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Estimation of multivariate regression functions from i.i.d. data is considered. We
construct estimates by empirical L2 -error minimization over data-dependent spaces
of polynomial spline functions. For univariate regression function estimation these
spaces are spline spaces with data-dependent knot sequences. In the multivariate
case, we use so-called hierarchical spline spaces which are defined as linear span of
tensor product B-splines with nested knot sequences. The knot sequences of the
chosen B-splines depend locally on the data.

We show the strong L2 -consistency of the estimators without any condition on
the underlying distribution.

The estimators are similar to histogram regression estimators using data-dependent
partitions and partitioning regression estimators based on local polynomial fits. The
main difference is that the estimators considered here are smooth functions, which
seems to be desirable especially in the case that the regression function to be
estimated is smooth. � 1999 Academic Press
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1. INTRODUCTION

Let (X, Y ), (X1 , Y1), (X2 , Y2), ... be independent identically distributed
Rd_R-valued random vectors with EY 2<�. In the regression analysis
one wants to estimate Y after having observed X; i.e., one wishes to find a
function f with f (X) ``close'' to Y. If the main goal of the analysis is the
minimization of the mean squared error, then one wants to find a function
m* with

E(m*(X)&Y )2=min
f

E( f (X)&Y)2. (1)
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Let m(x) :=E(Y | X=x) be the regression function. It is well known that
we have for each measurable function f,

E( f (X)&Y )2=E(m(X)&Y )2+|
Rd

|m(x)& f (x)|2 +(dx). (2)

Here + stands for the distribution of X. Therefore m is the solution of the
minimization problem (1) and for an arbitrary f the so-called excess error
�Rd |m(x)& f (x)| 2 +(dx) is the difference between E( f (X)&Y)2 and the
optimal value E(m(X)&Y )2.

For the regression estimation problem the distribution of (X, Y ) (and
therefore also m) is unknown. Given only a sample (X1 , Y1), ..., (Xn , Yn) of
the distribution of (X, Y ) one has to construct an estimator mn(x)=
mn(x, (X1 , Y1), ..., (Xn , Yn)) of m(x).

A sequence of estimators (mn)n # N is called weakly (strongly) universally
consistent if

|
Rd

|mn(x, (X1 , Y1), ..., (Xn , Yn))&m(x)| 2 +(dx) � 0 in L1 (a.s.)

for all distributions of (X, Y ) with EY 2<�.
Stone (1977) first pointed out that there exist weakly universally consis-

tent estimators. Since then various results about weak and strong universal
consistency of special estimators, e.g., kernel estimators, nearest neighbor
estimators, histogram estimators, and series estimators, have been published.
See Devroye et al. (1994) for a list of papers on universal consistency and,
in addition, Gyo� rfi and Walk (1996, 1997), Gyo� rfi et al. (1998), Kohler
(1997), and Walk (1997).

In this paper we examine estimators which are defined by the following
three steps: In the first step, one uses the sample to construct a space
Fn=Fn((X1 , Y1), ..., (Xn , Yn)) of functions f : Rd � R. In the second step,
one chooses a function

m~ n( } )=m~ n( } , (X1 , Y1), ..., (Xn , Yn)) # Fn (3)

such that

1
n

:
n

i=1

|m~ n(X i)&Yi|
2= inf

f # Fn

1
n

:
n

i=1

| f (Xi)&Yi |
2, (4)

i.e., m~ n minimizes the empirical risk over Fn . In the third step the estimator
is truncated at ;n and &;n , i.e., mn is defined by

mn(x)=(m~ n(x) 6 (&;n)) 6 ;n (x # Rd). (5)
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Here we use the notation a 7 b :=min[a, b], a 6 b :=max[a, b] (a, b # R)
with a constant ;n # R+ _ [�] depending only on n, ;n � � (n � �).

Next we want to motivate the data-dependent choice of Fn . We are
interested in a small L2(+)-error �Rd |mn(x)&m(x)| 2 +(dx) between the
estimator mn and the true regression function m. The influence of the
pointwise error |mn(x)&m(x)|2 in some area of Rd on this L2(+)-error
depends on +. Thus to get a small L2(+)-error the estimator should
approximate m in some areas of Rd much better than in others, where these
areas depend on the distribution + of X. The data-dependent choice of Fn

allows us first to use the sample to estimate + and then to choose Fn such
that m can be approximated especially well in areas where the pointwise
error has a high influence on the L2(+)-error.

