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Sufficient conditions are given to illustrate how the various possible separately
exchangeable continuous processes on [0, 1] may arise as the weak limit of
the partial sum processes of a sequence of row and column exchangeable arrays.
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0. INTRODUCTION

This work was motivated by an elegant result of Kallenberg [8],
which completely characterizes all continuous and separately exchangeable
planar processes. Any continuous weak limit of a sequence of partial sum
processes based on row and column exchangeable (RCE) arrays will be
separately exchangeable and examples of two such limits are given in
Ivanoff and Weber [5].

Here we explore how each of the various terms in Kallenberg’s represen-
tation arise as limits of the partial sum processes of sequences of finite RCE
arrays. We will do this by focussing on each of the terms in his representa-
tion in turn. We will provide a set of sufficient conditions that ensure
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convergence to the appropriate limit and also indicate how combinations
of the terms can arise. Proceeding in this way we provide a set of new limit
results for sequences of finite RCE arrays.

An array {Y,: 1 <i<m, 1<j<r} is a RCE array if

{Y,

i

)2y

pli), q(j)}‘

where p and ¢ are arbitrary permutations of {1,..,m} and {1,...r},
respectively. We consider the process X defined on [0, 1]? by

[rs] [mz]
Xs,n=3 Y Y, (0.1)

j=1i=1

with X(s,0)= X(0, /) =0, V{5, ) e [0, 1]% X is an element of the function
space D([0,1]%). In what follows, it will always be assumed that
D([0, 17°%) is endowed with the usual Skorokhod topology. (For details,
see Straf [11].) In this paper we shall only consider arrays of the form
Y= Youir my» Where { p;0 1 <i<m, | <j<r} is an array of constants, and
o and 7 are independent permutations uniformly distributed on {1, ..., m}
and {1, ., r}, respectively. Limit theorems for arrays with random entries
follow quite readily from those for arrays with non-random entries using
Lemma 1.1 of Kallenberg [7] (see, for example, the proof of Theorem 2.3
in [57). As all finite subarrays of infinite RCE arrays are themselves RCE,
in principle, our results are applicable to the case of infinite arrays.
However, not all finite RCE arrays are embeddable into infinite arrays. For
an extensive discussion of exchangeability see Aldous [1].

Limit theory for RCE arrays has a direct application in the area of
generalized U-statistics based on two independent samples. Specifically,
given two independent sets of independent and identically distributed ran-
dom variables (&, .., ¢,} and {#,,..,n,,} and a real-valued function, A,
then if we set Yy=h,.n,), rm) ™ X(1, 1) 1s the generalized U-statistic of
degree (1,1) with kernel 4. The weak convergence of non-degenerate,
generalized U-statistics based on independent observations was the subject
of Sen [10]. Neuhaus [9] considers the weak convergence of degenerate,
generalized U-statistics of order (2, 2). If the £’s and »,’s are not independ-
ent observations but are values obtained by sampling without replacement
from two finite populations, then the array {h(g“,-, r]}-)} 1s still RCE. Thus,
by studying processes based on finite RCE arrays rather than restricting
attention to the case of infinite arrays, where de Finetti-type representa-
tions exist, we are able to obtain limit results for generalized finite popula-
tion U-statistics as obvious corollaries, as discussed in detail in [S§].
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1. PRELIMINARIES

Assume tha}) {Y,": 1<i<m,, 1<j<r,} is a sequence of RCE arrays
with {Y{"} = {y" .}, where {p/:1<i<m,, 1<j<r,} is a
sequence of arrays of constants. We shall assume n<m, <r,, Va. Define
X.(s, t) as in (0.1), replacing Y; with Y and (r, m) with (r,,m,). We
begin by considering the class of possible continuous weak limits of the
sequence (JX,). Clearly any weak limit is separately exchangeable (cf. [8]).

