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Central Limit Theorem, Weak Law of
Large Numbers for Martingales in
Banach Spaces, and Weak Invariance
Principle—A Quantitative Study

G. A. ANASTASSIOU

The University of Memphis

This article deals with quantitative results by involving the standard modulus of
continuity in Banach spaces. These concern convergence in distribution for Banach
space-valued martingale difference sequences and weak convergence of the distribu-
tion of random polygonal lines to the Wiener-measure on C([0, 1]). A general
theorem is given with applications to the central limit theorem and weak law of
large numbers for Banach space-valued martingales. Another general theorem is
presented on the weak invariance principle with an application to a central limit
theorem for real-valued martingales. The exposed results generalize earlier related
results of Butzer, Hahn, Kirschfink, and Roeckerath. ¢ 1995 Acudemic Press. Inc

INTRODUCTION

Here we present generalizations of some results from Butzer er al. (1983)
(Part A and Butzer and Kirschfink (1986) (Part B). The improvement in
this work is that our inequalities involve the standard modulus of con-
tinuity of certain Fréchet derivative of the acting function in the associated
weak convergences. This is achieved through the implementation of some
general results from Anastassiou [2] (1986) and Lemmas ! and 2. The
corresponding theorems in the above-mentioned references can involve
only functions whose certain Fréchet derivative belongs to a Lipschitz class
of functions.

However, the author considers the work of the above-mentioned
researchers to be pioneering in this direction of research and he feels that
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his improvement was made possible only because of their pre-existing
important work.

About Part A. Let (X;, #),.,, be a martingale difference sequence of
Banach space B-valued random variables, defined on the probability space
(0, .o, P). Denote S,:=3>7_, X;. Let Z be a B-valued random variable
which is ¢-decomposable and f: B— R be a (r — 1)-times uniformly con-
tinuously Fréchet differentiable and bounded function, re N — {1}. Here E
stands for the expectation. The random variables X, i€ Z, do not have to
be independent.

In Theorem 1, under the moment condition (21), we find an estimate for
|E(f(@(n)-S,))— E(f(Z))l, see ineqality (22), which involves w,(f" ", h)
—the modulus of continuity, 4, depends on X;, Z, and the normalizing
function ¢. Applications of this theorem are Theorem 2, the weak law of
large numbers, and Theorem 3, the central limit theorem for martingale

difference sequences on Banach spaces.

About Part B. Here we study the weak convergence of the distribution
of the random polygonal lines S,(w, ), see (46), to the Wiener-measure
Wg on C=C([0,1]). In this work again, the random variables X, deter-
mining S, do not have to be independent. This is possible due to a moment
condition, that is, relation (65) of our main theorem, Theorem 4. There we
estimate |E(f(S.(2))) — E(f(W(t)))|, see inequality (67), where feC, '
and W is the Wiener process. Inequality (67) involves w,(f" '), h),
reN— {1}, where 4 depends on X;, W, and some parameters.

When we consider a more concrete dependency structure among the
random variables X, see Definition 3, we are able to simplify the moment
condition (65) and prove Theorem 5, a central limit theorem for possibly
dependent random variables. A direct application of this theorem is
Theorem 6, which is the central limit theorem for a martingale difference
sequence of real valued random variables.

PART A

Preliminaries

We need the following auxiliary results:

Lemma 1. Let (Vi, |-111), (Va, [I-)l2) be real normed vector spaces and Q
be a subset of V| which is star-shaped relative to the fixed point x,€ Q.
Consider f: Q — V5 with the properties

flxo)=0  and  |ls—tl,<h=[f(s)—f(O)l,<w;w, h>0. (1)
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Then
e — xoll

llf(l)llzéw'[“T*—’s Vie Q. 2)

(Here [ -7 is the ceiling function, ie., for x>0, [x]is defined to be the
least integer greater than or equal to x.)

Proof. When ||t — xgll, < h then || f(1)], <w. For any other 1€ Q there
is neN: (n—1)h<lir—x,l, <nf. Observe that

n—1

t—xo= 3y A4,
k=0

where

_(n—k)t+k.\'[,__(n~(k+]))t+(k-+—1)x0_t—xn

Now that |4}, < h, we get
n o1

—k kx,
ey (P

k=01 n

(ignwx QED.

i 2

‘fcn—m+1npuk+nxv

n

LEMMA 2. Let ¢: R, - R, he a continuous convex function such that
#(0)=0. Then

dx)+(y)<g(x+r)., Vx, reR,. (3)

That is, ¢ is superadditive.
Proof. Easy. Q.ED.

