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Weighted Approximation of
the Renewal Spacing Processes

PHILIPPE BARBE

CREST and LSTA-Université Paris VI

In this paper, we provide a weighted approximation for the renewal spacing
empirical and quantile processes. Some linear bounds for the empirical distribution
and quantile functions are also given. ¢ 1993 Academic Press, Inc

1. INTRODUCTION

Let w, ®,, ®,,.., be a sequence of independent and identically
distributed (i.i.d.) random variables (r.v.) with mean 0 < Fw < o and
common distribution function F(x):= P(w/Ew < x). We define the partial
sums

Sii=w,+w,+ - +w,, i=12 .., (1.1)
and the renewal spacings
D,, =w,/S,, 1<i<n (1.2)

It is well known that if F is exponential, then the vector {S,/S,:
1 <i<n—1} has the same distribution as the order statistics of a uniform
sample of size n—1, and therefore, {D,,:1<i<n—1} has the same
distribution as the uniform spacings (see, e.g., [17]).

Now, define the quantile function

Q(s) :=inf{x: F(x)>=s}

and the empirical distribution function of the normalized renewal spacings
by

D.(s):=n""'3 {nD,,<Q(s)}, (1.3)

i=1
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and the corresponding quantile process
D (1) :=inf{s: D,(s)=1}.

Motivated by the fact that many test statistics based on renewal spacings
may be expressed as a functional of D, or D) when F is exponential, the
limiting properties of the processes

an(S) = nlsz(Dn(‘v) - S)
and
b(s) :=n" (D (s)—s)

have been subject of investigations over the years by many authors. If F is
the exponential or some gamma distribution, these include Shorack [21],
Rao and Sethuraman [19], Durbin [11], Beirlant [2], Einmahl and Van
Zuijlen [13], Aly, Beirlant, and Horvath [1], Beirlant and Horvath [3],
and Csorgé and Horvath (1986). Beirlant er al. [4] obtained a weighted
approximation for b, (see their Lemma 3.8) in the same spirit of M. Cs6rgo
et al. (Cs—Cs—H-M) [6] or for a more general result by Einmahl and
Mason [12]. However, the case of a general F is of interest since it enables
us to get the limiting distribution of many statistics for testing whether a
renewal process is a Poisson process or not under the null hypothesis, but
also under a fixed alternative. Pyke [18] gives a weak convergence result
for a, and b,,.

The processes a, and b, are also related to the empirical process with
estimated parameter. Since (1.1) is cale invariant, if F belongs to a
parametric family with a constant coefficient of variation Ew/(Var w)"?,
D, may be viewed as the empirical d.f, where the mean or the standard
deviation is estimated. For example, this situation occurs if F belongs to a
family concentrated on (0, oc ) and indexed by a scale parameter, like

{F(x)=1—(k/x), k>0,a>0,x=k}

or if Fis a Gamma distribution indexed by a scale parameter. Another
example is given by

{F(x)=.47(0,6%):0>0]}.

More general empirical processes with parameter estimated have been
studied by Durbin [11], M. Csorgé and Révész [9], and M. Csorgd [5].

The Cs—Cs—H-M [6] weighted approximation has been a very useful
tool to obtain the asymptotic distribution of a large variety of statistics
based on the usual empirical distribution and quantile functions of a
sample. See, for instance, the volume edited by Hahn, Mason, and
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Weiner [ 14]. The aim of this paper is to obtain such approximations for
the processes a, and b, and to show, as S. Csorgé and Mason [8] did for
the booststrap, that a “metatheorem™ holds (see also [7, Section 17]
for an implicit but less powerful metatheorem) in the sense that: all results
proved using the weighted approximation and some linear bounds for the
uniform empirical distribution or quantile processes hold for the renewal
spacings (up to a change of the approximating process).

2. WEIGHTED APPROXIMATION AND LINEAR BOUNDS
FOR THE RENEWAL SPACING PROCESS

We require the following assumptions:

Al. O0<Varw< oc;

A2. The distribution function F of w is twice differentiable, except
maybe at a finite number of points;

A3. ||x¥(x)|| < o, where |-| denotes the sup-norm and f:=F' is
the density function of F;

A4 |lxf(x) Flx) "2 (1= F(x))" ") < .

In fact, A3 is generally satisfied under Al if the density function f is
bounded and ultimately concave or convex.

The limiting behavior of the processes a, and b, are different according
to the expectation of w is zero or not. If Ew #0, then there is no loss of
generality in assuming

AS. Eo=1.