We recall that a Brownian sheet on Ri is a continuous, mean zero
Gaussian process W,(-, -) with covanance function EW,(s, t) Wy(s', ') =
(s A s')(t A t'). Using W,, the following Gaussian processes may be con-
structed:

Bs, 1) = Wo(s, t)—stW,(1, 1), (s, 1) [0, 1]2,
Z(s, 1) = Wiis, 1) —sWy(1, 1), se[0,1], teR,,
Bo(s, t)=2Z(s, 1) —tZ(s, 1), (s,7)€[0, 17~

B° is a Brownian bridge, Z is known as a Kiefer process, and we refer to
B, as a “tucked-in Brownian sheet.” The covariance functions are

EBO(s, Y BO(s', 'Y= (s AWt A ') —ss'tl, (s,01),{s,1€[0,17%
EZ(s, ) Z(s', I')=(s A s —ss")(t A '), s,5'e[0,1],0,'eR,
EB,(s, 1) B,y(s', ') =(s A8 —ss Wt A L' —11'), (s,0), (s, )e[0,1]2
All of these processes are clearly continuous and separately exchangeable
on [0, 1]% Kallenberg refers to W,, Z, and B, as “Brownian sails.”

We denote the usual Brownian motion on R, by W,. The Brownian
bridge on [0, 1] may be constructed as

B(s)=W,(s)—sW\ (1), se[0,1].

In [8, Theorem 6.1], Kallenberg completely characterizes continuous
separately exchangeable processes. Here we are concerned only with pro-
cesses defined on [0, 1] which comprise the possible limits of the
sequence (X,).

THEOREM 1.1. [8, Theorem 6.1]. A4 process X on [0, 1]? is continuous
and separately exchangeable iff, a.s.

X(s, ty=pst+cA(s, t)+ Z (o, B,(s) Ci{1)

j=1

+5,B,(s)t+y,Ci(1)s),  (s,0e[0, 173 (L)
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y 5 > [ o . ; ¥y ¥ 2 2 o2
for some random variables p, o, «®, B v (JEN) with ol +[)’, +77)
< oL d.s., some independent Brownian sail A and some independent sequences

(B)) and (C}) of i.id. Brownian motions or bridges on [0, 1].

We can write (1.1) as

X(s, ty=pst+0A(s, 1)+ Z a,B,(s) C,(1)+btB(s)+ csClr), (1.2)
J=1
where 4 is a “tucked-in” Brownian sheet and all of the one-dimensional
processes are Brownian bridges on [0, 1].

In what follows, we shall see how the various one- and two-dimensional
processes in (1.1) arise as weak limits of the partial sum processes defined
on RCE arrays { Y{"’}. We can write

Urs] Doaz] _ B 3
X(s,0=3Y Y [F7+(Yy—Fm—Fosrm
Jj=1 i=1
+( }73:) _ }_/.{n)) + )7:'.'1)_ }71::1)]
X Y"st+ W (s, )+ 1V, (5) 45U, (1), (1.3)

in) __ 1 (n) Vi _ . —1 (n) _ yiny; vV —
where Y =(m,r,) >oox, Y Y=y, Y,.j" =Y"r,, Y,=

nln o
m, 'Y, YW= Y"/m,, and U, is thje (centred) row sum process, V,, is the
column sum process, and W, is associated with an array with 0 row and
column sums. Heuristically, comparing (1.2) and (1.3), we see that p arises
as a limit in distribution of the sums of a sequence of RCE arrays with
random entries. As mentioned previously, we shall not consider this case
here. For arrays with non-random entries, the terms #B and ¢C are the
weak limits of (V) and (U,), respectively. The tucked-in Brownian sheet
A and product term 3 x,B,C; (with 0 margins) are possible weak limits of
the sequence (HW,,) and arise if the sequence of sums of squares of array
entries has a non-zero limit. In fact, both the sheet and the product terms
have the same covariance structure, although clearly the product term 1s
not a sail in Kallenberg’s sense. It is the product term which is completely
new to our limit theorems here, and in order to understand how it arises,
a more detailed analysis of the arrays of constants {y;"": 1 <i<m,,
1 <j<r,} and the corresponding RCE arrays { Y- | <i<m,, 1 <j<r,}
is required.

Suppressing dependence on »n in what follows, suppose that m <r. Con-
sider the array { y,} as an mxr matrix D. DD' is a non-negative definite
m x m matrix with eigenvalues 2, > 4,2 --- 2/, 20 and the correspond-
ing orthogonal, normalized eigenvectors u, .., u,. Let U=(u,,..,u,).
Then

U'DD,U: dlag(;‘l IR /;'m)*
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and so the columns of D'U are orthogonal. As in {4, p. 64], there exists an
r x r orthogonal matrix V such that U DV = M, where

Vh 0

is an mxr matrix. (If 2,#0, then v, =D'u,/./4,, where v, is the kth
column of V.) Finally, we have D= UMV =37_, /A0, V).
Thus, we have the following spectral decompositions:

