⌉, and set z+ = max{z, 0}. Vectors are denoted by bold letters, e.g., x = (x(1), . . . , x(d))T . We define 1 = (1, . . . , 1)T
nd 0 = (0, . . . , 0)T . A d-dimensional multi-index is a d-dimensional vector j = (j(1), . . . , j(d))T ∈ Nd

0. As usual, we define

∥j∥1 = j(1) + · · · + j(d), xj = (x(1))j
(1)

· · · (x(d))j
(d)

, j! = j(1)! · · · j(d)!, ∂ j
=

∂ j(1)

∂(x(1))j(1)
· · ·

∂ j(d)

∂(x(d))j(d)
.

Let D ⊆ Rd and let f : Rd
→ R be a real-valued function defined on Rd. We write x = argminz∈D f (z) if minz∈D f (z) exists

and if x satisfies x ∈ D and f (x) = minz∈D f (z). The Euclidean and the supremum norms of x ∈ Rd are denoted by ∥x∥
and ∥x∥∞, respectively. For f : Rd

→ R

∥f ∥∞ = sup |f (x)|

x∈Rd

5
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s its supremum norm, and the supremum norm of f on a set A ⊆ Rd is denoted by

∥f ∥∞,A = sup
x∈A

|f (x)|.

urthermore we define ∥ · ∥Cq(A) of the smooth function space Cq(A) by

∥f ∥Cq(A) := max
{
∥∂ jf ∥∞,A : ∥j∥1 ≤ q, j ∈ Nd}

or any f ∈ Cq(A).
Let A ⊆ Rd, let F be a set of functions f : Rd

→ R and let ϵ > 0. A finite collection f1, . . . , fN : Rd
→ R is called an

ϵ − ∥ · ∥∞,A− cover of F if for any f ∈ F there exists i ∈ {1, . . . ,N} such that

∥f − fi∥∞,A = sup
x∈A

|f (x) − fi(x)| < ϵ.

The ϵ − ∥ · ∥∞,A− covering number of F is the size N of the smallest ϵ − ∥ · ∥∞,A− cover of F and is denoted by
N (ϵ,F, ∥ · ∥∞,A). We define the truncation operator Tβ with level β > 0 as

Tβu =

{
u if |u| ≤ β

βsign(u) otherwise.

The main result is presented in Section 2. Section 3 deals with a result concerning the approximation of a hierarchical
composition model by neural networks. Section 4 contains the proof of the main result.

2. Main result

For ℓ = 1 and some order and smoothness constraint P ⊆ (0, ∞)×N we define our space of hierarchical composition
models by

H(1,P) = {h : Rd
→ R : h(x) = g(x(π (1)), . . . , x(π (K (1)

1 ))),

g : RK (1)
1 → R is (p(1)1 , C) –smooth for some (p(1)1 , K (1)

1 ) ∈ P, C > 0, π : {1, . . . , K (1)
1 } → {1, . . . , d}}.

For ℓ > 1, it recursively becomes

H(ℓ,P) := {h : Rd
→ R : h(x) = g(f1(x), . . . , fK (ℓ)

1
(x)),

g : RK (ℓ)
1 → R is (p(ℓ)1 , C)–smooth for some (p(ℓ)1 , K (ℓ)

1 ) ∈ P, C > 0, fi ∈ H(ℓ − 1,P)}.

In practice, it is conceivable, that there exist input–output-relationships, which can be described by a regression
function contained in H(ℓ,P). Particularly, our assumption is motivated by applications in connection with complex
technical systems, which are constructed in a modular form. Here each modular part can be again a complex system, which
also explains the recursive construction in Definition 3. With regard to other function classes studied in the literature
this function class generalizes previous results, as the function class of [6] (see Definition 2) forms some special case of
H(ℓ,P) in form of an alternation between summation and composition. Compared to the function class studied in [25],
our definition forms a slight generalization, since we allow different smoothness and order constraints within the same
level in the composition. We can now state the main result.