For re R we define

¢0(I):=[|-t~|], h>0,

h

and for r =2 integer we define

R R N
¢, (1):= fo (h]' T - ds. (4)
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¢, is continuous and convex on R and strictly increasing on R*.
Furthermore

A L 1 U e
¢’l(t)<<r!h+2(r—1)!+8(r—2)!>’ VieR. (5)

For more details on ¢, _, see Anastassiou [2] (1986).

Dermition 1. Let (V, ||-|l1), (V>, ||-]|.) be real normed vector spaces
and Q be a subset of V,. For a continuous bounded function /- Q — V, we
define its (first) modulus of continuity

wy(f; h) :=sup{[ f(x) = f(¥),:allx, ye @, |lx— ylli <h h>0}. (6)

From now on in Part A, for the convenience of the reader to make com-
parisons, we follow exactly the same notations as in Butzer et al. (1983).

Let B be a real Banach space with a normalized basis (e;), .y, and
norm |- g, (X;);cn be a sequence of B-valued integrable random variables
(r.v.s) defined on a common probability space (0, .+, P), and let (#),_,,
be an increasing sequence of sub-g-algebras of o/ so that X, is
F,-measurable VieN. Then (X,, %) Xy=0 is called a martingale
difference sequence (MDS) if

ieZ,>

E(X,|%_,)=0 as. (ieN). (7)

This implies EX;=0. Let S, :=>7_, X;; the above property is equivalent

i=1
to (S,, #,) being a martingale, that is

neé,
ES,|# _,)=S, , as. (neN). (8)

Since B is a real Banach space with countable basis (e,), ., for each xe B
there exists a unique sequence of real numbers (d,), ., so that

x= Z d.e,. 9)
k=1

This defines the sequence of coefficient functionals (e}), ., associated with
the basis (e;),.n, defined by ef(x):=d,, ke N, so that e} e B* These
spaces B are separable, e.g., L,[0,1], /7, I<p< oo, C[0, 1], cq.

Let B/ := Bx --- x B be the j-fold product endowed with the max-norm
flell p :=max, <x<; Xl 5, where c:=(x,,..,x;Je 8. Then the space
&% :=%,(B,R) of all real-valued multilinear continuous functions
g: B/ — R is a Banach space with norm

Igly,= sup lg(e) = sup 8
llellgi=1 cem Ixlg - lix;) s
Xk #0
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Let /- B— R be a function with | | .. :=sup,.p|f(x)|, whose Fréchet
derivatives f/): B — ¢ exist and are continuous for 1 <j<r, reN.
Then we have Taylor’s formula

N , r f(ji(y)[x]f 1
f(x+})—f())+/§.l RETSTY

=y G T = SO RY S d (10)
[d]

where x, ye B and [x]’:=(x, .., x)€ B’ Furthermore, by multilinearity
and continuity of /"’ and (9), one has for a j-times continuously differen-
tiable function f that

SO x)= Y elx) ek x) - SN eys e ) (1)

where v, eN, 1 <k <j, yeB.
To shorten (11), we introduce the following notations for v=
(U5 0 t,)EN

J
lv] :=j, xti= [T eX(x), fU) =Y Ne,,s o e,): B R (12)
k=1
Thus (11) i1s rewritten as
SPONT)= Y xSy, (x yeB). (13)

lel=j

We need the following families of functions (reN). C%4=Cy:=
{f: B—R; f uniformly continuous and bounded on R}, Cu(%):=
{g: B> ¥,; g uniformly continuous and bounded on %},

Chi={feCy fPeChl&), 1<j<r}.
Smoothness of /: B— R is estimated through (re N)

o (f" k)= sup S xy=7" VO, h>0. (14)
x,yeB
Ix—ylg<sh

We assume that
o (f" N <w, w>0. (15)
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Let x,€ B be such that /"~ "(x,)=0. Then from Lemma 1 we have

lx—xoll g

L@, <ot | B

], Vx e B. (16)
For an arbitrary probability space (0, &7, P), let us consider a B-valued
r.v. Z: 0 — B; Bis endowed with the Borel g-algebra #,. Z has distribution
P, on %, defined by P,(B):=P({weQ: Z(w)e B}) for any Be %5, and
expectation E(Z) := [, Z(w) P(dw), which is a Bochner integral.
For our main result in Part A we need the following lemma due to
Butzer et al. (1983).