Yy= Z \/’Tk“klvk/ﬂ (1.4)
k=1
Y= Z \/A_kukamvkmn- (1.5)

k=1
Note that:

B2eph
Z,: Z]: <Z yv‘yn’)z:; ; <Z; )"ijyik>2:§, A3

J

Z Z yi/:Z \/Tkuk.vk.’ <uk. =Z Upis U =Z vkj>’
i k i

J

; (Z «Vu>2 :% Avi s ; <§’: )”ij>2 Z% A

J

In some instances, we shall be considering the special case of zero row
and column sums; ie.,

Y yy=0,  j=1l..r (1.6)

i=1

Y y;=0, i=1, .. m (1.7)
j=1
From (1.6), we have that D'1=0, and so we can set 4,,=0, and

u, =1 /\/n_z By orthogonality, the entries of each of the other eigenvectors
sum to 0. Also, in this case, we may set v, = l/\/;, and v, 1=0,
k=1,...m—1
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Given a sequence of arrays of constants { ) ',;”}, the matrices D', U™,

yo M'™ (with entries d;", etc.) are defined in the obvious way from
{¥y"}. Let A > .. > A" be the (ordered) eigenvalues of D"'D'". In the
theorems Wthh follow we shall see that the product term in (1.2) arises
only if the sequence of eigenvalues in the spectral decomposition (1.4) con-
verges to a non-zero limit.

In Section 2, we state the various himit theorems for sequences of RCE
arrays. First we give results for arrays with asymptotically zero row and
column sums and mention how these can be extended to arrays where only
one margin is asymptotically zero. Finally we give new results for the non-
zero marginal sums case. Some examples are given in Section 3 and
sketches of proofs are given in Section 4. Details of proofs, additional
examples, and comments on the necessity of the various conditions may be

found in [6].

2. SUMMARY OF RESULTS

Using the notation introduced in Section 1, we begin by assuming that
all row and column sums of D' are asymptotically equal to 0.

THEOREM 2.1.  Assume that the following conditions are satisfied:

() TP Xro vy -0

(i) ¥ Z;”.l)fj"' oA Sl as n— o,
(i) (E72, (5, )= 0. (Sl (S0, vy =0, as s .
(lV) :"—nl *1.},’1) )_:O(n? l)’ Z]—l( :”:l V"“) =0(r’:l).

V) ST Ty v =S A 0 as n— .

Then as n — oo, X, converges in distribution in D([0, 1]?) to a “tucked-in”
Brownian sheet A.

Comment. If one or both limits in (iii) above are allowed to be equal
to 1, then the limiting sail is a Kiefer process or the Brownian bridge. (See
[S, Theorem 2.1].)

Note that given condition (11), condition (v) of Theorem 2.1 is equivalent
to SUD) <4 <, Ak — 0. We now consider a case in which (v) is not satisfied.

THEOREM 2.2. Assume that conditions (1)-(iv) of Theorem 2.1 are
satisfied, as well as:

(V) Sup; e, [} >0 as n—oc, and sup, , [vy'| -0 as n— o, for

each k.
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(vi) There exists a non-negative sequence (A,) such that
S A — A 50 as n— oo,

Then there exist independent sequences (B,, B,,..) and (C,, C,,..)
of independent Brownian bridges on [0,1] such that the process
Qs t):=3, \//17,( B (1) Ci (s} is well-defined and X, converges in distribu-
tion to Q in D([0, 1]?).

Comment. Here and in the sequel, we say that an infinite series of pro-
cesses is “well-defined” if it converges almost surely uniformly on bounded
sets (see [8]).

Conditions (ii) and (vi) above imply that > A, =1. If 2" —> 4, Vk, and
> 2, <1, then we obtain a combination of the limiting processes in the
previous two theorems.

THEOREM 2.3.  Assume that conditions (i)—(iv) of Theorem 2.1 and (v) of
Theorem 2.2 are satisfied, as well as:

{vi) There exists a non-negative sequence (4,) such that A% — 4, as
n— oo, for each k.

Then there exist independent sequence (B, B,,..) and (C,, C,,..) of
independent Brownian bridges on [0, 1] and an independent “tucked-in
Brownian sheet” A on [0, 1]? such that the process

P(s, 1) :=cA(s, 1)+, \/)_k B Ci(s) <where a=1-) /"tk>,
k

k
is well-defined and X, converges in distribution to P in D([0, 1]7).

