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We consider the problem of estimating the location and size of a discontinuity in
an otherwise smooth multidimensional regression function. The boundary or loca-
tion of the discontinuity is assumed to be a closed curve respective surface, and we
aim to estimate this closed set. OQur approach utilizes the uniform convergence of
multivariate kernel estimators for directional limits. Differences of such limits
converge to zero under smoothness assumptions, and to the jump size along the
discontinuity. This leads to the proposal of a maximin estimator, which selects the
boundary for which the minimal estimated directional difference among all points
belonging to this boundary is maximized. It is shown that this estimated boundary
is almost surely enclosed in a sequence of shrinking neighborhoods around the true
boundary, and corresponding rates of convergence are obtained. € 1994 Academic

Press, Inc.

1. INTRODUCTION

The problem of estimating a multidimensional boundary has recently
found increasing interest, as it is closely related to the problem of detecting
edges in image analysis and has also applications in ecology and general
statistical modelling. The connection between edge detection and the
estimation of a multivariate boundary or change-point was recently
explored by Carlstein and Krishnamoorthy (1992), in a recent monograph
by Korostelev and Tsybakov (1993), and by Rudemo and Stryhn (1993a,
1993b). An earlier approach for boundary detection was described in
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Brodskii and Darkhovskii (1986). Optimal rates in a minimax sense were
developed in Tsybakov (1989), and a good review of the current knowledge
regarding the boundary estimation problem is given in Tsybakov (1993).
This area is currently under rapid development, and these references are
only a selection of significant work. For further relevant references consult
Korstelev and Tsybakov (1993), Rudemo and Stryhn (1993a), and
Tsybakov (1993).

We consider the multidimensional boundary estimation problem here in
the context of a multivariate fixed design regression setting and propose a
new class of estimators for the boundary, which alternatively could be
described as a multidimensional change-point, edge, or change curve.
Strong consistency with rates of convergence for these estimators will be
established in a suitable metric. Since we aim to estimate a set in d-dimen-
sional Euclidean space, choice of an appropriate metric on sets in R? is of
relevance in order to obtain a reasonable measure for the performance of
the proposed estimators.

We assume that the boundary [, induces a partition of the compact
subspace [0, 1]¢ of R within which measurements are available, into two
sets C,, C,, such that 'y = 8C \8([0, 1]¢) = 8CNH([0, 1]9), ie., Iy is a
(possibly closed) curve in the two-dimensional case and a (possibley
closed) surface in the case that d>2. The boundary property of 'y is a
consequence of the following assumptions on the regression function
g: [0, 1]¢ - R: This function is assumed to be “smooth” everywhere, except
at the boundary [y, where it has a discontinuity. For each point ye I,
the maximum of the differences of directional limits, Jlim,_, , .. g(x)—
lim,_, ..., 8(x)l, is bounded away from zero.

We obtain this by assuming

gx)=h(x)+4,f(x)1(x), (1.1)
where A, f are smooth on [0, 1]% and inf, _ ;[ f(»)I = 1. In this model, 4,

is seen to be a lower bound for the jump size across the discontinuity 7.
The available data are assumed to be noisy measurements of g, taken on
a regular grid in [0, 1] This corresponds to the situation in image
analysis for d=2, where the pixels are located on a regular grid and the
grey level of each pixel would correspond to a continuous, noisy measure-
ment of g at the respective point. Since often a boundary respective
edge or change curve is of primary interest when analyzing such data,
the corresponding statistical problem of estimating a boundary has
many important applications. Model (1.1) will be appropriate whenever
discontinuous and continuous changes occur simultaneously in different
regions. If several boundaries exist simultaneously, defining a partition of
[0, 1]¢ into more than two subsets or “cells” C,, .., C,,, the proposed
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method could be modified to estimate the boundaries of several “cells” as
well.