Theorem 1. Let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed random variables with values in
Rd

× R such that supp(X) is bounded and

E
{
exp(c1Y 2)

}
< ∞

for some constant c1 > 0. Let the corresponding regression function m be contained in the class H(ℓ,P) for some ℓ ∈ N and
P ⊆ [1, ∞)×N. Each function g in the definition of m can be of different smoothness pg = qg+sg (qg ∈ N0 and sg ∈ (0, 1]) and
of different input dimension Kg , where (pg , Kg ) ∈ P . Denote by Kmax the maximal input dimension and by pmax the maximal
smoothness of one of the functions g. Assume that for each g all partial derivatives of order less than or equal to qg are
bounded, i.e.,

∥g∥Cqg (Rd) ≤ c2
for some constant c2 > 0. Let each g be Lipschitz continuous with Lipschitz constant CLip ≥ 1. Set
(i) Ln = ℓ (8 + ⌈log2(max{Kmax, pmax + 1})⌉)
(ii) rn = 2Kmax Ñ129

(Kmax+pmax
pmax

)
K 2
maxpmax max(p,K )∈P nK/(2(2p+K ))

(iii) αn = nc3

with c3 > 0 sufficiently large. Let σ : R → [0, 1] be the sigmoid activation function 1/(1 + exp(−x)). Let m̃n be the least
squares estimator defined by

m̃n(·) = arg min
h∈F(Ln,rn,αn)

1
n

n∑
|Yi − h(Xi)|2
i=1

6
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Fig. 3. Illustration of a hierarchical composition model of the class H(2,P) with the structure h(2)
1 (x) = g (2)

1 (h(1)
1 (x), h(1)

2 (x), h(1)
3 (x)), h(1)

1 (x) = g (1)
1 (x(π (1))),

h(1)
2 (x) = g (1)

2 (x(π (2)), x(π (3))) and h(1)
3 (x) = g (1)

3 (x(π (4)), x(π (5)), x(π (6))), defined as in (7) and (8).

and define mn = Tc4 ln nm̃n for some c4 > 0 sufficiently large. Then

E
∫

|mn(x) − m(x)|2PrX(dx) ≤ c5(ln n)3 max
(p,K )∈P

n−
2p

2p+K

holds for sufficiently large n.

Remark 1. Theorem 1 shows, that the L2 errors of least squares neural network regression estimators based on a set
of fully connected DNNs with a fixed number of layers (corresponding to a hierarchical composition model of given
level ℓ and given smoothness and order constraint P) achieves a rate of convergence max(p,K )∈P n−2p/(2p+K ) (up to some
logarithmic factor), which does not depend on d and which does therefore circumvent the so-called curse of dimensionality.

Remark 2. Due to the fact that some parameters in the definition of the estimator in Theorem 1 are normally unknown in
practice, they have to be chosen in a data-dependent way. Out of a set of different numbers of hidden layers and neurons
per layer the best estimator is then chosen adaptively. Several possible methods and their effects can be found in [10].

3. Approximation of hierarchical composition models by DNNs

The aim of this section is to prove a result concerning the approximation of hierarchical composition models with
smoothness and order constraint P ⊆ [1, ∞) × N by DNNs. In order to formulate this result, we observe in a first step,
that one has to compute different hierarchical composition models of some level i (i ∈ {1, . . . , ℓ − 1}) to compute a
function h(ℓ)

1 ∈ H(ℓ,P). Let Ñi denote the number of hierarchical composition models of level i, needed to compute h(ℓ)
1 .