In all the previous theorems, it was assumed that 3,3, y‘,.;”z =
>« AY" — 1. The case in which this sum converges to 0 was considered in
Theorem 2.8 of [5]. We next consider a generalization of Theorem 2.2 and
Theorem 2.8 of [5].

THEOREM 24. Assume that the vectors u" and v{ may be defined in
such a way that conditions (1), (1), and (iv) of Theorem 2.1 and (v) of
Theorem 2.2 are satisfied, as well as:

(i) (a) X,(X,py")? =54 20y > ot as n— oo,

(b) X, (X, yyP=3, AU’ o 62 as n— .
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vi) There exists a non-negative sequence (4,), and sequences (f3,.).
g q k q k
(74) such that:
(a) 2% |4y — Al —0

(b) i (VA =B =0
{c) Y, (\/Ajk,"’u‘,\.'f’ — 1) =0, as n— oo

vil)  lim, - (u) i im, =0 or 1, lim,_, , (¢ /r,=0 0r 1 Vk.
] 7. A ” n s 'S n

Then there exist independent sequences (B, B,, ...) and (C,, C,, ...} of
independent processes, where B, (resp. C,) is a Brownian hridge on[0,1]1if
(™ im, — 0 (resp. (0" /r, — 0), and the O process if (') /m, — 1 (resp.
(v, — 1), such that

O, 1h:=Y S Bt) Culs)+5 Y BBl 1) +1Y 3. Culs)
k k %

is well-defined and X, converges in distribution to Q in D({0,117)

n

The following theorem contains all the terms of Kallenberg’s representa-
tion. Although the preceding theorems can be considered as special cases,
they are used in the proof. Also, the conditions below may be simplified
considerably in the less general settings.

THEOREM 2.5. Assume that conditions (1), {11), and (iv) of Theorem 2.1
and (11} and (v} of Theorem 2.4 are satisfied, as well us

(vi)  There exist a non-decreasing sequence of natural numbers (N(n)), a
non-negative, non-increasing sequence (Ay), and sequences (B, (7)) such that

(a) Z/m\m)\/w"' Sl -0,

(b} Thcnm A — Akt—-»O SUPL o v A =05 A4, =0 VE >N,

{€) Dicnm! \/4“” W= B -0 ZAA/”A—Gl_"'I;/}k=0 vk>N,
(d) i cmml \/;Lm 0 =) _"*OQ Z}\»zl}'E:GE_"'z;}"k:OVk>N~
(€} sup, [¥s v \/’?”k,‘l‘kl = 0:sup; 224 - nvin) \/ZI"')”A-.FA;/‘I -0,

as n— o, where N=1lim, ., N(n), a>=1-%/_| },, (6 <0} A a3), and
K, is equal to either a” or 0, i=1, 2.
(vi)  lim, - , () /m,=0or 1, im, _ ,(¢{")}r,=00r 1 VKN

Then there exists a Brownian sail A and independent sequences (B,, B, ...)
and (C,, C,, ...) of independent processes such that

Ofs. 1) :=GA(s, 1) +ZfBA (1) Culs +AZ/;ABkm+rZ“Q
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is well-defined, and X, converges in distribution to Q in D([0, 11%), where

(I) A is a Brownian bridge on [0, 1) if k| =k, = ¢ and the “tucked-
in” sheet if k,=k,=0. If k=0, k,=07, then A is the Kiefer process; if
K, =0% Kk,=0, the process A'(s,t)= A(l,s) is a Kiefer process.

(I1) B, (resp. C;) is a Brownian bridge on [0,1] if (4{")*/m, -0
(resp. (v{")*/r, — 0), and the 0 process if (u\")*/m, — | (resp. (v)*/r, — 1).

3. EXAMPLES

In the examples which follow, we shall be making use of matrices of the
form

K,=[k"], 1<ij<2n,

where ki =(—1)"*//2", 1<i, j<2" We note that K, is idempotent of
rank 1; the maximal eigenvalue of K, is £{" =1 and all other eigenvalues
are 0.

