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Unitary Actions of Levy Flows of Diffeomorphisms
DAVID APPLEBAUM

The Nottingham Trent University,
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A stochastic integral representation is obtained for unitary operators induced by
a class of flows of difffomorphisms of a smooth manifold which are driven by
stochastic processes with stationary and independent increments.  © 1994 Academic

Press, Inc.

1. INTRODUCTION

In this paper we consider a class of stochastic flows which are obtained
as the solution of stochastic integral equations driven by a multi-dimen-
sional Lévy process. Although our class is somewhat more restrictive than
that considered by Fujiwara and Kunita [7, 8], we feel that it is worthy of
separate consideration as

(i) it is large enough to include flows driven by a finite number of
independent Brownian motions or Poisson processes;

(i1} 1ts structure is closely related to that of multiplicative processes
taking values in a Lie group as described by Holevo in [9] (see also [6]).

This class has been studied from a probabilistic point of view by Kunita
and the author in [2]. Here our motivation is more operator theoretic and
falls within the programme (see [3-5, 19]) of developing a symbiosis
between stochastic differential geometry and quantum probability (see also
below).

Our main result is to obtain a stochastic integral form for the family of
unitary operators implementing the flow on a certain Hilbert space which
is specified in Section 4, thus generalising results obtained in [3] (see also
[19]). Further motivation for this analysis is as follows.
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(a) Reformulation of a problem in a Hilbert space context can often
lead to fruitful gains. Unitary representations of deterministic flows were
first discussed by Koopman in [13]. Their application to ergodic theory is
described in [17].

(b) In [4], the author initated the study of quantum stochastic flows
on manifolds. These are defined by algebraic stochastic differential equations
driven by the Fock space processes of creation, conservation, and annihila-
tion where the coefficients are complex vector fields on the manifold. The
building blocks for constructing these flows were unitary operator valued
stochastic differential equations of the type discussed below; however, in [4]
we were only able to consider the Brownian case. The results of this paper
will then allow us to construct a far larger class of such quantum flows
(see [5] for some results in this direction).

Notation. 1f M is a manifold then C,(M) is the space of smooth func-
tions on M which vanish at oo and C (M) is the space of smooth functions
with compact support. Cadlag means right continuous with left limits.
Einstein summation convention is used where appropriate.

2. GEOMETRIC BACKGROUND

Let M be a smooth, orientable real manifold of dimension d < oc equipped
with a volume form p, and let u be the corresponding Borel measure on M.
We denote by &= (&,, te R) the flow of diffecomorphisms of M determined
infinitesimally by the complete, smooth vector field Y, so that for each
te R, &£, =exp(1Y) where exp is the exponential map from R into Diff(M).
We denote by j=(j,, t € R) the induced flow of automorphisms of C *(M)
given by

jt(f)=foél (21)

for each f'e C*(M), te R and note that each j, leaves C ¥ (M) invariant.
Let $, denote the intrinsic Hilbert space of M [1], i.e., H, is the space of
half-densities fu'”? where fe L?(M, ) with inner product given by

v

Sul, guly = | fedu (22)

where f, ge LY(M, p). We use P to denote the canonical unitary isomor-
phism between L2(M, i) and $, given by

P(f)=fu)? (2.3)
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We denote by D, the dense subspace of $, comprising smooth half-
densities of the form fu!”? where fe C Z(M).

Let V= (¥(t), t € R) denote the strongly continuous one-parameter group
of unitary operators in $, given by continuous extension of the prescription

V() fi,? = fENEF ) (24)

for teR, fe Cg(M), where ¥ denotes the pullback of ¢, to the bundle of
d-forms. To see that each V(r) is unitary, we write W(t)=P~'V(¢)P and
observe that

du(¢,)

—d#—— (2.5)

W) f=1(2)
for each fe C2(M).

We denote by —iT, the infinitesimal generator of V. D, is an invariant
core for the skew-adjoint operator T, on which it acts as Y+ 1div(Y),
where div(Y) is the divergence of Y with respect to p,.