Besides estimating the boundary I, it is often also of interest to obtain
good global estimates for the regression function g itself, the “surface” or
“image.” Ignoring the boundary and applying simple smoothing procedures
will result in a “blurred” image where the originally sharp boundary is
“smoothed out,” producing inconsistent estimates in a neighborhood of this
boundary. Alternatively, a two-step procedure can be devised, in analogy
to a proposal in Miiller (1992) for the one-dimensional case, where in a
first step the boundary is estimated and in a second step a nonparametric
regression estimate adapted to this boundary is obtained. Such estimators
can preserve the discontinuity and thus lead to globally consistent estimators
of the regression function. Related global discontinuity preserving curve
estimators in the one-dimensional case were considered by McDonald and
Owen (1986) and Hall and Titterington (1992).

Sometimes it might also be of interest to divide the total space [0, 11¢
into several “cells” as mentioned above, to estimate the dividing bound-
aries, and then to fit a multivariate parametric regression model within
each cell. If the number of cells is assumed to grow with the number of
observations, this leads ultimately to a nonparametric multivariate regression
procedure which could be described as a “honeycomb” method.

The paper is organized as follows: The model, the notation, assumptions,
and precise formulation of the problem are introduced in Section 2. The
proposed maximin estimators which are based on differences of kernel
estimators for directional limits are discussed in Section 3. The main result
on strong consistency of these boundary estimators as well as the rate of
convergence in the Hausdorff metric is presented in Theorem 4.1 and
Coroilary 4.1 in Section 4. Section 5 contains a resuit on the uniform as.
convergence of kernel estimators for directional limits (Theorem 5.1) and
auxiliary results.

2. MULTIDIMENSIONAL BOUNDARIES

We assume that noisy measurements y, , are obtained of a regression
surface g: R? - R, d > 1, which has a discontinuity, the location of which is
the boundary we intend to estimate. These measurements are made at non-
random locations x; , which lie on a regular grid in [0, 1 ]% More precisely,
let n=T1{,n, i=(,i4), 1<i;<m, 1<1<d, be a multi-index and
assume

(A1) y,.=g(x;,)+¢, ., where the ¢, , are all i.i.d. random variables
with Ee, ,=0, and
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(A2) x;, = ((iy — 1/2)/ny, (i3 = 1/2)/ny, ., (3= 1/2)/ng) € [0, 1]
min, _,,n,=cn"? for a constant ¢ > 0.

In the following denote the index set of all i such that x, , is a grid point
by I; I has n elements.

The function g is assumed to be smooth everywhere except at a bound-
ary I'y = [0, 1]% We assume that I'; has the following properties:

(A3) I, is closed and there exist two arcwise connected sets C,, C,
such that C,uC,ul,=[0,11%Cinly=,i=1,2,C,nCy=.

(A4) There exists a § with 0 <J < 1 such that for any given sequence
«,—0,a,>0, for sufficiently large n the following holds. For each
yel,, there exists an orthonormal mapping 7,(-): R‘— RY with the
properties:

(i) T,(z)=R(y+z), zeR“ where R is a rotation in R%
(ii) Considering the cubes

Dln= [6an7 2an+ 5an] X [_arn aa]d7 l’

D2n= [—5(1,,-*2&,,, "'5@,‘] X [—am an]dVl,
it holds that 7 (D)= C,, T,(D,,) = C,.

A consequence is that for each yel,, the sequences y,,=
T,{{%2,,0,.,0)7}eCy, y,,=T,{(—6,,0,.,0)" } e C,, satisfy

Yi.—y and  y,,—»y as n-—ow, (2.1)

so that I is in the closure of both C, and C,.

Note that condition (A4) is always satisfied by twice differentiable
boundaries with uniformly bounded curvature. This can be seen geome-
trically, since then for each ye Iy there exist two cones with their tips
meeting at y, centered around the same axis through y, such that except for
y one of the two cones belongs to C, and the other one to C,. The angle
of aperture for these cones can be chosen to be the same for all y e I'y due
to the uniform curvature of I'y. We can then inscribe cubes with properties
as required in (ii) into the cones, where the uniform angle of aperture of
the cones determines the corresponding J. This shows the close relation of
(A4) with the *“double cone condition” described in Korostelev and
Tsybakov (1993).