We denote in the following by

h(i)
j : Rd

→ R (6)

the jth hierarchical composition model of some level i (j ∈ {1, . . . , Ñi}, i ∈ {1, . . . , ℓ}), that applies a (p(i)j , C)-smooth

function g (i)
j : RK (i)

j → R with p(i)j = q(i)j + s(i)j , q(i)j ∈ N0 and s(i)j ∈ (0, 1], where (p(i)j , K (i)
j ) ∈ P . The computation of h(ℓ)

1 (x)
can then be recursively described as follows:

h(i)
j (x) = g (i)

j

(
h(i−1)∑j−1

t=1 K (i)
t +1

(x), . . . , h(i−1)∑j
t=1 K (i)

t
(x)
)

(7)

for j ∈ {1, . . . , Ñi} and i ∈ {2, . . . , ℓ} and

h(1)
j (x) = g (1)

j

(
x
(
π (
∑j−1

t=1 K (1)
t +1)

)
, . . . , x

(
π (
∑j

t=1 K (1)
t )

))
(8)

for some function π : {1, . . . , Ñ1} → {1, . . . , d}. Furthermore for i ∈ {1, . . . , ℓ − 1} the recursion

Ñl = 1, Ñi =

Ñi+1∑
j=1

K (i+1)
j (9)

holds.
The exemplary structure of a function h(2)

1 ∈ H(2,P) is illustrated in Fig. 3. Here one can get a perception of how the
hierarchical composition models of different levels are stacked on top of each other. The approximation result of such a
function h(ℓ) by a DNN is summarized in the following theorem:
1

7
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heorem 2. Let m : Rd
→ R be contained in the class H(ℓ,P) for some ℓ ∈ N and P ⊆ [1, ∞) × N. Let Ñi be defined as in

(9). Each m consists of different functions h(i)
j (j ∈ {1, . . . , Ñi}, i ∈ {1, . . . , ℓ}) defined as in (6), (7) and (8). Assume that the

corresponding functions g (i)
j are Lipschitz continuous with Lipschitz constant CLip ≥ 1 and satisfy

∥g (i)
j ∥

C
q(i)j ([−a,a]d)

≤ c6

for some constant c6 > 0. Denote by Kmax = maxi,j K
(i)
j the maximal input dimension and by pmax = maxi,j p

(i)
j the maximal

smoothness of the functions g (i)
j . Then, for any a ≥ 1, Mj,i ∈ N sufficiently large (each independent of the size of a, but

minj,i M
2p(i)j
j,i > c7 max{ℓ − 1(KmaxCLip)ℓ−2a5pmax+3, 2Kmax , 12Kmax} must hold for some constants c7 > 0 sufficiently large) and

any
(i) L = ℓ (8 + ⌈log2(max{Kmax, pmax + 1})⌉)

(ii) r = maxi∈{1,...,ℓ}
∑Ñi

j=1 29
(K (i)

j +q(i)j
q(i)j

)
(K (i)

j )2(q(i)j + 1)M
K (i)
j

j,i

(iii) α = c8a22e12×22(Kmax+1)+1aKmax maxj,i M
32pmax+4Kmax+18
j,i

a neural network t ∈ F (L, r, α) exists such that

∥t − m∥∞,[−a,a]d ≤ c9a5pmax+3 max
j,i

M
−2p(i)j
j,i .

In the proof of Theorem 2 we will need the following auxiliary results.

Lemma 1. Let σ : R → [0, 1] be the sigmoid activation function σ (x) = 1/(1 + exp(−x)). Let R ≥ 1 and a > 0. Then

fid(x) = 4R
(
σ

( x
R

)
− 1

)
∈ F(1, 1, 4R)

atisfies for any x ∈ [−a, a]:

|fid(x) − x| ≤ 2∥σ ′′
∥∞

a2

R
.

Proof of Lemma 1. The result follows in a straightforward way from the proof of Theorem 2 in [24], cf., e.g., Lemma 1
in [19]. □

Lemma 2. Let 1 ≤ a < ∞. Let p = q + s for some q ∈ N0 and s ∈ (0, 1], let C ≥ 1. Let m : Rd
→ R be a (p, C)-smooth

function, which satisfies

∥m∥Cq([−2a,2a]d) ≤ c10.

for some constant c10 > 0. Let σ : R → [0, 1] be the sigmoid activation function 1/(1 + exp(−x)). Then, for any M ∈ N
sufficiently large (independent of the size of a, but c11 max{a5p+3, 2d, 12d} ≤ M2p must hold for some constant c11 > 0), a
neural network t ∈ F (L, r, α) with
(i) L ≥ 8 + ⌈log2(max{d, q + 1})⌉
(ii) r = 29

(d+q
d

)
d2(q + 1)Md

(iii) α = c12
(
max

{
a, ∥f ∥Cq([−a,a]d)

})11 e6×22(d+1)+1adM16p+2d+9

exists such that

∥t − m∥∞,[−a,a]d ≤ c13a5q+3M−2p

holds.