For the remainder of this paper Y, .., Y, denotes n complete, smooth
vector fields on M and £ denotes the Lie algebra which they generate. We
make the assumption that dim(£) < oo in which case it is shown in [15]
that every member of £ is itself complete. For x = (x!, .., x")e R" we let
&(x) denote the diffcomorphism exp(x’Y;) and V(x) denote the corre-
sponding unitary operator exp(xnyj), where this latter exponential is
understood in the sense of functional calculus.

3. LEvy FLows

Let (2, &, P) be a complete probability space. For fixed seR™*, let
®={d, ,;t>=5s} be a family of measurable maps from M x  into M and
define, for each we 2, @, M - M by

7 ,(x)= D ((x, 0)

for each xe M. We say that @ is a Lévy flow if the following conditions are
satisfied:
(i) @7, is a diffeomorphism of M for all > s and almost all w e Q.
(ii) We have
DY DY =D, forall r<s<t
and
DY (x)=x forall seR*, xeM

for almost all w e Q.
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(ili) For each neN, x,,..,x,eM, s<t,<t,<---<1,,,, the
random variables @, . (x,, ), for 1 <i<n are independent.

Titvl
(iv) For every xeM and weQ and for all 1>=s, the map r—
®, ,(x, w) is cadlag.

If “cadlag” is replaced by “continuous” in (iv) we obtain the notion of
(forward) Brownian flow as described in [14]. All Brownian flows can be
obtained by solving stochastic differential equations (sde’s) driven by a
possibly infinite number of Brownian motions. To discuss a similar
approach to Lévy flows we first recall the notion of n-dimensional Lévy
process. This is a process X =(X(t), re R*) taking values in R” with
stationary and independent increments which is continuous in probability
and for which X(0)=0. It is shown in [16] that such a process has a
unique modification which is cadlag and is also a Lévy process. We work
throughout with this version.

The canonical construction of X is as follows. We take 2 to be the space
of all cadlag functions @ from R* to R"” with w(0)=0 and & to be the
smallest g-algebra for which all the mappings w — w(¢) are measurable for
all re R*. Now define

X(nw = o(t); (3.1)

then there exists a probability measure P on ({2, &) such that X is a Lévy
process on (2, &, P) adapted to the filtration §,=a{X(s): 0<s<t}.

Each X(t) can be realised as a self-adjoint multiplication operator on
L*(82, &, P) with dense domain

D(X(t))={*1’e L2, &, P);j (1) |‘I’(w)|2dP(w)<oo}
2

for each teR™. For each reR"*, let 4X(1)= X(t)— X(¢—), then since
P(A4X(1)=0)=1, we see that for every ¥ e D(X(7)) we have E(|4X(r)¥]?)
=0. It follows that the map — X(7)¥ is continuous from R* into
L*(Q2, &, P).

The Lévy-Itdé decomposition of X (see, e.g., [12]) is as follows. Writing
X=(X',..,X"), for 1<i<nand for each e R” we have

+
Xi(1)=b't+ 6 Bi(1) +f f X'N(dt, dx)
0

fxI =1

+ " j) | <N d), (3.2)

0

where b= (b!, .., b")e R", a=(aj) is a real mxn matrix where m<n,
B=(B', .., B™) is an m-dimensional standard Brownian motion, N is a
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Poisson random measure on R* x(R”"—{0}) independent of B with
associated Lévy measure v on R”"— {0} so that

v) = E(N(1, U)) (33)

where U is a Borel set in R”— {0} with 0¢ U and finally N is the compen-
sator defined by

N(t, W) = N(1, W) — rv(U) (3.4)

for each te R* where U is as above. |-| denotes the Euclidean norm on R”.
Using the notation of Section 2, we introduce the closeable linear
operator % on Cy(M) with domain C%(M) given by

‘ | S
GNP =m Y ()p)+5 a’ Y Y,(f)p)

+ }(f(é(x)(p))—f(p)—*xj“ Y—(f)(p))v(dx) (35)

w0 T+x?

for pe M, fe CL(M) where m=(m', ,m")eR" and a is the non-negative
definite n x n matrix 6. The closure of % generates 2 Markov semigroup
T=(T,teR*) on Cy(M). We note that when £ is abelian, then
:x—E(x) is a homomorphism from R" into Diff(M). In this case we
see by (3.5) and [11] that 7 induces a weakly continuous convolution
semigroup of probability measures on Im(¢&).