LEmMMA 3. Let X, Y be two B-valued r.uv.s with E(||X|%) < oo for some
JeN, and X' =TT} _, eX(X). Then f € C’; implies that

E(fYXY)= ) EX"-fUUY)). (17)
fol =Jj

DerINITION 2. Let ¢:N —R* such that ¢(n)—>0 as n— co. The
B-valued r.v. Z is said to be ¢-decomposable, if for each ne N there exist
n independent r.v. Z,, 1 <i<n, not depending on n, such that

PZ:P(p(nMZ:':lZ" (18)

For a comparison of the concepts of ¢@-decomposability and infinite
divisibility, see the related discussion on p. 292 of Butzer et al. (1983). One
can easily see that

o

EX,| # )= ) EXX)IF 1)e as

k=1
Also (X, #),.,, 1s an MDS, iff
E(e(X)| % ,)=0 (k,ie N) a.s. (19)
iff (we write (X;)"=X7)
EX'|#_)=0 (jv|]=1,ieN) as. (20)
Main Results

Here we present the main theorem of Part A.

THEOREM 1. Let (X;, %), ., be an MDS, Z be a ¢-decomposable r.v.
with E(Z)=0, and E(|Z|) <o, re N —{1}. Assume that E(|X;|’) <
Vie N; also assume that

EX'|F )=EZ") as (I<jpl<r—1,ieN). (21)

1
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Let feCly ', Then

@" '(n)
r!

|E(flo(n)-S,))— E(f(ZN <o (f"" " h)-h"! {

(@(n))" =V (p(n))r7 —3r+2m

h :=(<p(n)-E((}: (1,115 + r|z,||B)> )) . (23)

We proceed as in the proof of Theorem 1 in Butzer et al. (1983).

where

Proof. Note that f(¢(n)-S,) and f(Z) are real integrable r.v.s for any
JeCg Let Z, be independent r.v.s chosen independently of % such that
(18) is fulfilled. Putting

il n
R, =Y X,+ Y Z, 1<ign, neN,

k=1 =i+1

for fe C% ' a double application of Taylor’s formula (10) produces

n noor—1
f((P(”)Sn)_f((P(") Z ZI>= Z Z [f"”(q)(n)‘R,,h,')[(,D(n)-X,-]j

i=1 i=1 j=1

=/ Ne(n)-R, Mo -ZTVI+R,  (24)

where
R:=1|_12: (25)
with
L=Y1, 5L=Y L, (26)
i=1 i=1
Here

1 1 s
ho=gype ], (=07 2oL otn) - Ryt 1g(n) - X,)[o(n) - X1

—f" Ne(n)-R, )en)-X,17 ']-d, (27)
and

1
L o2

—f" " MNe(n)- R, Meon)-Z,17 ']-d1.

1
J = o) Ryt 1) Z) () 2T
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We observe the following

ILF"e(n) R, +t-0(n)-X)[o(n)- X, 77!
=S e(n)- R, )1Le(n) - X,17
<If" Do(n) - R, +t-o(n)- X))
=S o) - Ry M o, - lo(n) - X, !

) LY
sw,(f"“,h)-[’—“’(f’—%l—'l’f]ww(n))"~ux,~||:;‘
by Lemma 1 and (16); i.e.,

1L/ ™o(n)- Ry i+t 0(n)- X)) o(n) - X, ]!
—f" Ye(n)- R, )e(n)- X7

<(<p(n))"-||X,-u;,'-w1(f"",h)-[ii"’—(”%”—ﬂ, h>0. (28)
Similarly, we obtain
L= () Ryt 1-0(n)- Z) (o) - 2,7
S gln)- Ry ) p(m)- 2,7
<tomy 1zl o | FEDLEL | )

Therefore from (28) we get

] 1
I S o= | =07 210 Vot

‘R, +t-on)-X)[on)-X,] "
— " Ne(n)- R, Yo(n)- X171 -dt

<o, (f Y, h)-{(m(n))" X

L1~y =2 [1-9(n)- I Xil»
], (r—2)! [ n ]'d’

— 0, (f D, h) -4, 1<<p(n)~||x,~ng)},

the last by change of variable on ¢, _,, see (4).
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We have proved that
1 <o (f"" D ) -6, _((en)-IXillg),  i=1..n (30)
Similarly it is established that
L) <o (f"" " h) ¢, (o) Z)g),  i=1, . n (31)

Thus

RIS+ LIS Y Wl + X LIS Y o/ ")
i=1 i=1

=1

b (@) IXl )+ Y 0 (S h) 4, i((n)-IZ,] )