Finally, with B denoting a Brownian bridge, we define the Gaussian
process

1
Fals) = Bls) = QUs) f(Q(s)) | B(1) dQ(1).

If g is a function from (0, 1) into R, we define

lgl,:=  sup  [g(s)].

lin<s<(n—1)n

Our first theorem gives the weighted approximation of the process a,:

THEOREM 2.1, Assume A1-AS. If for some ve [0, 1/4) we have

j [F(x)(1 — F(x))]"? " dy < 0, (2.1)
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then one can construct a sequence of Brownian bridges (B,), -, such that

a,(s) = 'g(s)

=0,(1). (2.2)

n

To obtain an analogous result for b,, we shall establish a Bahadur-
Kiefer type representation. For this, recall that a function g is regularly
varying at a + (with index pe R) iff lim, _ , g(a = 4s)/g(a + s) = 4* for any
4>0. We need the following assumptions:

Bl [[F(x)"2(1 = F(x )" xf"(x)/f(x)]| < o0
B2, xf(x) < oo

B3. Q(u) f'(Q(u))/f(Q(u)) and its derivative are regularly varying at
0+ and 1—.

If max, ¢;,c,w;, and min, .,., w, normalized by a sequence of affine
transformations admit a nondegenerate limiting distribution function and
/' is ultimately concave or convex, then (see [20, pp. 85-93]) Bl and B3
hold.

THEOREM 2.2. Assume A1-AS and B1-B3. If for some ve [0, 1/4) the
condition (2.1) holds and

I (log [log(F(1 — F))'? (F(1 = F)> "2 (1 +(f/f NI <o, (23)

then one can construct a sequence (w,), | of the desired type on a probability
space such that

| (s(1—5)) 2+

=0,(1). (2.4)

Combining Theorems 2.1 and 2.2, we obtain the approximation for the
quantile process:

THEOREM 2.3. Under the assumptions of Theorem?222 and on the
probability space of Theorem 2.2,
b”(S) + rB,,(S) I‘

TS R (23)

.

Remark 2.1. The weighted approximation of Cs-Cs-H-M [6] and
Mason and Van Zwet [16] suggest that (2.2) and (2.5) hold also for
1/4<v<1/2 but for different Brownian motions. However, our proof
(see Lemma 3.1) allows only 0<v < 1/4.
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Our next goal is to provide linear bounds for D, and D; . For this, we
denote

D(l).n< e <D(ni,n

the order statistics of the renewal spacings D, .., D, .

THEOREM 24. (i) Under the assumptions of Theorem 2.1,

D,( 1-D
), g 100

=0 (1),
OiL.:ZI N 0<gs<1 l—S [7( )
N 1—s
sup +  osup ————=0,(1).

FnDpp<s<|1 D.(s) 0<s< F(nDyyn) 1-D,(s)

(1)  Under the assumptions of Theorem 2.3, for any A>0, we have

D, 14+D,;

sup - (S)+ sup ;"(S)=Op(l)
sn<s<l N 0<s< 1 —(2/n) l—S
: I —.

sup —€—+ sup ! 0,(1).

O<s<l1 [D"(S) O<s<| I_D,T(S)_

3. PROOFS
We first prove a lemma which will be used later.

LeMMA 3.1.  Under the assumptions of Theorem 2.1, we have

:

Proof of Lemma3.1. Our proof follows exactly Mason [15] and can
also be derived equivalently following M. Csorgd and Horvath [8”]: Let
£>0 and denote 4, := (S, —n)/n. Since n'?4, is asymptotically .47(0, a?),

we have
o Bu(FU(S,/n) Q(s))) — B,(s)
P(" | S(1—5)0 f“)

S P (nv i; Bn(F((Sn/n) Q(Y)J)— B,,(S)
(g(] —S))““") v

B (F((S,/n) Q(s5))) — B,(s)
(s(1=5)) D=~

=0,(1), (3.1)

n

>u;A,,<}./n'2)+£ (3.2)

a

683.45:2-2
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provided 4 is large enough. From Mason [15] we have

B.(s)—- B,(i
P (nv max Sup M> u) <£

112)- v =
L<ign |s—(in)] <1/2n) (5(1—5))( o

for u sufficiently large. Using the same technique, we obtain

nl2 ’B"(F“S”/';f,g,“{”_ B(i/n)| Sud, < ft/"”)

P( sup
Is - (i)l < 142n)
l'(l‘e“z' -
SP( sup  |B((ifn)+1t)— B(i/n)| Zup)} 7 ui_',,'°‘2>, (3.3)

fe— Ui < piyn

where

Hint= sup [F((L+n 1) Q(s))— (i/n)]
s - i)l € 1/(2n)

Jrl <2

= sup [F((S,,/m) Q(s) — (i/m)]  if |4, <A/n'?.