Note that assumption (A4} also covers non-differentiable boundaries like
rectangles or other polygons in R% Condition (A4) is a “separability”
requirement which ensures that we can estimate the jump across the
boundary I’y by employing smoothers with supports 7 (D,,)cC, and
T,(D,,) < C, contained in the regions where the regression function is
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smooth in order to obtain estimators for the limits lim, _ . g(x),
lim, ., 8(x). Furthermore, also owing to the continuity of g in sub-
regions C,, C, as required in (AS) below, these limits do not depend on the
particular sequence x chosen in the respective subregion.

The regression function g is supposed to be smooth within subregions
C,, C, but to have a discontinuity across I'y; the jumpsize 4, may depend
on n. These assumptions on g are reflected in the following model:

(AS)  g(x)=h(x)+4,f(x) Lc(x), xe [0,1]°

where A, fe®*([0,11%), inf, ., [f(¥)=1,4, is either constant or
monotone decreasing and k> 1 is a given integer; it is required (see (K7)
below) that #n'%4, — oo as n — .

The jumpsize when crossing the boundary at any given point ye I, is
then |4, f(y)| = 4,,; it is not necessarily constant on I, and may decrease
as n—» oo,

Furthermore, for the strong consistency result to be derived, the following
requirement on the moments of the errors is needed:

(A6) The error variables ¢, , in model (A1) form a triangular scheme
of iid. random variables such that Ee, ,=0, Ee; ,=0° and El¢, ,[*<
for some 5> 4.

The estimators for the multidimensional boundary or change curve I, to
be introduced in the next section will be shown to be strongly consistent
under model assumptions (A1)-(A6) in Theorem 4.1. Note that the model
assumptions (A1)-(A6) apply to a large range of multidimensional boundary
problems which are relevant in applications. For instance, I, could be a
simple Jordan curve in R? and h, f could be chosen as constant functions
with constants ¢,, ¢,, ¢, # ¢,, compare Rudemo and Stryhn (1993b) for a
discussion of this case. In image analysis, this case corresponds to the situa-
tion of two different constant grey levels separated by the boundary I

3. THE MAXIMIN METHOD

leto=(¢,, .., 04 ,)€[0,2n]¢ . Forany xe [0, 1] and w e R, & >0,
define

zZ(x, 0, @)= (X, + W COS @y, .., Xy_, + W COS @ _1, X+ wsin@,_,)e R
For any point x e [0, 179 define the directional limit

g(x, ¢)=£513)g(2(x, w, ), (3.1)

683/50/2-7
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and the absolute difference of directional limits taken in opposite directions,

A(xs (P)z lg(x9 @)—g(x, @)L
where
@, =n+o, 1<jgd-1.

According to (A3)-(AS), these quantities are well-defined for all
xe[0,1]¢ and ¢e[0,2n]¢ !. The maximum difference of directional
limits associated with a point x € [0, 1]¢ is then

A(x)=sup A4(x, ). (3.2)
@
Note that the mapping 7T',(-) which is defined in (A4) corresponds to a
rotation in R? coupled with a translation. This implies that for each ye Iy,
there exists @ = ¢(y)e [0, 2n]9"' such that

z2(y,0,0()) =y 2y, 0,0(y)) >y, as w—0, (3.3)

where ¢,(y)=n+¢;(y), 1 £j<d-1, and, without loss of generality,

Z(y’ w, (p(y))ECl, Z(,V’ , ‘ﬁ(}’))ecz

It follows immediately from (3.3) and (AS) that

inf A(y)> inf A(y, o(y))=4,>0, (34)
yerly

yely
whereas the continuity of g implies
A(x)=0  forall xe[0, 174\. (3.5)

Assume that A(x) are estimates of A(x). Then we define the maximin
estimator

F=arg sup{inf ﬁ(y)} (3.6)

re® yel

for I'y, where & is a sufficiently rich class of candidate boundaries, contain-
ing Iy, and being such that for each I"e Z it holds that I'< [, 1 —¢]¢ for
an arbitrarily small fixed £ >0 (compare the comment at the end of this
section).