=, (f" " h) [Z (¢, (@(n)- X5+ ¢, (eo(n)- IiZ,IIB))}

<o (f" " h) -, 1((1)(")- Y, (X a+ ”Zi”B)>,
i=1

the last being true by superadditivity of ¢, ,, see Lemma 2, (4).
We have established (r > 2)

IRI<o,(f" " h)-¢, (¢(n)- > X s+ HZ,'”B)) (32)
i=1

Note that by ¢-decomposability of Z we have that E(||Z;]|%) < cc. Also by
¢-decomposability of Z, see (18), we have that

E((Z)) = E(f(w(n)-é z)) (33)

From p. 294 of Butzer et al. (1983), and assumptions of this theorem, we
have

E[X{- ¥ o(n) R, )1=E[Z} - fTNe(n)-R, )]
for I<i<n neN,1<j<r—1, and |v] =, and from Lemma 3 we obtain

E(fe(n)-R,:)o(n)-X,1)=E(f(@(n)- R, ) o(n)-Z,]).  (34)

Integrating (24) against the probability measure P and taking into
account (33) and (34) we get that

|E(f(@(n)-S,)) — E(f(Z))| = |E(R)| < E(|R{). (35)
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From (32) we find (r>2)
|E(f(o(n)-S,))— E(f(Z))|

<o m (6 (o) ¥ X+ 1Z00) ). h>0. 36

From inequality (5) we obtain for the right-hand side of (36), (r = 2) that

o'(n) - (Xi_, (Xl s+ 11Z:ll5))

RHS.(36)<w,(f* ", h)- E{

r'h
+€D'7l(n)'(2?=1(|3X,-ila+||Zi||B))’ !
2.(r—1)
_I_h-fﬂ’fz(n)'( 7:1(IIX,-IIB+||Z.-||B))"2}_
8- (r—2)! ’

ie., from (36), Holder’s inequality, and linearity of £ we have

E(f (o) - S,))— EA(Z)]
oy {25 E((z (1X15+1210) )

=1

@ Y(n) " P\ (7 = L)/r)
+2—U—_—1)7<E((§ (I1X:ll s+ “Zi“B)) ))

h-@" *(n) % M\ ((F—2)/7)
+8—(,T——( ((Z ||X,~||B+||z,~ng)) )) } (37)

Choosing A as in (23) and noting that 4 < co, from (37) we are able to
conclude (22). Q.E.D.

Theorem 1 includes the independent case, because a sequence of
independent r.v.s X, such that E(X,) =0 forms an MDS.
A special important case follows:

COROLLARY 1. In the assumptions of Theorem 1 when r =2 we have

E(f(o(n)-5,)) = ESZ))| <oy S, b {n)+\/ } (38)

n 2 1/2
h=<¢(ﬂ)~E<<Z (IIX,-I|B+HZ,-IIB)> )) - (39)

where
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Next we present the weak law of large numbers for MDS on B-spaces
with rates when ||(i[x] )| 4, < A4, xe B—{0}.

THEOREM 2. Let (X,, #),.,. be an MDS, and E(|X)3) <>, ieN. Let
feCyL. Then

h 1
IE(f(rp(n)-Sn))—f(O)l<w1(f’,h)-é-{w(n)h/rp(nHZ}, (40)

h= (wn)-E((é ux,-nB)z))lz. (a1)

Proof. We apply Corollary 1. Again we proceed as in the proof of
Theorem 5 of Butzer eral. (1983). Here Z is the degenerate Gaussian
limiting r.v. and Z,, 1 </<n are independent r.v.s distributed as Z. Note
EZ =0. When r =2, equality (21) is always true. Also here E(||Z|%) =0 for
all s > 0. Quantity # comes from (39) and the Cauchy-Schwarz’s inequality.

Q.E.D.

If X is a B-valued r.v. with E(|| X||3) <o and E(X)=0, the covariance
functional of X is given by R (f*, g*):= E(f*(X)- g*(X)), f* g*e B*
Let X, be the uniquely determined Gaussian r.v. with mean zero and
covariance functional R= R, . Since we are in a separable B-space, it is
known that for s 20 E(|| X |%) < .

Next we present the central limit theorem for martingales in Banach
spaces with a countable basis.

where

THEOREM 3. Let (X, F), ., be an MDS, R be the covariance functional
of any mean zero Gaussian r.uv., and re N — {1}. Assume E(||X,||%) < oc,
ieN, and assume that there exists a sequence of a;>0 such that

EX[|F =a E(X%) (42)

as. (1<l <r—1,ieN). Let fe C, '. Set

n 1,2
A, = ( Y af) . (43)

i=1

Then
E(f(A4, - S, —E(f(X <o, (f7 D h)y-h !