We now give two examples for possible choices of Fn .

Example 1 (Histogram Regression Estimators Using Data-Dependent
Partitions). Use the sample to construct a finite or countably infinite
partition Pn=[An, 1 , An, 2 , ...] of Borel-measurable subsets of Rd, e.g., such
that each An, i contains the same number of the X1 , ..., Xn . Define Fn as the
space of all functions which are constant on each set of this partition. Set
An(x) :=An, j if x # An, j . Then it is easy to see that for

m~ n(x) :=
�1�i�n, Xi # An(x) Yi

�1�i�n, Xi # An(x) 1

( 0
0 is 0 by definition) (3) and (4) hold. In the case ;n=�, mn=m~ n is the

so-called data-dependent histogram regression estimator, see, e.g., Nobel
(1996) and references therein.

Example 2 (Partitioning Regression Estimators Based on Local Polyno-
mial Fits). A natural extension of Example 1 is to fit a polynomial of
fixed degree greater than zero (instead of a constant) to the data in
each set of the partition. In order to do this, one defines Fn as the set of
all functions which are equal to a polynomial of fixed degree on each set
of a data-dependent partition.

In both examples the data are used to construct a partition of Rd and
then the estimator is defined locally in each set of the partition independ-
ently of the data not contained in this set. As a result the estimators as
functions of x are generally not continuous. This seems to be unpleasant
especially in the case that the regression function to be estimated is smooth.
In order to avoid this we use polynomial spline functions, i.e., piecewise
polynomial functions with global smoothness.

For univariate X we define Fn as polynomial spline space with data-
dependent knots. We give general conditions for the data-dependent
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location and number of these knots which imply strong universal
consistency of the resulting estimator.

For multivariate X we need spaces of multivariate spline functions. For
these one often uses tensor products of univariate spline spaces. In the case
d=2 this means that one chooses knots u0�u1� } } } �uKx

and
v0�v1� } } } �vKy

and defines tensor product splines as functions which are
equal to a polynomial (of fixed degree in x and y) in each rectangle
[ui , ui+1)_[vj , vj+1) and which satisfy some global smoothness condition
(e.g. one requires that the functions are continuous). The main drawback
of this is that a local refinement of one of these rectangles is not possible:
If one wants to refine the rectangle [ui , ui+1)_[vj , v j+1) one must insert
a new knot u between ui and ui+1 (or a new knot v between vj and v j+1)
which leads to a refinement of all rectangles [ui , ui+1)_[vk , vk+1)
(0�k�Ky) (or all rectangles [uk , uk+1)_[v j , vj+1) (0�k�Kx)). There-
fore we don't simply use tensor product spline spaces with fixed knot
sequences.

In the multivariate case, we define the data-dependent spaces Fn as linear
span of tensor product B-splines with nested knot-sequences, where the
knot-sequences of the chosen B-splines depend locally on the data. These
so-called hierarchical spline spaces were used for surface approximation in
computational geometry by Forsey and Bartels (1988), and their vector
space dimension and local approximation properties were examined in
Kraft (1994, 1997). By the aid of a local approximation property of such
spline spaces we show strong universal consistency of the resulting
estimators.

1.1. Discussion of Related Work

Empirical L2 -error minimization over data-independent spaces of func-
tions was used in Lugosi and Zeger (1995) to construct strongly universally
consistent series and neural network estimators. In Kohler (1997) this prin-
ciple was used to show the strong universal consistency of a modification
of the classical least squares spline estimator.

In this paper we consider estimators which are defined by empirical
L2 -error minimization over data-dependent spaces of functions. For such
estimators it is possible first to use the sample to derive properties of the
distribution + of X and the regression function m and then to choose Fn

such that m can ben approximated well by functions of Fn in L2(+). For
example, if X1 , ..., Xn are contained in a hyperplane then one can choose Fn

such that functions defined on this hyperplane can be approximated
especially well.