The corresponding normalized orthogonal eigenvectors are wi, .., wi,
where

h+1
) (=1
Wip = 2;1,,"2 s

1
W = — h=1,.,2"

n/2°

and the entries of the other eigenvectors may all be set equal to +2 "2

ExampLE 1. Let
K,

D(ln) — 2 —ni2
0 K

n

so K, appears 2" times down the diagonal. It is easy to check that the con-
ditions of Theorem 2.1 are satisfied for this sequence of arrays. Now let

m,=r,=2"*! and
D(,,;_ 1 {Kzn O :l
_\/5 0 D{]n) '

The conditions of Theorem 2.3 may be verified, with 6> =3.



142 IVANOFF AND WEBER

ExampPLE 2. Let m,=vr,=2"(2"+1), and

n Kln O
D‘ - l: O H'”)} .

where H'™ is of dimension 2"x2" and (H"),=((—1)'+(—-1)))22"",

1 <4, j<2" In this case, the conditions of Theorem 2.4 are satisfied with
ol=a3=14,=1,4,=0,k>1; f,=1, B,=0,k#2, ys=1, 7, =0, k#3.

EXAMPLE 3. Let m,=r,=2"(2"""'+41) and

K,, 0 0
Dm) :_L 0 H(n) 0
0 0 DY

where K, and H'*' are as in Example 2 and DY is as in the example for
Theorem 2.1 of [5], but of dimension 2*'x2*. For DY, o¢’=1,
oi=03=1, k;=r,=14. It is easy to verify that the conditions of Theorem
25 hold, with f,=2""% B, =0, k+#2; y;=2"'7 3,=0, k#3. Also,
=1 A=0k>1

4. PROOFS OF THEOREMS

Henceforth, we shall use the notation s'=s/(1+s), '=t/(1+1),
' =u/(l + u), etc.

Proof of Theorem 2.1. The techniques used here are similar to those
used in the proof of Theorem 2.1 of [ 5]. The proof of tightness is identical
and a similar time change technique is used. In particular, if

Zis, y=(1+8)(1+1) X, (s 1),

exactly the same arguments as in the proof of Theorem 2.1 in [5] show
that Z, 5 W,. A reverse time change and the fact that Bs(s, 1) 21—y
(1—1) Wals/(1 =5), /(1 — 1)) [8, Lemma 2.8] show that X, 3 4. |

Proof of Theorem 2.2. Without loss of generality, we may assume zero
row and column sums, in which case this is a corollary of Theorem 2.4. |

Proof of Theorem 23. Without loss of generality, we may assume
=0Ty =0 Xy =2, v =0 Vi, j. The process P is
well-defined by Lemma 6.2 of [8], since 3, 4, <lim T A =1

n— k=1
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By Lemma 4.3 of [3], for each n there exist two sequences (J}"), and

(™), such that \/A" = /0" + /¢, and
Z(./é}j”—ﬂ)zao as n— o, (4.1
k

sup (Wi -0 as n—o oo, (4.2)
k
Yoo Z lo=0> as n- o, (4.3)
k=1 k=1
Yo =0 Vn, k. (4.4)

(Note that since the arrays have 0 row dl’ld column sums, A, =0=4;) =
Yo Also, if k#m,, Y ull =%, vy =
Write X, (s, t)=F,(s, )+ A,(s, 1), where

[rme] [rps]

[m,,t] [rns] Ny
4 (n) yrin)17(n) {n})
F. (s, 1)= ( VO ULV > Z )y S

1—] /_l k= i=1 j=1
[rat] [ras] [”M’] [rnv]

agsn= % S8 AP )= Y @i
k=1

i=1 j=1 i=1 j=1

It may be shown that (a‘”’) satisfies the conditions of Theorem 2.1 (with
suitable renorming), and thdt (fy") satisfies the conditions of Theorem 2.2.
Finally, to show that 4, and F, have independent limits, we must consider
the sequences (0}") and (y{"). There are two possibilities (cf. [3, Proof of
Lemma 4.3]):

(I} There exists N < cc such that for all n,

d(",_{ﬂ.;f” if k<N,
o

0 if k>N
o {0 if k<N
k Al if k>N,

or
(II) There exists a sequence N(n) — oo as n— oo such that
S5m0 = {A(,\"' it k< N(n)
x 0 if k> N(nj)

on {O if k< N(n)
k A if k> N(n).
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In the first case, F( }:A 1 \/)L B.(-) C,{-), and 1t 1s enough to show
that 4 1s mdependent of a(B,, ... By, C,, ... Cx). In the second case, it
must be shown that 4 is independent of (B, .., Cy, ...).