Al -r A*(rfliz‘s‘r A (2= 3r+2)r)
{ ” + ” + " }, (44)

A2 =) B (r—2)!
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where

n r 1/r
h=(A,T1-E<<Z (||XfHB+ai'||XR“B)> )) : (45)

i=

Proof. From Theorem 1 and as on p. 296 of Butzer et al. (1983), proof
of their Theorem 3. Here we have ¢(n)=A, ', Z=X,, Z,=a,X;. QED.

no°

PART B

Preliminaries

In Part B, again for the convenience of the reader to make comparisons,
we follow exactly the same notations and terminology as in Butzer and
Kirchfink (1986). Here we are concerned with the weak invariance principle,
that is, with the convergence of the distribution of the random polygonal
lines

[nr]
S(w, 1) :=n*‘~’2~< Xy(w) + (ni— [nr]) -X[n,w(w)) (46)

i=

to the Wiener-measure W, on C=C([0, 1]), the space of all real-valued,
continuous functions on [0, 1] with the supremum-norm ([a] denotes the
largest integer <a). Here the random variables (r.v.s) X, need not be
independent.

The expectation of a C([0, 1])-valued random function (r.f.) X:0— C on
an arbitrary probability space (0, ./, P) is given by the Bochner integral

E(X) =j X(w) P(do)
0
and, if E(||X| %)< oo, the covariance functional R,: C*x C* - R by
C

Ry(f*, g*) =E(f*(X)-g*(X)), Vf* g*eC™

Here C* denotes the topological dual of C. A stochastic process

(W} ocicr={Wlw, ) o< <

is called a Wiener process or Brownian motion process (on [0, 1]} given
that (i) W(w,0)=0, Ywe0, (ii) W(w, -) is a continuous function on
[0,1]Vwe0, (iii) for 0<t << - <t,=1 the differences W(t),
Wity)— W(t,), ..., W(t,)— W(t,_,) are independent, Gaussian distributed
r.v.s with expectation 0 and variance 1. W(w, 1) is a function of we 0 and
te[0,1], such that W(-, ¢} is o/-measurable function Yre[0,1] and

683/52/1-13
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W(w, -) belongs to C Ywe0. Hence the Wiener process is a r.f. taking
values in C. Its distribution is called the Wiener-measure W g(t).

We need the following three lemmas. These are mentioned also in Butzer
and Kirschfink (1986).

LemMa 4. Let X,=0, X, X,, ... be a sequence of identically distributed
ru.s such that E(X,)=0, Var(X,)=1. S, (o, t) is as in (46) Vne N, w0,
te [0, 1]. Consider the trajectories

0, O<nmr<i—1
N — 1
Xni(w’r):: nl“‘-'<r_l—)'Xi(w)7 I_l<n[<1 (47)
n
n "2 X (w), I<nt<h.

Then (X)) <i<n, n€N is an array of r.f.s with values in C such that

i) Suon)= 3 Xulon ) (48)

i=1

(i) X (@)e=n""1X,(0)]. (49)
Here || || o is the supremum norm with respect to te [0, 1].

The proof of (48) follows from Giné (1976).

LEMMA 5. Let W(t) be a rf. with Wiener-measure W x(t) as its distribu-
tion on [0, 1], which has covariance functional R. If (4,,);<i<n n€N is a
triangular array of positive real numbers, and

" 1,2
A, :=<Z cz?,,-) , (50)

i=1

then there exist independent, Gaussian distributed r.fs W, given by
Py =P, w such that

Upy

Pt woin=Puwu=Wglt) (51)

n =1

The proof is given in Butzer and Schulz (1984).
A Feller-type condition on a triangular array of positive real numbers
(a,;)) <i<n» 1€ N says that

lim max f1-"—"=0, (52)

n—o I<igsn n

where A, is given by (50).
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Let C’, re N the r-fold product space Cx Cx --- x C with norm

IXller:= max |[X,lc,  where X:=(X,,..,X,)eC"

I1<igr

The space L,:=L.(C’,R) of all real-valued, multilinear, continuous
functions g: C" — R is a Banach space with norm

lgl. = sup |g(X)

IXler=1
We consider the following classes of functions:

Ce:=Ceoay = {8 C - R; g continuous and bounded on R},
Ce(L,):={f: C— L,; fcontinuous and bounded on L, }

Cy.:= {f e Cc; Fréchet derivative /' e C(L)), 1 <j<r}, (53)

C.:={feC%; £ is uniformly continuous and bounded on L,}. (54)

For fe Cy, || [l :=5upyee | f(X)] may be infinite.