Is  (ifn)] < 1/(2n)

As in Mason [15], we bound (3.3) by

Ay L (102 writ ev
u i TR, €XP —§ i, . (3.4)

To bound g, ,,, expand F((1 +tn '?)Q(s)) to obtain

F((1 +1m7") Q(s)) — (i/n)
=s—(i/n)+ 1" '2Q(s) £(Q(s))

5

2= QR (QUT +6(n 5. ) 12) Q1)

for some 8(n, s, t)e [0, 1].
Since |s — (i/n)] € 1/(2n) and [7| < 4, we obtain from A3 and A4 that for
some constants ¢, and ¢, (independant of i/ and n) we have

Pin<n lep+n V2 sup 1Q(s) A(Q(s))]

ls - (iim) < 1i(2n)

<nle 4+ an Yo, iVn
Hence, (3.4) is upper bounded by

Au~ liv ~(1/4) ﬂxp( _ u2ill/‘2l 2“/8 )’
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which is the term of a convergent series for any fixed u > 0. Therefore (3.2)
may be taken arbitrarily small, provided u is sufficiently large and ¢ is small
enough, and this proves the lemma. ||

Proof of Theorem 2.1. We can assume that w,=Q(U,) where U,, Us,, ...
is a sequence of uniform r.v. over (0, 1). Let us define the uniform empirical
distribution function

F(x):=n""' i HU,<x}. (3.5)

i=1

Using (1.2) and (1.3), we can write D, as

D,(s)=F, (F(%—' Q(s})). (3.6)

We will first approximate F((S,/n) Q(s)) and then use a weighted
approximation for F,. Let 4, := (S, —n)/n. Then

S
F(F06)) =5+ 4,000 110
+(42/2) Q1 [T +0,5)4,) Q)] (37)

where 0,(s)€ [0, 1]. Observe the following facts:
(a) hm sup |0,(5)4,=0 a.s. under Al,

n—x 0<s<|

(b) QY I =lx*f(x)| <oc  under A3,

0(s) Q)] _ xf(x)

5! 2(1 _S)Lz i - [' F(x)leZ (1 —F(x))"‘z <0 under A4,

(c)

and by the central limit theorem
4,
(s(1 —s)2

|

d) n =0,(1).

ld

These facts with (3.3) imply that

(F(S; Q(S))[l —F(—Snﬁ Q(s))])/su —5) (3.8)

is bounded away from O and oo in probability, for s on [1/n, 1 —(1/n)]
and, moreover

nv+ll‘2|

=0,(1).  (39)

n

| FUSa/n) Q) — (5 + 4,005) £(Q(s))
| (=)
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We may assume that the random variable U,, U,, ..., are defined on the
probability space where the weighted approximations by Cs—Cs-H-M [6]
or Mason and Van Zwet [16] hold. Therefore, there exists a sequence of

Brownian bridges (B,), ., such that for any 0<v<1/4

In'2(F,(x)—x)— B,(x)
(x(1 —x))2

v

| :Op(l )
|

n

Combining (3.6)-(3.10), we get

L auls) =n'24,0(s) £(Q(s) = BAF(S,/n) Q)|
" (s(1 —s))tt v ,,—0”(1)'
From (3.11) and (3.1) we deduce
v an(s) - nl;‘l AnQ(S)f( (S‘)) - B"(S) _
(s(1—s)) 2 " oAl

To end the proof, note that
2 el l
n'2 4, =n"2 [ (1) d(F (1) 1),
4]
which after integration by parts becomes
) 1
n'2d,= = [ n'(F (0 - 1) dQ(r).
0
This, in conjunction with (3.10) gives
1
n'?4,= —f (B,(1)+ O, (n ")(a(1 — 1)) dQ(1),
0

where the O,(-) is uniform in 7. Assumption (2.1) ensures that

(3.10)

(3.11)

(3.12)

(3.13)

f‘ (1= )" " dQ(r) = [ [F)(1 = Fe)1'® * dy < 0. (3.14)
. !

Assumption A4 implies that

Q(s) F(Q(s))
(s(1—s))02 =y

- ” xf(x)
w | (F(x)(1 = Fx)))'?