This estimator corresponds to the boundary in & which maximizes the
minimal maximum difference of directional limits achieved for the points
belonging to this boundary. Intuitively, the smaller infverﬁ( y) is for a
boundary I, the more likely it is that I" ventures away from I, into the
“continuous” part of g where 4(x)=0 according to (3.5), so that an
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estimated boundary on which inf,_ 4(y) is maximized should be close to
I'y. This heuristic idea will be made more precise in Section 4, where we
will show that I (3.6) almost surely stays within a sequence of
neighborhoods of I'y which converges to I'y as n — c0.

We still need to specify the estimators 4(x) of 4(x) for x € [0, 1]¢ which
are essential for the boundary estimates /" (3.6). We use a kernel method
to construct such estimators, but other asymptotically equivalent smooth-
ing methods, in particular locally weighted least squares estimators, could
be used as well; the results would remain essentially unchanged for locally
weighted least squares estimators.

Let (K,),yeR, be a family of kernel functions with the following
properties:

(K1) support (K,)=[y,2+7],

1, i=0
(K2) [K,(x)xlde=40, i=1,., k=1
#£0, i=k.

For each y, K, is integrable and

(K3) sup|K,(-)| < 0.

(K4) For each y, there exists some {, 0<{<1, such that for all
bounded funcions ¢&,(v) satisfying &, =sup|é,(v)| =0 as n— oo, it holds
that

[ 1&,(0 + £,(0) = K ()] do= O(E5).

Note that (K1), (K2) relate to a kernel function of order & with support
[v, 2+7]; for y= —1, these are usual kernels with symmetric support. For
y with —1<y<0, —2<y< —1, these kernels correspond to boundary
kernels (see, for instance, Miiller, 1991); for y<—2 or y>0 they
correspond to “extrapolation kernels.” The boundedness condition (K3) is
satisfied for all practically relevant kernel functions, and condition (K4} is
satisfied with { =1 for kernel functions which are Lipschitz continuous on
R. It is easy to see that one sufficient for (K4) is Lipschitz continuity on
R except at a finite number of discontinuities where one-sided limits exist.
Note that therefore kernels with discontinuities at the endpoints of their
support like the rectangular kernel satisfy (K4).

Set now y=4 with J as defined in (A4). We consider a sequence of
bandwidths b = b(n) satisfying

(K5) b—0,nblogn— as n— 0.
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For any vector xe R let x, ;) be its jth component, and let x/b denote
(x(1y/b, ..., X(2/b). Furthermore, let 4, be the rotation with the center at 0
corresponding to an angle ¢ € [0, 2n]¢" ', ie, if x € R? has the polar
coordinates (r,, ¢.), r.€R, ¢, [0,2n]?" ", then 4 ,x has the polar coor-
dinates (r., ¢ + ¢.). Note that according to (A2), there exists a partition
of [0, 1]¢ into » rectangles A4, , of equal size such that x, , € 4, ,, where the
x, , are the gridpoints defined in (A1), (A2).

For ve R? define

d
K(v)= Z K_\(vy) Ks(vy)). (3.7)

Jj=

Then for xe [0, 114 @ e [0,2rn]9 ", the directional limit estimator is

gx, p)=b""¢ Z y,-,nj z(&i{:‘;ﬂ) du. (3.8)
i=1 Ain

Observe that 4 '=A4_,. The effective support of the transformed kernel
is then

d

Jj=2

where 4 » » 18 the rotation corresponding to an angle ¢ with center at x.
This is a cube of volume (26). This cube is obtained from a cube with mid-
point x and sidelength 26 with sides parallel to the coordinate axes, by a
translation by 4+ bé in the direction of the first coordinate x,,, such that
the distance between x and the the shifted cube is 49, and a subsequent
rotation A4, , centered around x. Note that the distance between x and this
rotated cube is also bd. Therefore, estimator (3.8) is a (weighted) average
of data obtained in a cubic area lying in the direction ¢ away from x,
where the distance b6 between this cubic area and x goes to 0 as n — oo.