Another difference from Lugosi and Zeger (1995) and Kohler (1997) is
that we don't restrict the values of the functions in Fn . In Lugosi and Zeger
(1995) and also in Kohler (1997) all functions in Fn are bounded in
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absolute value by a constant depending on the size of the sample. The
drawback of this is that for such spaces Fn we have no knowledge of any
fast algorithm to compute a function m~ n which satisfies (4) for a given
sample. In this paper we set

Fn={ :
K

j=1

aj fj, n } aj # R= ,

with K # N and functions f1, n , ..., fK, n : Rd � R depending on the sample. In
this case (3) and (4) are equivalent to

m~ n= :
K

j=1

aj f j, n (6)

for some a=(aj) j # RK depending on the sample which satisfies

ATAa=ATY, (7)

where

A=( fj, n(Xi))1�i�n, 1�j�K and Y=(Y1 , ..., Yn)T.

Thus to compute m~ n one simply has to solve the linear equation system (7).
Estimators which are similar to the estimators defined in this paper are

data-dependent histogram regression estimators and partitioning regression
estimators based on data-dependent partitions (see Examples 1 and 2).
General sufficient conditions for strong universal consistency in the case of
bounded Y of these estimators can be found in Nobel (1996) and Lugosi
and Nobel (1996). These results differ in two ways from the results in this
paper: First, Nobel (1996) and Lugosi and Nobel (1996) consider only the
case of bounded Y. Second, Nobel (1996) and Lugosi and Nobel (1996)
use non-smooth function spaces Fn . As a consequence, their estimators are
generally not continuous. In this paper we use spaces of smooth functions;
therefore the estimators yield always smooth functions as estimates of
regression functions, which seems to be desirable especially in the case that
the regression function to be estimated is smooth.

1.2. Organization of the Paper

The main results are formulated in Section 2 for univariate splines and
in Section 3 for (multivariate) hierarchical splines. In Section 4 some
preliminary results are presented. We use these results in Sections 5 and 6
to prove the results of Section 2 and 3, resp. In the Appendix we prove a
local approximation property of hierarchical B-splines and we give a list of
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some results of the so-called Vapnik�Chervonenkis theory which are used
in Sections 4, 5, and 6.

2. UNIVARIATE POLYNOMIAL SPLINE FUNCTIONS

In this section we use spaces of univariate polynomial spline functions,
i.e., piecewise polynomials with global smoothness, in the general definition
of the estimator of Section 1.

Let M # N0 , K� # N, t0 , ..., tK� # R with t0<t1< } } } <tK� and let &1 , ..., &K� &1 #
[1, ..., M+1]. The spline space St, &, M with knots t0 , ..., tK� , knot multi-
plicities &1 , ..., &K� &1 and degree M is defined as the set of all functions
f =[t0 , tK� ) � R which satisfy

(I) For each i # [1, ..., K� ] f is equal to a polynomial of degree �M
on [ti&1 , ti),

(II) If i # [1, ..., K� &1] and M&&i�0 then f is M&&i times
continuously differentiable at ti .

Example 3 For M=1 and &1= } } } =&K� &1=1 the functions in St, &, M

are continuous and piecewise linear.

Clearly, St, &, M is a linear space with finite dimension. In order to handle
such functions on a computer one can represent them as linear combinations
of chosen basis functions. For computational purposes it is convenient to
use basis functions with support as small as possible. These are the
so-called normalized B-splines, which will be introduced next.

Let u&M�u&M+1� } } } �uK+M be real values such that K=1+
�K� &1

i=1 &i , u0=t0 , uK=tK� and each t i is contained exactly & i times among
the u1 , ..., uK&1 (i=1, ..., K� &1). Then the normalized B-splines Bj, l, u can
be defined recursively by

Bj, 0, u(x) :={1
0

if uj�x<uj+1

otherwise
(8)

for j=&M, &M+1, ..., K+M&1 and

Bj, l+1, u(x) :=
x&uj

u j+l+1&u j
} Bj, l, u(x)+

u j+l+2&x

uj+l+2&u j+1

} Bj+1, l, u(x) (9)

for j=&M, ..., K+M&2&l, l=0, ..., M&1.
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It is well known that [Bj, M, u | j=&M, ..., K&1] is a basis for
Su, M :=St, &, M (see de Boor (1978), pp. 113, 114, 131). The basic properties
of this B-spine basis are

Bj, M, u(x)�0 (10)

for all x # R, j=&M, ..., K&1,

supp Bj, M, u=[u j , uj+M+1] (11)

for j=&M, ..., K&1, and

:
K&1

j=&M

Bj, M, u(x)=1 (12)

for all x # [u0 , uK) (see de Boor (1978), pp. 109, 110). Here we have used
the notation supp f for the support of a function f : Rd � R.