Proof of Lemma 2. For L = 8 + ⌈log2(max{d, q + 1})⌉ the proof follows directly from Theorem 1 in [21], where we use
that

2d
(
max

{((
d + q
d

)
+ d

)
Md(2 + 2d) + d, 4(q + 1)

(
d + q
d

)}
+ Md(2d + 2) + 12d

)
≤ 29

(
d + q
d

)
d2(q + 1)Md.

y successively applying fid of Lemma 1 to the output of the network t , we can easily enlarge the number of hidden layers,
uch that the assertion also holds for L > 8 + ⌈log2(max{d, q + 1})⌉. Here we use that fid satisfies⏐⏐f sid(x) − x

⏐⏐ ≤

s∑
k=1

⏐⏐f kid(x) − f k−1
id (x)

⏐⏐ =

s∑
k=1

⏐⏐fid(f k−1
id (x)) − f k−1

id (x)
⏐⏐ ≤

s
M2p

for s ∈ N and x ∈
[
−2max

{
a, ∥m∥∞,[−a,a]d

}
, 2max

{
a, ∥m∥∞,[−a,a]d

}]
, where we choose

R ≥ (s − 1)8∥σ ′′
∥ max

{
a, ∥m∥

}2 M2p

∞ ∞,[−a,a]d

8
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n Lemma 1. Since t satisfies

∥t∥∞,[−a,a]d ≤ ∥t − m∥∞,[−a,a]d + ∥m∥∞,[−a,a]b ≤ 2max
{
a, ∥m∥Cq([−a,a]d)

}
,

here we use that M2p
≥ c13a5q+3, we can conclude that⏐⏐f s(t(x)) − m(x)

⏐⏐ ≤
⏐⏐f s(t(x)) − t(x)

⏐⏐+ |t(x) − m(x)| ≤ c13a5q+3M−2p

olds for x ∈ [−a, a]d and s ∈ N. □

roof of Theorem 2. The proof is divided into two steps.

tep 1: Network architecture: The computation of the function m(x) = h(ℓ)
1 (x) can be recursively described as in (7)

nd (8). The basic idea of the proof is to define a composed network, which approximately computes the functions
(1)
1 , . . . , h(1)

Ñ1
, h(2)

1 , . . . , h(2)
Ñ2

, . . . , h(ℓ)
1 . For the approximation of g (i)

j we will use the networks

fnet,g(i)j
∈ F(L0, r

(i)
j , α0)

escribed in Lemma 2, where

L0 = 8 + ⌈log2(max{Kmax, pmax + 1})⌉,

r (i)j = 29
(K (i)

j + q(i)j
q(i)j

)
(K (i)

j )2(q(i)j + 1)M
K (i)
j

j,i

nd

α0 = c8a12e6×22(Kmax+1)+1aKmax max
j,i

M10pmax+2Kmax+10
j,i

To compute the values of h(1)
1 , . . . , h(1)

Ñ1
we use the networks

ĥ(1)
1 (x) = fnet,g(1)1

(
x(π (1)), . . . , x(π (K (1)

1 ))
)

...

ĥ(1)
Ñ1
(x) = fnet,g(1)

Ñ1

(
x(π (

∑Ñ1−1
t=1 K (1)

t +1)), . . . , x(π (
∑Ñ1

t=1 K (1)
t ))
)

.