(3.15)
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Equations (3.13)-(3.15) imply

n'?4,+ {4 B,(1) dQ(1)
(s(1 —s)tt

n" 1 Q(s) f(Q(s)) =0,(1),

n

which with (3.12) gives (2.2). |
Proof of Theorem 2.2. We first define the inverse
G,(y) :=inf{x:F,(x)>y}
where [, is defined in (3.1). Then, an easy calculation shows that
n
D7 (5)= F(§ 016,060 ) = (1 = 4,115,) 0I5, (51

Therefore,
D} (5) = 6,(s5) = 4, = Q(G,(s) SQ(G,(5)))

+(A2/2)(/S,) QG () S ((1 —0,(5) 4, Si> Q(s))

179

(3.16)

(3.17)

(3.18)

with 0<60,(s)< 1. Since we assume Ew = 1, there exists a random n, a.s.

finite such that for all n>=n,,

1 —0,,(s)4,,—5"—e [1/2,32].

2

Moreover, the central limit theorem yields
nal=0,1)
and A3 implies
1Q(u)* £(2QU)) =2 'I¥*f"(x)]| < 0.
From (3.18)-(3.19) we deduce

17D 5) = Gyls) + 4,1/S,) Q(G(5)) QG (s))
| (s(1=s) ™

n

We recall here Corollary 2.3 in Cs-Cs-H-M [6], which asserts
Fu(s)+ G,(s) — 25|

(s(1 =gt v

v+ (1/2)

—0,(1).

H

=0,(1).

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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Combining (3.22) and (3.23) gives

D, (s)+F.(s)+ 4,(n/S,) Q(G,(5)) f(Q(G,(5)))
(s(1 —s))—

nv+(le‘2)

n

=0,(1).

Now, we use (3.10), (3.12), and (3.24) to obtain

Dy (s)+D,(s) =25 —4,0(s) /= Q(s)
+4,(n/S,) Q(G,(5)) S(2(G,(5))
(s(1 —spt2=*

nv +(1/2)

n

=0,(1).
It remains for us to study
(n/S,) Q(G,(5)) AAQ(G,(s))) — O(s) f(O(s))

= —4,(n/S,) Q(G,(5)) [(Q(G,(s)))
(G, (5) = sNQS(Q)) (s + 0(n, sHG,(s) —5))

for some 0 < 8(n, 5s) < 1. Observe that

1 2(G,(5) (Q(G,(5)))

‘A
! (s(T =) TP~

=0,(1),

n

n

(3.24)

(3.25)

since [|Q(s) f(Q(s)] = [lxf(x)l <o by B2 and n?4,=0,(1) by Al and
the central limit theorem. Moreover, using (3.10), B3, and the linear

bounds for G, given in Wellner [22], we have

n

(1= s))“*“ ‘

n

e (G L(s) — s al$)
<2 | Sl 2 OO -+ 6, HG(5) )
¥ el Bn( o 4
42 (s—(l—:}w)f%:((gﬂQ)) (s+6(n, sHG(s)—s))
<n'20,()IQAQ)) (),
o B,(s)
M TR

n

(3.26)

(3.27)
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Since by Darling and Erdés {107],

B,(s) _ 12
———(s(l—s))”" n—-Op(log log n)"=, (3.28)
both (3.27) and (3.28) are O,(1) provided
n'2(QA(Q)) (5).,=O(1) (3.29)

and
(loglog n)"2 n" =2 {I(s(1 —$))(QA(Q)) (), = O(1). (3.30)

Assumptions Bl and (2.3) imply that (3.29) and (3.30) hold. Hence (3.26)
is O,(1) and with (3.25), this gives (24). |

Proof of Theorem 2.3. Equations (2.2} and (2.4) give (2.5). |
Proof of Theorem 2.5. (i) Using (3.6), we have
F(F((S./n) Q(s)) (Sn >
= F{— .
PO, mowy T \w &Y

Now, Wellner [22] provides the needed linear bounds on F,, and (3.4)
gives the conclusion.

(i1) Using (3.18) and A3 we have

” D, ()= G, (s)+ 4, -Sn~ Q1(Q(G,(s))) | =0,(n™").

n

Next, the linear bounds on G, given in Wellner [22], combined with the
fact that Qf(Q) is regularly varying at 0+ and 1 — (under B3), leads easily
to linear bounds for Qf(Q(G,(s))), and the results follow. ||
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