Let (e;),.n be a normalized countable basis for C. Then each X e C has
a unique representation X=Y_, X' .¢,, where X" are real components
with respect to the given basis. Since fY(Y) are multilinear and
continuous, we get

o

XY=y XWX fO(Y ey, mey)  (55)

vi=1.,v=1

where v, eN, 1 <k<j, [X])/=(X, .., X)e . To shorten (55) further, for
every j-tuple v=(v, .., v;)e N’/ we 1ntroduce

v :=j, X* = I"[ X“'*”,f[”](~) I=fm(-)(€v1’ - evj): C-R. (56)
k=1
Therefore
fINxY= ) x-ftiy), (X, YeC) (57)
vl =j

We need also Taylor’s formula for X, Ye C([0,1]), feCL,reN

)
fx+n=fr)+y D (. (XY -+ l)lj(l—t)ﬂ

J=1

L0 Y+t-X)[X]’—f"’(Y)[X]'}d’- (58)
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Smoothness of : C — R is estimated through (re N)

o (S k)= sup IfY PX) =S, (59)

where /1> 0.
We assume that

w, (S " Ry <, w > 0. (60)
Let X, e C be such that /" "(X,)=0. From Lemma I, Part A, we find

X — Xoll ¢

], VXeC. (61)
h

1 DX <o frh, h)[

LEMMA 6. Let X, Y be r.fis with values in C such that E(| X|%.)< = for
JjeN. Let fe Cl.. Then

E(SYIX]) = ), E(X-f0(Y)). (62)
Pl=
We would like to mention that if X is a normally distributed r.v. and r >0,
then E(|X|") < oo. Also, if W is a Brownian motion and

IWile:= W)= sup (Wi w), r>0,

te[0.1]
then it 1s well known that
I = E(W|}) <. (63)

Main Results

The next result deals with the rate of approximation of the random
polygonal lines S,, see (46) to the Wiener-measure W,. The following
invariance principle is considered to be a central limit theorem (CLT) for
C-valued r.fs X, ,(w, 1), | <i<n, neN defined in Lemma 4, (47), so many
people mention the invariance principle as a functional CLT.

THEOREM 4. Let (X,),., be a sequence of identically distributed real
rv.s with mean 0 and variance |, and let (a,), <<, >0, neN and A, =

5

(7_ a2\ Assume that

i=1%n
(o=E(X,]") < (64)
Sforre N — {1}, and for the rf.s (X)) <;<n» n€N defined in (47) we assume

E(X,,

)=al,-A; - E(W")  as. (65)
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forall |v|=j, 1<j<r—1,1<i<n, and neN. Here
A=A (X1, 0 Xi 4, Woiv1s oo W) (66)

(the sub-c-algebra generated by {X,...X: 1, Wioistsen Waat) Let
SeCy ' Then Pg, converges weakly to the Wiener-measure W, with rates
given by

|E(f(S,(1))) — E(f(W(1)))]
<o, (fU7 " h)

1 n((3—r);‘2j.C((r—l)/‘r)_}_Al—r (Z" arfl) l([rfl)/r)
S r n i=1
2. (r—1)!

r!

i=1

+

Here

h:=h, ;:n“*”/2-c,+A;'-<Z a;,.)~l,<oo. (68)

i=1

Proof. We proceed as in the proof of Theorem 1 in Butzer and
Kirschfink (1986). Note that f(S,) and f(W) are real integrable r.v.s for
each fe C.. Consider the r.f.

i—1 n
Ri=Y Xpu+A," > Wy, (1<i<nneN). (69)
k=1

k=i+1

By Lemma 5, we have by summing up and by double application of
Taylor’s formula (58) the following equality

r

NS, —f(W)= {f”’ i) (X1’

gk
nM\

K. | —

i=1j

—f“’(R,.,-)[A,T’ W1} + R, (70)

where

_—

(71)

e
*
[
™M=
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with

s !
T (r=2)

_f.(r ”(Rni)[Xm']rr 1}
_{f"’ 1)(Rni+t'An I.Wni)[AI:l.W'7i],7l
—fUNR AW,

0 Y Ry 1 KK, T
0

We observe the following

L e
'1"'<(;__27L“—t)’ SR H LX)
T ORI e
P , 1
o 0 R A, W)