To compute the values of h(i)
1 , . . . , h(i)

Ñi
(i ∈ {2, . . . , ℓ}) we use the networks

ĥ(i)
j (x) = fnet,g(i)j

(
ĥ(i−1)∑j−1

t=1 K (i)
t +1

(x), . . . , ĥ(i−1)∑j
t=1 K (i)

t
(x)
)

for j ∈ {1, . . . , Ñi}. Finally we set

t(x) = ĥ(ℓ)
1 (x).

Fig. 4 illustrates the computation of the network t(x). It is easy to see that t(x) forms a composed network, where
the networks ĥ(i)

1 , . . . , ĥ(i)
Ñi

are computed in parallel (i.e., in the same layers) for i ∈ {1, . . . , ℓ}, respectively. Since each ĥ(i)
j

(j ∈ {1, . . . , Ñi}) needs L0 layers, r (i)j neurons per layer and has α0 as bound for its weights, this network is contained in
the class

F

⎛⎝ℓL0, max
i∈{1,...,ℓ}

Ñi∑
j=1

r (i)j , α2
0

⎞⎠ ⊆ F (L, r, α) .

Step 2: Approximation error: We define

gmax := max

⎧⎨⎩ max
i∈{1,...,ℓ},
j∈{1,...,Ñi}

∥g (i)
j ∥∞, 1

⎫⎬⎭ .

Since each g (i)
j satisfies the assumption of Lemma 2, we can conclude that for x ∈ [−2max{gmax, a}, 2max{gmax, a}]

K (i)
j⏐⏐⏐⏐fnet,g(i) (x) − g (i)

j (x)
⏐⏐⏐⏐ ≤ c14a5pmax+3 maxM

−2p(i)j
j,i , (10)
j j,i

9
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Fig. 4. Illustration of the DNN t(x), which shows how the networks fnet,g(i)1
, . . . , fnet,g(i)

Ñi

are computed in parallel for i ∈ {1, . . . , ℓ}, respectively.

here

c14 = c13(2gmax)5pmax+3.

e show by induction that⏐⏐⏐ĥ(i)
j (x) − h(i)

j (x)
⏐⏐⏐ ≤ c14i(KmaxCLip)i−1a5pmax+3 max

j,i
M

−2p(i)j
j,i . (11)

y (10) we can conclude that for j ∈ {1, . . . , Ñ1}⏐⏐⏐ĥ(1)
j (x) − h(1)

j (x)
⏐⏐⏐ ≤ c141(KmaxCLip)1−1a5pmax+3 max

j,i
M

−2p(i)j
j,i .

Thus we have shown that (11) holds for i = 1. Assume now that (11) holds for some i − 1 and every j ∈ {1, . . . , Ñi−1}.
hen ⏐⏐⏐ĥ(i−1)

j (x)
⏐⏐⏐ ≤

⏐⏐⏐ĥ(i−1)
j (x) − h(i−1)

j (x)
⏐⏐⏐+ gmax ≤ 2gmax

follows directly by the induction hypothesis, where we use that minj,i M
2p(i)j
j,i ≥ c14(i − 1)(KmaxCLip)i−1a5pmax+3. Using (10)

and the Lipschitz continuity of g (i)
j we can conclude that⏐⏐⏐ĥ(i)

j (x) − h(i)
j (x)

⏐⏐⏐ =

⏐⏐⏐⏐fnet,g(i)j

(
ĥ(i−1)∑j−1

t=1 K (i)
t +1

(x), . . . , ĥ(i−1)∑j
t=1 K (i)

t
(x)
)

− g (i)
j

(
ĥ(i−1)∑j−1

t=1 K (i)
t +1

(x), . . . , ĥ(i−1)∑j
t=1 K (i)

t
(x)
)⏐⏐⏐⏐

+

⏐⏐⏐⏐g (i)
j

(
ĥ(i−1)∑j−1

t=1 K (i)
t +1

(x), . . . , ĥ(i−1)∑j
t=1 K (i)

t
(x)
)