Let BY(t) =Yl U and C(s) =30 Vi, We have F (s, 1) =

A ﬁ BM(#) CV(s), and A,(s, ¢) Zk_\mﬂ\//l"” BM'(t) C(s),
where N(n)= N in case L.

Using techniques similar to those in the proof of Theorem 2.1 of [5], it
may be shown for each & such that & < N(n) for all n sufficiently large, and
for each ¢ fixed that A'(.,¢) and Cj{-) are orthogonal Gaussian mar-
tingales, independent of o(B|, B,,..), where A'. B, () are the time-
changed processes defined by

A, ) =(1+s)1+1) A(s', 1) (4.5)
Bi(t)=(1+1) Byt (4.6)
Cils)y=(1+3) Ci(s). (4.7)

Since continuous, orthogonal Gaussian martingales are independent, an
application of the Cramer—-Wold device proves independence of A’
(B, B, ..), and (C}:k <liminf N(n)), and hence of the corresponding
original processes as well. This completes the proof of independence of 4
and F, in both cases I and II. |

Proof of Theorem 2.4. The process Qis well det'med by Lemma 6.2 of
[8].since 3 Ax=1. 3, Bi=0i.and 3 7> =0,". We shall assume again
without loss of generality Y7 37 yi'=0 and ¥/, 37,y =1
Then we may express X, as

Xs.0=Cs.0+ 23 p ) +~['Z+’] E.(s).

rn ]

where

[rint] Lrav}

=3 5 (e vrevy)

i=1 j=1

Lernr] [#rint] [rns] A
Z \/«ln < L,}\l[l)_(j{klti))( Z (V}‘;]—V}:,))>.

k=1 l—l j=1

[rmt]

D, (t)= Z Y:‘n)

i=1

iy [ i)
Z \/A“”VM) (U“” U;\,’”),

k=1 Ifl
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] Lras]

=3 JAUR Y (v -,
k=1 j=1
and U=U"/m,, V"=V{"/r,. Note that U and V" are non-
random.
We first observe that (v) and (vi1) imply that the conditions of Theorem
242 of [2] are satisfied by the exchangeable sequence (U\"— U™
i=1, 1,,), for each k. Thus,

[0
BU()= Y (UP-=U"M 5 Bu), k=12 ..,

i=1
where for each &, B, is a Brownian bridge on [0, 1] if (4{")*/m, — 0, and
the 0 process if (uy"}*/m, — 1. The proof that the limiting processes (B;)
are independent 1s a straightforward calculation using the Cramer-Wold
device and the asymptotic orthogonality of the vectors U}’ — U1,
k=1,..,m,. The processes (C!"') behave analogously and the limiting
sequence { C, ) is independent of the sequence (B, ) since the processes ( B}")
and (C}") are defined using independent permutations.

Fix N < oo and consider the truncated sum

N [mnt] [ras]

XNs, 1) = Z NZTIED N /N Y

= i=1 /71

[123] gy L)

n 'l

=CNs, 1) +—"—= ENs).

It is clear from the discussion above that for fixed N, X¥(-,-) 3 O™,
in D([0, 1]%), where

ON(s. 1) 1= \/_Bk 1) Cils) +5 Z BeB(1) +1 Z Vi Cal ).
=1

k =1

We now use a technique adapted from that of Neuhaus [ 9, p. 433]. Denote
by L(Z,,Z,) the Lévy-Prohorov distance between the distributions of
D([0, 1]%)-valued random elements Z,, Z,. Then

L(X,, Q)<L(X, X))+ L(XY, 0"+ L(Q", Q).

We have seen that L(Q%, Q) — 0 for any sequence N — oc, and that for N
fixed L(XY, OY)—>0 as n— oo, It is easy to show that there exists a

no

sequence (N(n)) such that N(n)— oc as n— oo and L(X)", Q") - 0.
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Since (Q™") is tight, it follows that (XY'") is tight. We shall show (a) that
(X,) is also tight, and (b) that for each (s, 1)

1X, (s, ) = X¥(s, 1) 50

for any sequence (N(n)) such that N(n)— oc as n— o. Thus, since
(X,— X" is tight, we have L(X,, X)) — 0.
Thus. for the sequence N(n) defined above,

L(X Q <L X XM'”)“FL(X\M', N“”]
+ LM, 0)=0  as n— o

It remains to prove (a) and (b).