=/ PRIMA, W, dt

1 ! 5
< . gy 2
{(r—Z)! f(, (I-0
ST R+ X)) = SR L N Xl de

+——1——-f‘(1—r)”2-”f" DR, 414, W)
(r—z)! 0 ni n nt
—f"“(R,,,->||,4,l-nAn‘-Wm-n:-‘dz}

'.fl (l_t)rrz'ﬂ)l(f(rin h)-!’_"“Xm’”(‘—‘
0 ’ ’ h

<

1
(r—2)

1 {
Xt .
“ m”( d[+ (r_z)’ fO

-1
L=ty 2w, (f" “,h).(M‘_E—‘

h
Ay W -dr}

the last inequality holds by Lemma 1)

= (f" k) g XD+ (A, W) )

by change of variables and the definition of ¢, |, see (4).
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We have found that

[l <w (f“il) h)- {¢r l(“XniHC)

+¢, (A7 WD), i=1 (73)
Thus

n

IR*ISwI(f"”,h)-{Z (¢,1(IIX,,,-IIC)+¢,1(AJ‘-|IW,,.»IIC))}- (74)

i=1
From p. 65 of Butzer and Kirschfink (1986), and Lemma 6, we get that
E{f(j)(Rm')[Xni]j_f(j)(Rni)[A;l ) Wm']j} =0, (75)

for 1<i<n, neN and 1< ;<r—1. Integrating (70) against the
probability measure P and taking into account (75) we find that

LE(/(S,)) — E(fIW))] = | E(R*)| < E(|R*]). (76)

From (74) now we obtain (r = 2)

LEA(S,(D) ~ ESIWI <o (f 1, h) - {_Z ¢, (I1Xu0 )

+E(¢, (4, IIW.,,IIC)))} h>0.  (77)

From inequality (5) we have for the right-hand side of (77) (r = 2) that

. - IXolle  IXallet A IX0E2
RHS(77) < o, (/" ”,h)'{i;[E( mh T2 - 8-(r—2)!>

A Wl Ay Wl h-AS [ Wl ? }
+E( T T Iy T 8(r=2)

(by Holder’s inequality and linearity of E)

<o (S k). { 1 (llella:'r: T E(|Wull))

4 &i= VEX )= 4 4L (E( W) )
2-(r—1)!

((r 2y}
+8( [Z( (X 1%))

+ A, (E(W ) 2’/”)]} =:J.
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From (49) and (64) we have

E(l X, " E(X\"
Xl ) = E(N X ()l = XA _BUXF) o

i
ns n

thus

L EUXD) O,
E(“Xni”(')= nr“‘; =n “Z'Qr;

ie.,
E(|X, e)=n"%(,. (78)

Also from Lemma 5 and (63) we find
E(|W, )= Ellay- W) =a, - EQWI)=ay,- [, <20

ie.,
E(IW lc)=a% 1. (79)

Therefore from (77)-(79) we get that
[E(f(S,(1))— E(f(W(1)))]

n

crmonyr by [Ei S AT 1)

r'h
+Z?:1 (nn —r)2 .C(rtr—\)}r)_‘_ A:,”’ .a:’i— 1 .l(rlr - \)‘sr))
2-(r—1)
I’l n
+ |: Z (n((Zfer?.).C(r(rﬁlls’r)
8(r—2)! |~

+A42 a2 2”')}}.
That is,
[E(f(S.()))— E(f(W(1)))]

(' DV 4 A, (S0 ay)-l)
SU) (r,”’h . r n i=1"ni r
(S ) -
+(n(l37r)j‘2)'é’1rlr~ 1)"r)+A'l'»r( ?:1 a;i—\).[lrlr——l);‘r))
2 (r—1)
+ h . nl(4 —r),r’ZD‘Ci(rrZ),r)+A2—r
8. (r—2)! ’ "

(§ ool @
i=1
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Choosing # as in (68), inequality (67) is clearly established by inequality
(80). It is also clear that this 4 < c0. Q.E.D.