Example 3 (continued). For M=1 and u&1<u0< } } } <uK<uK+1Bj, M, u

is one at uj+1 , zero at u&1 , ..., uj , uj+2 , ..., uK+1 and piecewise linear
between the knots (hat-function).

Observe that it is possible to define the B-splines Bj, M, u on whole R by
(8) and (9). We will do this in the sequel. Then Su, M is a subset of the set
of all functions which are equal to a polynomial on each of the sets
(&�, u&M), [u&M , u&M+1), ..., [uK+M , �).

In order to define the space Su, M one simply has to choose the knot
sequence u and the degree M. In the next theorem we show how to choose
the knots of Fn=Su, M in dependence of the sample in order to define a
strongly universally consistent estimator via (3), (4), and (5).

Let +n be the empirical measure to X1 , ..., Xn , i.e., +n(A) :=
1�n �n

i=1 IA(Xi) (A�R).

Theorem 1. Let M # N0 , Kn # N, ;n # R+ (n # N). Depending on the
sample (X1 , Y1), ..., (Xn , Yn) choose K # N and knots u&M , ..., uK+M # R
such that K�Kn , u&M�u&M+1� } } } �uK+M and ui<ui+M+1 for all
&M�i<K&1. Assume that

;n � � (n � �), (13)

Kn } ;4
n } ln n
n

� 0 (n � �) (14)

and

;4
n

n1&$ � 0 (n � �) (15)
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for some $>0. If, in addition, for every distribution + of X

+ \{(&�, u0) _ .

uk&uk&M&1>#
k=1, ..., K,

[uk&1 , uk) _ [uK , �)=& [&L, L]+
www�(n � �) 0 a.s. (16)

for every L, #>0, or

+n \{(&�, u0) _ .

uk&uk&M&1>#
k=1, ..., K,

[uk&1 , uk) _ [uK , �)=& [&L, L]+
www�(n � �) 0 a.s. (17)

for every L, #>0, then every sequence (mn)n # N of estimators which satisfy
(3), (4), and (5) with Fn=Su, M is strongly universally consistent.

Remark 1. The left-hand sides of (16) and (17) are random variables
because the knots u&M , ..., uK+M are random variables depending on the
sample (X1 , Y1), ..., (Xn , Yn).

We now give examples which show that it is easy to choose the knots
such that (16) or (17) hold. In the first example we consider data-independent
knots.

Example 4. Let Ln , Rn # R (n # N) such that

Ln � &�, Rn � � (n � �) (18)

and

Rn&Ln

Kn
� 0 (n � �). (19)

Set K=Kn and

uk :=Ln+k }
Rn&Ln

Kn
(k=&M, ..., Kn+M). (20)

Then (16) holds because for fixed L, #>0

{(&�, u0) _ .
k=1, ..., K, uk&uk&M&1>#

[uk&1 , uk) _ [uK , �)=& [&L, L]=<

for n big enough.

In the next example we consider data-dependent knots.
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Example 5. Let Cn # N, $n�0 (n # N) such that

$n � 0 (n � �) (21)

and

Cn

n
� 0 (n � �). (22)

Set K=Kn and choose the knots such that there are less than Cn of the
X1 , ..., Xn in each of the intervals (&�, u0) and [uKn

, �) and such that for
every k # [1, ..., Kn] with uk&uk&M&1>$n there are less than Cn of the
X1 , ..., Xn in [uk&1 , uk).