− g (i)
j

(
h(i−1)∑j−1

t=1 K (i)
t +1

(x), . . . , h(i−1)∑j
t=1 K (i)

t
(x)
)⏐⏐⏐⏐

≤ c14a5pmax+3 max
j,i

M
−2p(i)j
j,i + K (i)

j CLipc14(i − 1)(KmaxCLip)i−2a5pmax+3 max
j,i

M
−2p(i)j
j,i

≤ c15i(KmaxCLip)i−1a5pmax+3 max
j,i

M
−2p(i)j
j,i .

hus we have shown that there exists a network t satisfying

∥t − m∥∞,[−a,a]d ≤ c9a5pmax+3 max
j,i

M
−2p(i)j
j,i .

his proves the assertion of the theorem. □
10
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. Proof of the main result

.1. An auxiliary result from the empirical process theory

In the proof of Theorem 1 we use the following bound on the expected L2 error of the least squares estimators.

emma 3. Assume that the distribution of (X, Y ) satisfies E{exp(c16Y 2)} < ∞ for some constant c16 > 0 and that the
egression function m is bounded in absolute value. Let m̃n be the least squares estimator

m̃n(·) = arg min
f∈Fn

1
n

n∑
i=1

|Yi − f (Xi)|2

based on some function space Fn and set mn = Tc17 ln nm̃n for some constant c17 > 0. Then mn satisfies

E
∫

|mn(x) − m(x)|2PrX(dx) ≤

c18(ln n)2
(
ln
(
N
(

1
nc17 ln n ,Fn, ∥ · ∥∞,supp(X)

))
+ 1

)
n

+ 2 inf
f∈Fn

∫
|f (x) − m(x)|2PrX(dx)

or n > 1 and some constant c18 > 0, which does not depend on n or the parameters of the estimator.

roof. This proof follows in a straightforward way from the proof of Theorem 1 in [2]. A complete proof can be found in
he supplement of [6]. □

.2. A bound on the covering number

If the function class Fn in Lemma 3 forms a class of fully connected DNNs F(L, r, α) with α and L bounded, the following
esult will help to bound the covering number:

emma 4. Let ϵ ≥ 1/nc19 and let F(L, r, α) defined as in (5) with σ : R → [0, 1] Lipschitz continuous with Lipschitz constant
Lip > 0, 1 ≤ max{a, α} ≤ nc20 and L ≤ c21 for large n and certain constants c19, c20, c21 > 0. Then(

lnN (ϵ,F(L, r, α), ∥ · ∥∞,[−a,a]d )
)

≤ c22(1 + ln n + ln r)(r + 1)2

olds for sufficiently large n and a constant c22 > 0 independent of n.

roof. Let

f (x) =

r∑
i=1

c(L)1,i f
(L)
i (x) + c(L)1,0, f̄ (x) =

r∑
i=1

c̄(L)1,i f̄
(L)
i (x) + c̄(L)1,0,

for some c(L)1,0, c̄
(L)
1,0, . . . , c

(L)
1,r , c̄

(L)
1,r ∈ R and for f (L)i ’s, f̄ (L)i ’s recursively defined by

f (s)i (x) = σ

⎛⎝ r∑
j=1

c(s−1)
i,j f (s−1)

j (x) + c(s−1)
i,0

⎞⎠ , f̄ (s)i (x) = σ

⎛⎝ r∑
j=1

c̄(s−1)
i,j f̄ (s−1)

j (x) + c̄(s−1)
i,0

⎞⎠
for some c(s−1)

i,0 , c̄(s−1)
i,0 , . . . , c(s−1)

i,r , c̄(s−1)
i,r ∈ R, s ∈ {2, . . . , L}, and

f (1)i (x) = σ

⎛⎝ d∑
j=1

c(0)i,j x
(j)

+ c(0)i,0

⎞⎠ , f̄ (1)i (x) = σ

⎛⎝ d∑
j=1

c̄(0)i,j x
(j)