The moments of the kernel function need to satisfy (K2) which implies
that applying this kernel estimator corresponds to extrapolating the func-
tion observed on the cube (3.9) onto x. Therefore the directional limit
estimator (3.8) corresponds to an approximation of g(x) in the direction ¢,
and as n— o0 we can expect that it converges to the corresponding
directional limit g(x, ¢) (3.1).

Having constructed an estimator for directional limits, we obtain I (3.6)
by setting

A(x)=sup |é(x, ) —£(x, ¢)I, (3.10)

pe[0,22]49-1

where @ =n + ¢, in accordance with (3.2).
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It remains to provide explicit constructions of kernels K, satisfying
(K1)-(K4). For this purpose we consider ultraspherical polynomials P,, on
[ —1, 1], ie., polynomials which are orthonormal with respect to the scalar
product (f, g)=ff(x) g(x) G (x) dx, where the weight function is given by
G'u(x)= (1 + x)*(1 —x)* for some u =0, see Szegd (1975). For u=0, these
polynomials are the normalized Legendre polynomials on [—1,1). The
normalized ultraspherical polynomials on an interval [c, d1, ¢ <d, are then
obtained by means of the transformation formula

2 w+1/2 XxX—c
Pj“(x)=<"—1:) Pju<2d—~c—l)'

and the corresponding weight function is G, (x) = (x — ¢)*(d— x)".
Define now the corresponding polynomials and weight function on
[v,24+7v], ie,

Pu=(y,x)=P,(x—y—1), (3.11)
Gy, x)=(2+y—x)(x—y)~ (3.12)
We set K. (x)=P(y, x) G (7, x), where K(-) is supposed to be a kernel
function with support [y,2+1y] satisfying (K1)-(K4), and P(y,-) is

assumed to be a polynomial of degree (k —1).
According to (K2), we find

24y
| PG 0 P 1) G, 1) dx =P, 0), 0<j<k,
7
and therefore
k—1
PG, x)= ¥ Py, 0) Py, ) (313)
i=0

This motivates the following result.

LeMMA 3.1. The family of kernels
k~1
K,={ S P, 0) Pl x)} G, (3 %), (3.14)

j=0
where P,,, G, are defined in (3.11), (3.12), satisfies conditions (K1)}-(K4),

where (K4) holds with { = 1.

Proof. Property (K1) is satisfied since P;,(y,-) and G,(y, -) both have
support [y,2+7], and (K3) is obvious. For (K4), we use the fact that
K,(-) (3.14) is Lipschitz continuous on R for p>1 and is Lipschitz
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continuous on R except at the two points y and 2+ y for 4 =0, where a
discontinuity occurs. As discussed after (K4), in either case (K4) holds with
{ = 1. It remains to show (K2). Let

o

xi=z i my’x)—z ji j#y’x)

j=0
be the unique representation of the monomial x’ in the system Py, )
where
lji=ijﬂ(y,x)x'G#(y,x)dx, for 0<j<i, 4;,=0 for j>i

Then

jKy(x) x'dx
JZ P35, 0) P, X) X'G (3, x) dx

i J’ (¥ X) X'G (7, x) dx - P(»,0)

—kil 0)— Z 0)= _{1, i=0
= 2 Al 0)= WP 0=x| =10, o<isk-1

which implies (K2). ]
According to {3.11)—(3.13), this family of kernels can be written as
k—1 _
KY(X)={(2+?—X)“(X—V)“ > Pu(—1-y)P (x—v—l)} [FSPTE

j=0

(3.15)
Explicit formulas for the P;, are available from Szegé (1975). For example,
Poo(x) =212, Piy(x)=(3/2)"?x, Poy(x)=3"/2, and P, (x)=(15"%/2)x.
This implies

K,(x)

II

3O =31+ )= (149)) 1y 2447

for u=0k=2;
K(x)=3Q2+y—x)(x—y)1 =51 +)(x—y~1)) 11, 244]
for p=1,k=2,
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The special cases of a symmetrically supported kernel, ie., for y=—1,
correspond to K_,(x)=3%1;_,,, for u=0, k=2, ie, the rectangular ker-
nel, and to K_,(x)=3(1~x%)1_, ,; for u=1, k=2, ie., the parabolic or
Bartlett—Priestley—Epanechnikov kernel.