Now for each se R*, r > s consider the stochastic integral equation given
by

F@, (PN =1(p)+ [ U(Y SN, (p)) dB(w)
] R (p) (@ (p)] N )
] 0 O (0) = 119, (p))] Nt )
[ @, 4508 @ o)
U@ (p) = (@, (p)

SNy (P)) V(dx)]] d (36)

for each fe C*(M), pe M.
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In [2] it is shown that a unique solution exists to (3.6) giving rise to a
Lévy flow of diffeomorphisms as required.

Conditions for the existence and uniqueness of solutions to a more
general class of equations than (3.6) have been discussed in [7] for the case
of M =R?and [8] for the case of M compact. We remark that if we take
for 1<ig<n

m‘—b"—f X ) +[ X' |x|* v(dx)
st 1+ ]x)? <t L x? 07

then for each te R™*, fe Cy(M), pe M, we have

T,(/)p) =E(f(DPo..(P))) (3.7)

For a simple example take n=1 and X to be the canonical one-dimen-
sional Lévy process given by (3.1) then it is not difficult to verify using It6’s
formula (see [12]) that @ is a Lévy flow which satisfies an equation of the
type (3.6) where

D, (P ©)=E i) wis)(P)- (3.8)

For this case we see by (3.7) and (3.8) that we may write T as

T,(f)(P)=fR SELp)) p(dx), (3.9)

where each p,= PoX(1) "

In the case where £ is abelian, solutions to (3.5) which are again Lévy
flows may be obtained by taking products of flows of the form (3.8)
wherein each term samples from mutually independent one-dimensional
Lévy processes so that, in particular, m =n and o is diagonal in (3.2).

We now return to the general case. Let A7(M) denote the space of
smooth p-forms on M where 0 < p<d and for each 1 <i<n, let L, denote
the Lie derivative with tespect to the vector field Y, acting on A4°(M). For
a given Lévy flow @ we define its stochastic pullback @* to A?(M) in the
usual way by

P (2)(p, w)= (DT )* (2))(p) (3.10)

for each t =5, xe A?(M), pe M, wef2.

For notational convenience, in the sequel we write each such @¥ ,(a) as
a, , and for each xe R”, {(x)* (o), , means (PF, - &(x)*)a. We now extend
(3.6) to A?(M) as follows.
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Lemma L. Forall t=s, e A”(M), pe M we have

2, (p)=alp) +J o' L), . (p) dB/(u)
+£’+ sz] [E(x0)* (@), ,—(P) —a,, (p)]N(du,dx)
+ f f\w [ECO)* (@), (P)) =%, ()] Nidu, dx)
+J (6L (), (P)+%a"’(L,»Lj(a))s‘" (p)

+fl [EX)* ()0 (p)

X<l
_as. u (p)—xl(Ll(a))\u’(p)] V(dx)] du'

Proof. This is a straightforward extension of the methods used in
pp. 205-207 of [14]. 1

We now take « in {3.11) to be our volume form u, and note that for
1<i<n, we have

Lip,)=div(Y) p,

. (3.12)
L.L(u,)=[(div(Y,) div(Y)) + Y,(div(Y)))] p..

To keep the notation concise we write B, = (DX (1,))"2 E(x)* (B),, .=
(@%,0E)* (1) ¢(p),, = (V(X)N®, (p)  and  d,(p),., =
(Y, (div(Y))))(®, (p)) for each t 25, 1 <j<nand pe M.

We now extend 3.6 to the half-density u,.