+ c̄(0)i,0

⎞⎠
for some c(0)i,0 , c̄(0)i,0 , . . . , c̄(0)i,d ∈ R. Let CLip ≥ 1 be an upper bound on the Lipschitz constant of σ . Then

|f (x) − f̄ (x)| ≤

r∑
i=1

|c(L)1,i ||f
(L)
i (x) − f̄ (L)i (x)| + |c(L)1,0 − c̄(L)1,0| +

r∑
i=1

|c(L)1,i − c̄(L)1,i ||f̄
(L)
i (x)|

≤ r max
i∈{1,...,r}

|c(L)1,i | max
i∈{1,...,r}

|f (L)i (x) − f̄ (L)i (x)| + |c(L)1,0 − c̄(L)1,0| + r max
i∈{1,...,r}

|c(L)i − c̄(L)i |,

|f (s)i (x) − f̄ (s)i (x)| ≤ CLip

⏐⏐⏐⏐⏐⏐
r∑

j=1

c(s−1)
i,j f (s−1)

j (x) + c(s−1)
i,0 −

⎛⎝ r∑
j=1

c̄(s−1)
i,j f̄ (s−1)

j (x) + c̄(s−1)
i,0

⎞⎠⏐⏐⏐⏐⏐⏐
≤ CLipr max

j∈{1,...,r}
|c(s−1)

i,j | max
j∈{1,...,r}

|f (s−1)
j (x) − f̄ (s−1)

j (x)|

+CLipr max |c(s−1)
i,j − c̄(s−1)

i,j | + CLip|c
(s−1)
i,0 − c̄(s−1)

i,0 |

j∈{1,...,r}

11
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f

I

R

i

c

S

or s ∈ {2, . . . , L} and

|f (1)i (x) − f̄ (1)i (x)| ≤ CLip(d + 1) max
j∈{0,...,d}

|c(0)i,j − c̄(0)i,j |a.

n the sequel we will use the abbreviation

max
i,j,s

|c(s)i,j | = max{max
i

|c(L)1,i |,max
i,j,s

|c(s)i,j |}.

ecursively we conclude

|f (x) − f̄ (x)| ≤ (r + 1) max
i∈{0,...,r}

|c(L)1,i − c̄(L)1,i | + r max
i,j,s

|c(s)i,j |CLip(r + 1)max
i,j

|c(L−1)
i,j − c̄(L−1)

i,j |

+r(max
i,j,s

|c(s)i,j |CLip(r + 1))2 max
i,j

|c(L−2)
i,j − c̄(L−2)

i,j | + · · · + r(max
i,j,s

|c(s)i,j |CLip(r + 1))L−1 max
i,j

|c(1)i,j − c̄(1)i,j |

+r(max
i,j,s

|c(s)i,j |CLip(r + 1))L−1CLip(d + 1)amax
i,j

|c(0)i,j − c̄(0)i,j |.

Provided we have

max
i∈{0,...,r}

|c(L)1,i − c̄(L)1,i | ≤
ϵ

(L + 1)(r + 1)
,

max
i,j

|c(t)i,j − c̄(t)i,j | ≤
ϵ

(L + 1)r(maxi,j,s |c
(s)
i,j |CLip(r + 1))L−t

for t ∈ {1, . . . , L} and

max
i,j

|c(0)i,j − c̄(0)i,j | ≤
ϵ

(L + 1)r(maxi,j,s |c
(s)
i,j |CLip(r + 1))L−1CLip(d + 1)a

mplies

|f (x) − f̄ (x)| ≤
ϵ

L + 1
+

ϵ

L + 1
+ · · · +

ϵ

L + 1  
L+1−times

= ϵ.

Assume that c(s)i,j are all contained in the interval [−α, α], where α ≥ 1. By discretizing this interval on the various levels
s for each of the at most (r + 1)2 weights used in this level accordingly, we see that we can construct a supremum norm
over of size