We now show that in this case (17) holds. Let L, #>0. Because of
(21) we can assume w.l.o.g. that $n<#. Then uk&uk&M&1># implies
+n([uk&1 , uk))�Cn �n; thus

+n \{(&�, u0) _ .

uk&uk&M&1>#
k=1, ..., Kn

[uk&1 , uk) _ [uKn
, �)=& [&L, L]+

�+n((&�, u0))+ :

[uk&1 , uk) & [&L, L]{<
uk&uk&M&1>#

+n([uk&1 , uk))++n([uKn
, �))

�2
Cn

n
+(M+1) \2L

#
+2+ Cn

n
� 0 (n � 0)

because of (22), and thus (17) is proved.

Example 6. Choose each Wn�Kn X th order statistic of X1 , ..., Xn as a
knot. Then each sequence (mn)n # N of estimators which satisfies (3), (4),
and (5) with Fn=Su, M is strongly consistent for every distribution of
(X, Y ) with X non-atomic and EY 2<�, provided that (13)�(15) and

Kn � � (n � �) (23)

hold.

This follows immediately from Theorem 1 and Example 5 by setting
Cn=Wn�Kn X+1 and $n=0.

3. MULTIVARIATE POLYNOMIAL SPLINE
FUNCTIONS��HIERARCHICAL B-SPLINES

In this section we introduce the so-called hierarchical B-splines and use
them for the estimator of Section 1.
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For notational convenience we restrict our considerations to the case
d=2. The general case can be handled in an analogous way.

We define multivariate spline functions, i.e., multivariate piecewise poly-
nomials with global smoothness, by tensor products of univariate spline
functions.

Choose degrees Mx , My # N0 , Kx , Ky # N and knot sequences u=
(u&Mx

, ..., uKx+Mx
), v=(v&My

, ..., vKy+My
) and set

Su, Mx , v, My
:={ f : R2 � R } f (x, y)= :

l

i=1

a i gi (x) h i ( y)

\x, y # R for some l # N,

a1 , ..., al # R, g1 , ..., gl # Su, Mx
and h1 , ..., hl # Sv, My= .

As the basis of Su, Mx, v, My
we use tensor products of the B-spline basis of

Su, Mx
and Sv, My

: Set

J :=[( j, l ) # Z2 | &Mx� j<Kx and &My�l<Ky]

and define

B( j, l )(x, y) :=B( j, l ), Mx , u, My , v(x, y) :=Bj, Mx , u(x) } B l, My , v( y)

for ( j, l ) # J. Then [Bj | j # J] is a basis for Su, Mx , v, My
.

Next we define hierarchical spline spaces as linear span of tensor product
B-splines with nested knot sequences. Choose Mx , My # N0 , u0 , v0 # R and
h0

x , h0
y>0. Set

h p
x :=

h0
x

max[2, Mx] p , h p
y :=

h0
y

max[2, My] p ,

u p
i :=u0+i } h p

x , v p
i :=v0+i } h p

y

for p # N0 , i # Z. The B-spline B p
j of level p is the tensor product B-spline

to the knot sequences [u p
i ] i and [v p

l ] l with support [u p
j1

, u p
j1+Mx+1]_

[v p
j2

, v p
j2+Mx+1]. Let

R2
$D1$D2$ } } } $Dp$Dp+1 :=<

be a finite sequence of nested domains such that

Dl= .
j # Jl

supp B l
j for some finite set Jl�Z2 (24)
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for 1�l� p. Then the hierarchical spline space SD is defined as linear span
of all B-splines of level l with support contained in Dl (1�l� p), i.e., with

Il :=[j # Z2 | supp B l
j�Dl]

we define the hierarchical spline space by

SD :=span[B l
j | 1�l�p and j # Il].

Remark 2. If one sets

Jl :=[j # Z2 | supp B l
j�Dl and supp B l

j�3 D l+1]

for 1�l� p, then [B l
j | 1�l� p and j # Jl] is a basis for SD (see Kraft

(1997)).