Note that the corresponding kernels K for the estimation of directional
limits are obtained from univariate kernels K, (3.15) by means of (3.7).
Further, the condition that I'c [, 1— ]9 for all I'e = stated after (3.6)
can now be relaxed to I"c [3d"?b, 1 —3d"*b]¢ I'e Z. Since b — 0, this is
a weaker requirement. This condition conveniently allows us to ignore
boundary effects when estimating directional limits.

4. STRONG CONSISTENCY OF BOUNDARY ESTIMATORS

We consider here consistency properties of the maximin estimators [
(3.6) for the boundary I',. The proof relies on uniform convergence results
for the directional limit estimators g(x, ¢) (3.8) which will be discussed and
proved in the following section.

An additional technical requirement on the sequence of bandwidths
b=>b(n) is

(K6) For one arbitrary fixed number r which satisfies 4 <r <s and
where s is as in (A6), it holds that

lim inf n =" (nb log n)'> > 0.

n—

A further restriction connects the sequence of bandwidths b with the
sequence of jump sizes 4, as defined in (AS5):

(K7) {b*+n=""4 (logn/nb?)'*}/4, >0 as n-— oo
For any p >0 define a p-neighborhood U,(Iy) of the boundary I'; as
U lo)= U S(y; ),
velp

where for any xe RY, S(x; p)={zeR?: ||x —z|| < p} is the ball with radius
p around x, |-| denoting the Euclidean norm in R“ Note that for the
Hausdorff distance between U (/) and I, observing that Iy < U, (1),

d(U,(Ig), )= sup inf Jx—y|<p (4.1)

xeUp(Ip) yelp

The following separability property is useful.
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LEMMA 4.1. For any xe [0, 1]\U(I,), S(x; p/2) " U, ;5(Fy) = .

Proof. Assume ze S(x;p/2)nU,;(I,). Then |lz— x| <p/2, and there
exists yoel, with |z—y,ll<p/3, which leads to the contradiction
xeU,(,). 1

Denote by U,(I'y) = Uy, (Fy) a sequence of b(rn)-neighborhoods of I7.
Since according to (K5), b—>0asn— o, Upy(ly)— Iy as n— . Our cen-
tral result is

THEOREM 4.1.  Under (A1)-(A6), (K1)-(K7), setting B, = 6d'*b(n),
P(le U, (1) for sufficiently large n) = 1. (4.2)
Furthermore
d(I', Iy)=0(b(n)) as., (4.3)

where d(A, B) denotes the Hausdorff distance between sets A, B.

The proof is given at the end of Section 5. Note that (4.3) is an
immediate consequence of (4.2) in view of (4.1). The special case d=1 was
investigated in Miiller (1992).

CoROLLARY 4.1. Under (A1)-(A6), (K1)-(K7), assuming that s> 2d in
{A6), one obtains for fixed jump sizes A,=A4 and any given n with
0 <n<s—4 the rate of convergence

d(F, Fy)=0{(n="*¥“""(logn)~")'"} as. (4.4)

In order to see how this follows from (4.3), consider the restrictions
imposed by (KS}(K7). For fixed 4,, the main restriction is (K6). The
minimal b compatible with (K6) is of the type given on the r.h.s. of (4.4),
using r=s5—1.

Note that s>4 in (A6), which ensures that all restrictions can be
satisfied simultaneously, so that in (4.3) the rate is at least o(1) a.s. Accord-
ing to (4.4), under these minimal assumptions, the rate is seen to be
actually O{(n~"(logn) ')} for some ' >0. Observe that by assuming
large enough s in (A6), rates {n~'**(logn)~'}" are achieved for any
given « >0 by choosing small values for #.