COROLLARY 2. For all t=s, pe M, we have
, 1o .
Bodp)= 2P +5 | oleiphan Buw (p)dB'(w)
[T T B (P~ B ()] N d)

0] B (o) =B (p)] Nl )

Tl
+L {:E b’C,'(p)s,u_, ﬂ, e (]7)
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(1 1
+a’ {_ Cl’(p).\ u— j(P)_\ u— +4 d: /(p)s u}

+] L (Blaue () = B (p)

lx} <1

1.
5 XCPsu Bru(P)] V(dX)] du. (3.13)

Proof. Follows by Ito’s formula from (3.11) using (3.12). |

4. THE FLow OF UNITARIES

Let b denote the complex separable Hilbert space L*(2, §, P; h,) and let
D be the dense subspace of b comprising those ¥ebh for which
Y(w)=flw)u?eD, for all we Q where f is a square integrable map
from Q into C ¥ (M). In the sequel we often extend linear operators on b,
to the whole of b in the obvious manner. We do not feel it necessary to
identify such extensions by additional notation. Now define a family of
unitary operators U= (U(s, t), {2 s) on § by continuous extension of the
prescription

(Uls, N P)w) = (flw)e @Y )(PL ,)* (1)) (4.1)

for each we 2, where ¥ e D is as above. We note that the map ¢t — U(s, 1)
is strongly cadlag.

Define, for each t>s, a family of homomorphisms from CZ(M)—
L*(M x Q, ux P) by

Jx,t(f)=f°¢s,t (4.2)
for each fe CZ (M) (cf. (2.1)) then it is easy to see that each
Jo )=Uls, 1) fUGs, 1) 7, (4.3)

where J, ,(f) in (4.3) is to be understood as a multiplication operator.

It is easily verified that each U(s,¢)”' has a similar action to (4.1)
wherein each @, is replaced by (®¢,) ' so that these operators are
associated to a backwards Lévy flow.

A simple example of (4.1) where U has an explicit form is obtained by
taking @ to be the flow given by (3.8) where we find that for each Ye 2,

wef,

(Uls, ¥)w) = exp((w(2) — w(s)) Ty) (o). (4.4)
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We need a specific class of operator valued stochastic integrals which we
now describe. Let C=(C(t), re R") be a family of densely defined linear
operators on b for which ® < Dom(C(r)) for each te R* and such that for
each ¥ e D, the vector valued process C(z) ¥ is adapted to §§,. We denote
by .# any semimartingale which is adapted to §&,. Now define the operator
valued stochastic integral 7,(¢)= [ C(u) d.#(u), for each re R* by

( [ cw M(u)) b= (o) dn (4.5)

for each y € . Clearly ¢ € Dom(/.(¢)) whenever the right hand side of (4.5)
exists. We consider two examples. First, if M is a standard Brownian motion
we see that for each reR*, e Dom(l.(1)) if j'(’, E|Clu)y|? du< o
where |-| here denotes the norm in b,. Second, let D,={seR",
A4X(s)#0} and let p=(p(t), re D,) be the Poisson point process defined
by p(t)=4X(2). If C,=(C(4, x), te R*) is a family of adapted operator
valued processes of the type described above indexed by xe R”— {0}, we
define for teR*, I()=[{ [, ., C(z,x) dN(z, x) then ¥eDom(/ (1)) if
EX cisen, IC(s, p(s))¥|? < . By similar arguments to those used in
Section 3, we see that in this last example the map ¢ — /.(z) ¥ is continuous
from R* to b.

Our main result is the following unitary flow valued version of (3.6)
where all stochastic integrals are understood in the sense of (4.5) on the
domain D. Here I denotes the identity operator in b.

THEOREM 3. For all t=s, the map t— Uls, t) is strongly continuous.
Moreover, it admits the following stochastic differential

dU(s, 1) = U(s, 1) [a"fr,‘ dB/(1)+ [  (V(x)— 1) N(dr, dx)

|x[ =1

+ (V(x)—1) N(dt, x)

Ixf <1

+ [bfr,,, +% a'T, Ty + fm (M) —1-xTy) v(dx)J dt}].
(4.6)
Proof. For each feCZ(M) we write g, ,=fc®, ,—f and vy, ,=
B, ,—uY% We now rewrite (4.1) as
Uls, ¥ =fB, ([ @, I 1> + 80 70— .
We apply It6’s product formula in integral form to g, ,y, , to obtain

I+ 4 r+
gs,rvg',r=.5‘ s u— dvs,u—— +J dga‘,u—"f‘.v,u— +J‘ dg,v,u dys.u— .