Next we investigate how well smooth functions can be approximated by
functions of SD . Let C (:, ;) be the set of all functions f : R2 � R which are
: (;) times continuously differentiable in x ( y). It is well known that the
error of approximating a function f # C (:, ;) by linear combinations of
B-splines of level l is of order (h l

x):+(h l
y); (see Schumaker (1981),

Theorem 12.7). It follows that for each 1�l� p and each f # C (:, ;) there
exists a gl # SD for which the error of approximating f in

D0
l :=[x # R2 | \j # Z2 : B l

j(x){0 O supp B l
j�Dl]=Dl> .

j : supp Bl
j �3 Dl

supp B l
j

is of order (h l
x):+(h l

y);. It is shown in Kraft (1994) that there even exists
a g # SD which has this approximation property simultaneously for all
1�l� p. This is the content of the next lemma, where we use the notation
f (:, ;) for the (:, ;) partial derivative of a function f : R2 � R.

Lemma 1. Let 1�:�Mx+1, 1�;�My+1 and f # C (:, ;). Set

p0=min[l # N | h l
x�1 and h l

y�1].

Then there exist Qf # SD and constants c1 , c2 # R independent of f, h0
x , h0

y

such that

| f (x)&(Qf )(x)|�c1 } (& f (:, 0)&� } (h l
x):+& f (0, ;)&� } (h l

y);) (25)

for all x # � l
i= p0

D0
i , p0�l� p and

&Qf &��c2 } (& f &�+& f (1, 0)&�+& f (0, 1)&�). (26)
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This lemma is shown in Kraft (1994) under some additional conditions
on the sequences of domains. We show in the appendix that it is also valid
under the conditions given here.

Remark 3. The conditions p0�l� p and h p0
x �1, h p0

y �1 are used to
show that c2 in (26) is independent of h0

x and h0
y .

Next we give general conditions on data-dependent sequences of nested
domains which imply the strong universal consistency of the resulting
estimator. Therefore we use data-independent parameters Ln , Rn # R,
;n # R+ , Kn , Cn , pn # N (n # N) and the abbreviations

[u l
i , u l

i+1) :=[u l
i1

, u l
i1+1)_[v l

i2
, v l

i2+1) and

[u l
i&1 , u l

i+2) :=[u l
i1&1 , u l

i1+2)_[v l
i2&1 , v l

i2+2)

for i=(i1 , i2) # Z2, l # N0 . According to the next theorem the sequence of
nested domains should satisfy the following conditions:

First, all domains should be contained in a data-independent rectangle
[Ln , Rn]2 (see (28)), where this rectangle converges to R2 (n � �) (see
(18)). Second, the vector space dimension of the resulting hierarchical
spline space (see Remark 2) should be not greater than a data-independent
number Kn (see (30)), which converges not too fast to infinity (see (14)).
Third, each rectangle [u l

i , u l
i+1) which satisfies [u l

i&1 , u l
i+2)�Dl and

contains more than a data-independent number Cn of the X1 , ..., Xn

should be contained in D0
l+1 (see (31)), where Cn converges not too fast to

infinity (see (22)). This is required for all levels 0�l< pn , where pn is
data-independent and converges to infinity (see (27)).

Theorem 2. Let Mx , My # N0 . For n # N let Ln , Rn # R, ;n # R+ and
Kn , Cn , pn # N such that (13)�(15), (18), (22) and, in addition,

pn � � (n � �) (27)

hold. Depending on the sample choose p= p((X1 , Y1), ..., (Xn , Yn)) # N and a
sequence D=(Dl)l=1, ..., p of nested domains of the data-dependent hierarchical
spline space such that

[Ln , Rn]2=: D0$D1$D2$ } } } $Dp$Dp+1 :=Dp+2 :} } } :=<, (28)

Dl= .
j # Jl

supp B l
j (29)

for some data-dependent Jl �Z2 (1�l� p),

:
p

l=1

|[j # Z2 : supp B l
j�Dl and supp B l

j �3 Dl+1]|�Kn (30)
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and

.

+n([ul
j
, ul

j+1
])�Cn�n

j : [ul
j&1, ul

j+2]�Dl ,

[u l
j&1 , u l

j+2]�Dl+1 (31)

for all 0�l< pn .
Then each sequence (mn)n # N of estimators which satisfy (3), (4), and (5)

with Fn=SD is strongly universally consistent.