Considering the case where 4, -0, we observe that in view of
(K5)~(K7) we obtain the same a.s. rate as in (4.4) provided that
(n'4,)" ' =0, log n/(n?“~" 4,)—0, and (n'~Y“"Dlogn 49*) ' -0 as
n— oo, If for instance 4,=n"* for some o >0, this would be satisfied if
x<min{d", 2/(s —n), (k/d)(1 - 4/(s—n))}.
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S. UNIFORM CONVERGENCE OF DIRECTIONAL LiMIT ESTIMATORS

The results given in this section are needed for the proof of Theorem 4.1
and are also of interest in their own right. Considering kernel estimators
£(x, @) (3.8) of directional limits g(x, ¢) (3.1), we decompose the difference

8(x, 9) —g(x, @) =§(x, 0)— Eg(x, ) + E§(x, ¢) — g(x, ¢)
into a stochastic and a bias part.
THEREOM 5.1. Let Ac[0,1]9%(0,2n]7~ " and B< [0, 117 be compact
sets such that for any (x, )€ A it holds that the effective support S, , (3.9)

of the kernel employed in §(x, @) satisfies S, ,< B. Furthermore, assume
ge €*(B) and (A1), (A2), (A6), (K1)-(K6). Then

sup |§(x, 0) ~glx, @)l = O{b* +n~ "9+ (logn/nb”)'?}  aus.

(x,p)eA4

The proof follows immediately from the subsequent two lemmas for the
bias and stochastic parts which hold under the assumptions of Theorem 5.1.

Lemma 5.1. SUP (x, @) 4 [Eg(x, ) —g(x, @)| = O(bk-{"n_l/d).

Proof. Let the rotation A, be as defined before (3.7) and observe that
by a Riemann sum approximation argument, for given (x, ¢)€ A4, using
that g e €*(B),

Eg(x, ) =b"* [ glu) R(b "4, w— x)) du+ O(n~ )

=J.g(x+bA,,,v)I?(u)dv+0(n‘”"),
where for xeR?, bx=(bx,,..,bxy,) and K is as in (3.7). A multi-

variate Taylor expansion of g(-, ¢) around g(x, ¢), noting that
supp{g(x +b4,v) K(v)} = B due to (K1), then yields

J‘g(x +bA,v) K(v) dv

g 1 .
=gx @)+ T b ¥ —D(x ) [ (4,0)R() dv
I=

=1 fa|=17"

1 -
+55 T — D8 0) | (4,0)7K(0) do,

Jal =k **

683/50,2-8
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where « = (a;,..,%,) is a multi-index, a!=a!l.. .a,!, x*=x{],...a7§,
Dg(x, @) = (0™...0%/0%v,,...0% ) g(v, @)|,_ . is the mixed partial
derivative of order o of g(x, ¢), and ¢ is an intermediate value between x
and x+bA v, £€ B. We used j'1~{(v) dv =1, which is a consequence of the
moment conditions (K2). These conditions also imply that ff((v) v*dv=20
for « with O<)al <k, so that we conclude Eg(x,¢)—g(x, @)=
O(n— "4 4 b*), for the chosen point (x, ¢)e 4. It is now easy to see that
these remainder terms are uniform over compact sets. [

LEMMA 5.2. sup, , . |8(x, @) — EZ(x, )| = O({log n/nb"}'?) a.s.

Proof. Let o, = {log n/nb?}'?. Consider a partition (D;) of A4 such that
d(D;)=sup, ,p Ix— i <n~ %, where { is as in (K4). For each j, fix a
point 7,€ D;, and define the function 7: 4 - R by t(s)=arg min_ |ir,—¢|
for te A. For r as in (K6), define the truncated errors &=¢;1,,; < ginyir}-
Then, defining

W.(1)= b~dj k(fﬂl—(l;———x—)) du,
Ain

for t=(x, ¢), we have

sup |g(x, @)~ Eg(x, @)lsup ) [W,(¢) &

(x,p)eA te A

QSUpZ W)~ Wi (1(1)} &l

te A

+sup Z Wit(t)) e, — &)
te A

+sup Y W(t(0) &| = I+ I+ IIL.
ted

Now, observe that by the strong law of large numbers,

r<sup {3 W, (1)~ W.-(rm)]Z}l/z{z sf}m

teA

1/2
=O<n‘/2{supZ[Wi(t)—W,-(t(t))]z}) as. (5.1)

te A

In the following, x| is the Euclidean norm for a vector x e R and || 4} is
the matrix norm {A}| =sup,,, _, [|4x| for a matrix A.
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By (K3), (K4), substituting v=>b""4_"(«—x) and letting 1= (x, @),
= (x', @),

sup 3. [W.(1) = W,(1(1))]?