K
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Now substitute in this expression from (3.6) and (3.13) and observe that
the It correction term is given by

[Tt =" 00 ) S, 0]
K § Ix| =1
X [f(x)* (ﬂ)s.uf —'Bs, ,,,] N(dus dX)
- o, — f(b,
HO] L UE0ee s,

x| <1

X [6(){)* (ﬂ)s.u—- —‘ﬁs.u—] N(dui dx)

5

o
+[ [5 NP ) el B

+ LfE(x)D, , )—f(D,, )]

|x| <1
X LG (B)su —PBru ] v(dx)] .

Now collect together the terms, observing that for 1<, j<n, we have
Ty, Ty/ =YY+ LY. (div( Y))+div(Y) Y, + 3 div(Y,) div(Y)),

then we see that each U(s, 1) —1 is a sum of operator valued stochastic
integrals of the form 7 (¢) discussed above. Since each of these is con-
tinuous from R* to b it follows that 1 — U(s, t) ¥ is continuous for ¥ e D.
Since each U(s, t) is bounded we obtain our required strong continuity by
a standard &/3 argument (see, e.g., [ 17, p. 27]). The precise form (4.6) now
follows from the differential form of the expression obtained above. |

From a quantum probabilistic point of view, as described in the intro-
duction, it is natural to consider (4.6) as a stochastic differential equation
with initial condition U, =1 from which, if it has a unique unitary solu-
tion, the flow can be reconstructed as multiplication operators using (4.2).

We consider two examples of our equation.

(1) Brownian Flows

Here we taken m=n, v=0, and write (for convenience) X°=4'Y, and
X’=06/Y" then in this case t - &, is continuous and (3.6) may be written
in differential form, using Stratonovitch notation, as

do, =X (P, )odB,(1)+ X(®, ) dL, (4.7)
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and the corresponding version of (4.6) is

dU(s, 1)=Ul(s, t) (T dB/(1) + (Tm+% y (Tx,)2> dt>. (4.8)
\ Jj=1
Under our assumptions on the Y/s, it is shown in [14, pp. 194-195] that
(4.7) has a unique solution which is a Brownian flow of diffeomorphisms
thus we may deduce by (4.1) the unitarity of solution to (4.8) (with initial
value as above). We note that in this case the equation (4.8) has been
independently derived from (4.7) in [197] using a different method.

(i1) Poisson Flows

Let N=(N,, .., N,) be a family of independent Poisson processes with
N, having intensity 4;. In (3.6) we take 0':0Aand b= 4, forAl £j<n To
describe the measure v we write R"={J]_, R; where each R;= {0, .., 0,
xY0,..,), xeR} and let v be the decomposable measure [18, p.281]
which is given on each [@j by v((a,b)—{0})=0 if ~a0<a, b<1 and
v((a, b)) = 4; otherwise. Equation (3.6) then becomes

f@.0=3 [ (Feed,, — [, )dN,@) (49)

j=1"%

and (4.6) takes the form

dU(s, t) = Z U(s, t)(V,— I) dN,(u), (4.10)

j=1

where ¢;=exp(Y)) and V;=exp(Ty,).

We now use the canonical isomorphism between ) and b, ® L*(2, &, P)
to identify these spaces and invoke the theory of [10] to identify
LY (2, &, P) with symmetric Fock space over L}(R™), then it follows
immediately from the results of [10] that (4.10) has a unique unitary
solution. We note that this particular result remains valid even if we drop
our earlier condition that dim(2) < cc.

Many of the results of this paper can be generalised to the case where the
Poisson random measure N is defined on G — {e}, where G is a connected
finite-dimensional Lie subgroup of Diff(M) with identity element e. For
further examples, see [2].
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