Proof of (a). By considering the proof of tightness in Theorem 2.1 of
[5].itis enough to show that sup, |3, y}"’| — 0 and sup;, |3, y;"'| - 0. This
is done by proving that

D, 5% BB (4.8)
k
and

En g Z kak* (49)
k

in D[0,1]. Now, D (t)=Ylmd yim=ylmdypm  and the limit is
continuous, so by Theorem22 of [7], necessarily sup [ri] =
sup; [2; vl % 0. Analogously, (4.9) implies that sup, |3, \""I - 0. Thus
it is sufficient to prove (4.8) as the proof of (4.9) is analogous.

Let D¥=3}_, B.B,. We have
LD, DYSL(D,.DYy+ L(DY, D¥)+ L(D", D).

We have that L(D", D) — 0 for any sequence (N) such that N —» «. For N
fixed, L(DY, D¥)— 0 as n— o, and so there exists a sequence (N(n)) such
that N(n) — oo as n— x, and L(DY"™, D) — 0. Finally, it is enough to
show that L(D,, D"y — 0 for any sequence (N(n)) such that N(n) - =
In this case, L(D,, D)— 0.

Consider L(D,. DY)

L(D,, DY) <inf{y>0: P(sup ENBIEYIESY (cf.(2.33)of [9]),

where o:(t):Z‘[T,,IrJ [(n»' and Iun kf~+l i‘k")L“” uz::i —(n))

It can be shown that 37", l"” — 0, so Theorem 24.2 of [2] (with
appropriate renormalization) (or Theorem 2.2 of [7]) may be applied to
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the sequence of exchangeable L. s (1) I ) to show that 6V 3 0 in

an(1)r ooe? O'nim )

D([0, 1]). Thus, sup, |6%(1)| 4 0 and L(D,, DY) -0, as required.
Proof of (b). It must be shown that

iy [rat] _ [rns] _
(X, — X5 )= Y, ‘:’( up — U};”)( 3 v V(k">>

k=N+1

r—l Jj=1
niy [rmt] _

_+_[rns] Z /i("'V‘") Z (U U}("')
Fn k=n+1 i=1
! iy [ras]

+ ["nn ] Z \/Em U(n) Z ( V};) V(n))
M, r_N+1 j=1

50 (4.10)

for any sequence (N(n)) such that N(n) — oc as n — 0.

The last two terms on the right-hand side of (4.10) converge in probabil-
ity to 0 whenever N(n) —» o by the proofs of (4.8) and (4.9), respectively.
The first term on the right-hand side of (4.10) can be written as

[m,t] Lrns]
(n)
Z 9o ivan )

i=1 j=1
Where q(n) Zm ’V+] //lln)(u(m —;(n))(L(H) —(n)) (Note ZiZ] qgj")_
Yiqy= Z ;4 =0.) A straightforward calculation shows that

[#1a1] [rns]

E{[ DY ‘151:::')7:"(/'] } Z Z qm si(1—s5)(1 —1)).

i=1 j=1 i=1,=1
But
Z Z q(mz Z sz (n) m) Z(l,u.) —m»
i=1j=1 k=N+1

+ Z Z Zz\/_m /m) m) (n) m) —(n))( (m) U;(m)

k>N k'>N i
k Ak

x (v{) — B)
iy,

= ) A'l-m u,‘("' X1 —r v'"’)

k=N+1
mp m,, ,
_+_< Z \/,ﬁ\/’um)\/'vn) _ A m u‘”’rﬁ,‘("”
k=N+1 k= N+l
Iy "y 2
< 3 e § VI mar St
k=N+1 k=N+1

683/55,2-2
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since m, U,

IVANOFF AND WEBER

VU< and r, 0" <1 Now, 07 o, A0 —0as N, n— o, by

(i1) and (vi) (a) of Theorem 2.4. Also,

n,

U 2 ny 2
() 7 () S - 1 (), (), 1)
Y \/A,\," m, " JSr, k") ={m,r,) ( Y Ay >

<I\>z}\'+ 1

k=N+1
my Py
-1 (), (ny Ay
<(m,r,) YooAru Y e
k=N K =N+
nig
< Y Aru” (sincery <r, ')
k=N+1

—0 by (iii) and (vi)(c) of Theorem 2.4.

This completes the proof of (4.10). §

Proof of Theorem 2.5. This theorem is a corollary of Theorems 2.1, 2.4,

and

Theorem 2.1 of [5], using the same method of proof as that of

Theorem 2.3. |
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