L−1∏
t=0

(
2α(L + 1)(r + 1)(αCLip(r + 1))t

ϵ

)(r+1)2 2α(L + 1)(r + 1)(αCLip(r + 1))L−1CLip(d + 1)a
ϵ

≤

(
2α(L + 1)(r + 1)(αCLip(r + 1))L−1

ϵ

)L(r+1)2 2(L + 1)(αCLip(r + 1))L(d + 1)a
ϵ

≤ c28

(
(L + 1)(αCLip(r + 1))L(d + 1)a

ϵ

)(L+1)(r+1)2

. □

4.3. Proof of Theorem 1

Let an = (ln n)3/(2×(5pmax+3)). For n sufficiently large the relation supp(X) ⊆ [−an, an]d holds, which implies
N (δ, G, ∥ · ∥∞,supp(X)) ≤ N (δ, G, ∥ · ∥∞,[−an,an]d ) for an arbitrary function space G and δ > 0. Application of Lemma 3
leads to

E
∫

|mn(x) − m(x)|2PrX(dx)

≤

c18(ln n)2
(
ln
(
N
(

1
nc4 ln n ,F(Ln, rn, αn), ∥ · ∥∞,supp(X)

))
+ 1

)
n

+ 2 inf
f∈F(Lnrn,αn)

∫
|f (x) − m(x)|2PrX(dx).

et

(p̄, K̄ ) = arg max n−
2p

2p+K .

(p,K )∈P

12
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he fact that 1/(nc4 ln n) ≥ 1/nc19 , max{an, α} ≤ nc20 and rn ≤ c21n1/2(2p̄/K̄+1) holds for c19, c20, c21 > 0, allows us to apply
Lemma 4 to bound the first summand by

c18(ln n)2c22

(
1 + ln n +

(
ln c23n

1
2(2p̄/K̄+1)

))
c11n

1
2p̄/K̄+1

n
≤

c24(ln n)3n
1

2p̄/K̄+1

n
≤ c24(ln n)3n

−
2p̄

2p̄+K̄ (12)

or a sufficiently large n. Regarding the second summand we apply Theorem 2, where we choose Mj,i =

⌈
n1/2(2p(i)j +K (i)

j )
⌉
.

Since

max
i∈{1,...,ℓ}

Ñi∑
j=1

29
(K (i)

j + q(i)j
q(i)j

)
(K (i)

j )2(q(i)j + 1)M
K (i)
j

j,i

≤Ñ129
(
Kmax + pmax

pmax

)
K 2
maxpmax max

j,i
M

K (i)
j

j,i = Ñ129
(
Kmax + pmax

pmax

)
K 2
maxpmax max

j,i

⌈
n1/(2(2p(i)j +K (i)

j ))
⌉K (i)

j

≤Ñ129
(
Kmax + pmax

pmax

)
K 2
maxpmax max

j,i

(
n1/(2(2p(i)j +K (i)

j ))
+ 1

)K (i)
j

≤ Ñ129
(
Kmax + pmax

pmax

)
K 2
maxpmax

× max
j,i

(
2n1/(2(2p(i)j +K (i)

j ))
)K (i)

j

≤2Kmax Ñ129
(
Kmax + pmax

pmax

)
K 2
maxpmax max

j,i
nK (i)

j /(2(2p(i)j +K (i)
j ))

= r

nd

α = c8a24n e12×22(Kmax+1)+1anKmax max
j,i

M20pmax+4Kmax+20
j,i

= c8
(
(ln n)3/(2×(5pmax+3)))24 e12×22(Kmax+1)+1(ln n)3/(2×(5pmax+3))Kmax max

j,i

⌈
n1/2(2p(i)j +K (i)

j )
⌉20pmax+4Kmax+20

≤ nc25

or c25 > 0 sufficiently large, the resulting values of r and α are consistent with rn and αn in Theorem 1. Theorem 2 allows
s to bound inff∈F(Lnrn,αn)

∫
|f (x) − m(x)|2PrX(dx) by

c26
(
a5pmax+3
n

)2
max
j,i

M
−4p(i)j
j,i = c26(ln n)3 max

j,i
n

−

4p(i)j

2(2p(i)j +K (i)j )
.

his together with (12) and the fact that

n
−

2p̄
2p̄+K̄ = max

j,i
n

−

2p(i)j

2p(i)j +K (i)j

mplies the assertion.
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