Remark 1. The right-hand side of (67) is of practical interest only if it
converges to zero as n — oo. For this we need to assume r > 5,

lim <An’-< Y af,,.>>=0,
"o i=1

a(Sa) a3 )

i=1 f=1

and

are at least bounded as n — oo.
For instance, one could assume that

<isn“ni 1
(maxlg__f\a)gc.__ nelN, (81)

where ¢ is a constant, compare with (52). Then

maXISiSn Ay T/ - f 1 .
(-*-*Aj— < "m, J=0,1,2;  r>5,
n
and
:I=l a;:j<n'(max1<i<)l am’),ﬁ’
- ~ r—j
A5 A,
1 . 1
r—J, N U
sh-c o= ¢ PRI
Thus
"ad ) 1
ﬁﬁ-—sc”’.mao j=0,1,2; r=5, as n—oo. (82)
n

In this case as n— oo, h=h,— 0 (see (68)) and w,(f" "), h) -0, and the
quantity within the braces on the right side of (67) converges to 1/rl.
Therefore (RHS)(67) converges to zero as n — co. Consequently, from (67)
we find that E(f(S,(1))) = E(f(W(1))), as n — .

In Theorem 4 we made no assumptions for the dependence or inde-
pendence of the r.v.s X ;. This was made possible by assumption (65), which
also makes applicable Theorem 4, in particular to a CLT to be presented
next. There (65) becomes more specific. For this we need
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DEerFiNITION 3 (Butzer and Kirschfink (1986)). Let (X,),.. a sequence
of real r.vs.

(1) This sequence is said to be “dependent from below,” if for each
1<i<nand neN

E[Xr|‘d(Xls bt Xi 1s Xi+ls et Xn)]
=E[X, | (X, .. X; 1)] as. (83)
(ii) This sequence i1s “dependent from above,” if

E[X AKX, X 1. X1y X,)]
=E[X | Xy, 0 X)) as (84)

Let X* be a standard normally distributed r.v.

THEOREM 5. Let (X,);. be a sequence of identically distributed, possibly
dependent, real rus for which E(X,)=0, Var(X,)=1, and (,:=
E(|X,||"Y< w0, for re N—{1}.

(i) Assume that (X,), ., is dependent from below and that
E(X/|6 y=EX*) as. (1<j<r—1,ieN), (85)
where
&_ =X, . Xi )

Let f: R — R for which 'Y is bounded and continuous on R for all 0<j<
r—1. Then

=l (5557) o)

((3—r)2y (rllr 1)ir) ((r  1yr)
n {{ +1 )

1 ¢
< (r-—-1) D
AN {r!+ 20 —1)
+ h .n1l4fr)32).(“((r Zber)_*_ltlr 2)“‘rl) (86)
8- (r—2)! > ‘ ’
where
L=E(X*")<x
and
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(ii) Assume that the sequence (X,);_n is dependent from above and
that

EXIIFY)=EX*)  as (1<j<r—1ieN),  (87)
where
F;"+1:=&7(X,-+1,~~-,Xn)

and f as in part (i). Then (86) is true again. The RHS(86) converges to zero
as n— oo, when r = 5.

Proof. From our Theorem 4, and Theorem 3 of Butzer and Kirschfink
(1986), it is the case that 1= 1. Here the rfs X, 1 <i<n, ne N become
real rvs X,;(1, w)=n""2. X,(w). The r.f has the Wiener-measure as its
distribution collapses to the standard normal distribution P .. Also, here
a,:=1,1<i<n; neN and 4,=n'"? Note that

n

n
- 2—r)2 1 - -1 3-r)2
A"'.<Z af,,):n“ r2), Al r(Z a; )=n(( "2
i=1

i=1

and

h
2—r r—2)_ ,((4—ry2)
A4, ( > a,; )—n .

i=1
Take into account also the proof of Theorem 4 on p. 72 of Butzer and
Kirschfink (1986). Q.ED.
If (X;),cn is a sequence of real r.v.s on (0, .o, P), and (%), .5, is a
monotone increasing sequence of sub-c-algebras of &/ such that
F =X, X;), ieN and % :={¢,0}, X,=0, then (X;, %) is
called a martingale difference sequence (MDS) iff

E(X,|%_,)=0, as. (ieN). (88)

e,

Butzer and Kirschfink (1986), Lemma 8, p. 73, prove that for the case of
MDS F; is dependent from below.

Now comes the CLT for MDS with rates

THEOREM 6. Let (X |\ F),.,. be an MDS such that X, are identically
distributed, Var(X,)=1, {, .= E(|X,|") < o0, for re N — {1}. Assume that

E(X/ | F_)=EX") as. (I1<j<r—1,ieN) (89)
Let f be as in Theorem 5. Then inequality (86) is true.

Proof. From Theorem 5(i). Note that E(X,)=E(X,|% _,)=0 as. all
ieN, by Lemma 4 of Butzer and Kirschfink (1986) and (1988). Q.ED.
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