te A

i . - 7,1 S
<c max sup 242“. (M)_K(M)( du
Lrep; " nb Aj, b
—1 '
Rv)— K(A—lA —S"——(%——i‘—)> dv
Jj tteD,

=0(n~'{b dllAw—A(,rHer’z"llx x[}9)=0([n*b*]"")

as { <1, and

[ 1&@)- R+ &,)1 ao
<C.[{ o+ Eap) + 1 Ks(vgy) — 5(”(1)+€n(1))|}dv

=o{ s lé,,(,-,lf}=0(u¢nn¢).

Relations (5.1) and (5.2) imply
I=0(a,). (5.3)

As for II, by the same arguments as in Lemma 5.2 of Miiller and
Stadtmiiller (1987), one shows that

sup 3, Wit(n))e;— £)| = O (n*" sup |W,(1)])  as,

te A te A
Igign

and with sup,_, | <;<. |W.(1)| <c/(nb?) then one obtains from (K6) that
I=0(s,) a.s. (5.4)

Observing that due to (K1), the number of nonzero weights in the
estimator (3.8) is O(nb?), one finds that

sup (Z W2 (1)log n)l/z =0(0,).

ted

Under this condition, term III can be handled as in the univariate case, see
Miiller and Stadtmiiller (1987), to yield

Il = O(a,). (5.5)
The result follows immediately from (5.3), (5.4), and (5.5). 1}
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Proof of Theorm 4.1. Set y,=b*+n"""+ (logn/nb*)"?. Choosing
A, ={[3d"*h,1-3d"b]"\Uy (I'0)} x [0,27]° ", B, =[0, 11\Up,s(I),
Theorem 5.1 implies

sup  [g(x, ) —g(x, @) =O(7,)  as. (5.6)

(x, p)e Ay

Note that according to (3.9) and (A4) it follows from Pythagoras’ Theorem
for the effective support S, , (3.9) of the kernel employed in g{(x, ¢) that
S, » < S(x,3d"?b), where S(x, p) is defined after (K7). Together with
Lemma 4.1 this implies that S, , n Uy 1(1) = &, so that either S, , = C,\
Ug,(Fp) or S, ,cC\Ugs(Fp)see (A3)), ie, S, ,<B,. Obviously,
ge¢4(B,).

Furthermore, choosing A,={(», 0(y)), yelo}, Ar={(3 6(»))
yel,}, where ¢(y), ¢(y) are the angles defined by the rotation part of the
orthonormal mapping 7, in (A4), as in (3.3), and B,=C,, B,=C,, as
suggested by (3.3), Theorem 5.1 implies ‘

Sup |§(,V, (P)_g(y, (P)! = O(Yn) a.s.,
yefo (5.7)
sup 18(y, 9)—g(y, o) =0(y,) as,

yely

as ge €*%(C,), ge€*(C,), defining g on I', by the corresponding limits
gy o(y)= lim glyy,),  yueCy,

gy, o(y)) = lingo &(y2),  y2,€C,, according to (2.1).

From (5.6), (5.7), we obtain in conjuction with (3.4), (3.5)

sup  A(x)=0(y,) as. (5.8)

xeAl\Uﬁ"(Ib]

and

inf 4(y)> inf sup |§(y, o())—&(y, ¢())|

velp yelo e(y)
= inf sup |g(y, @(¥))—g(y, ¢(¥NI+O0(v,)  as.
yely e(y)
24,4+ 0(,) as., (5.9)

where A(-) is defined in (3.10), and the jump size 4, is defined in (AS).
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It follows from (5.8), (5.9), and (K7) that for any I'e & with I" & Uy (1)
it holds that for sufficiently large »,

inf 4(y)> inf A(x) as.,
xel

yely

and according to the definition (3.6) of I, this implies (4.2). |
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