Example 7 (28), (29), and (31) are satisfied if one defines Dl+1 by the
left-hand side of (31) and sets p :=pn . (30) is then implied by

:
pn

l=1

max[2, Mx] l max[2, My] l (Rn&Ln)2

h0
xh0

y

�Kn . (32)

4. PRELIMINARIES TO THE PROOFS OF THEOREM 1
AND THEOREM 2

In this section we will use the following notations: For L>0 and z # R
set TLz :=TL(z) :=(z 6 (&L)) 7 L. For f =Rd � R define TL f : Rd � R
by (TL f )(x) :=TL( f (x)) (x # Rd). Let

BnFn :=[ f # Fn | \x # Rd : | f (x)|�;n]

be the set of functions in Fn which are bounded in absolute value by ;n and
let

TnFn :=[T;n
f | f # Fn]

be the set of truncated functions from Fn .

Our first lemma is a modification of Theorem 1 of Lugosi and Zeger
(1995).

Lemma 2. Assume that

;n � � (n � �), (33)

sup
f # TnFn

}1n :
n

i=1

( f (Xi)&Yi)
2&E( f (X)&Y )2 }� 0 a.s. (34)
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for every distribution of (X, Y) with |Y|�L<� for some L # R and

inf
f # BnFn

|
Rd

| f (x)&m(x)| 2 +(dx) � 0 a.s. (35)

for every distribution of (X, Y) with EY 2<�. Then each sequence (mn)n # N

of estimators which satisfy (3), (4), and (5) is strongly consistent.

Remark 4. To ensure measurability of the supremum in (34) it is
necessary to impose regularity conditions on uncountable collections Fn of
functions. For the spline spaces in Sections 2 and 3 one can use that every
spline function is a pointwise limit of a sequence contained in the countable
set of all spline functions with rational knots and rational B-spline coef-
ficients (see (12), Schumaker (1981), Theorem 4.26 and Pollard (1984),
p. 38).

Proof of Lemma 2. Let (X, Y ), (X1 , Y1), (X2 , Y2), ... be i.i.d. random
variables with EY 2<�. Set

Dn :=[(X1 , Y1), ..., (Xn , Yn].

Because of

|
Rd

|mn(x)&m(x)|2 +(dx)=E( |mn(X)&Y |2 | Dn)&E |m(X)&Y | 2

it suffices to show

[E( |mn(X)&Y |2 | Dn)]1�2&[E |m(X)&Y |2]1�2 � 0 a.s. (36)

We use the decomposition

0�[E( |mn(X)&Y |2 | Dn)]1�2&[E |m(X)&Y |2]1�2

=([E( |mn(X)&Y2 | Dn)]1�2& inf
f # Bn Fn

[E | f (X)&Y |2]1�2)

+( inf
f # Bn Fn

[E | f (X)&Y | 2]1�2&[E |m(X)&Y |2]1�2). (37)

It follows from (35) by the aid of the triangle inequality that the second
term of (37) converges to zero a.s. Therefore for (36) it suffices to show

lim sup
n � �

([E( |mn(X)&Y |2 | Dn)]1�2& inf
f # Bn Fn

[E | f (X)&Y |2]1�2)�0 a.s.

(38)
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In order to show (38) let L>0 be arbitrary. Set Y , L :=TLY and
Yi, L :=TLYi (i=1, ..., n). Because of (33) we can assume w.l.o.g. that
;n>L. Then

[E( |mn(X)&Y |2 | Dn)]1�2& inf
f # Bn Fn

[E | f (X)&Y |2]1�2

= sup
f # Bn Fn

[E( |mn(X)&Y | 2 | Dn)]1�2&[E | f (X)&Y |2]1�2

� sup
f # Bn Fn

{[E( |mn(X)&Y | 2 | Dn)]1�2&[E( |mn(X)&Y , L|2 | Dn)]1�2

+[E( |mn(X)&Y , L|2 | Dn)]1�2&{1
n

:
n

i=1

|mn(Xi)&Y i, L|2=
1�2

+{1
n

:
n

i=1

|mn(Xi)&Yi, L|2=
1�2

&{1
n

:
n

i=1

|m~ n(Xi)&Yi, L|2=
1�2

+{1
n

:
n

i=1

|m~ n(Xi)&Yi, L|2=
1�2

&{1
n

:
n

i=1

|m~ n(Xi)&Yi|
2=

1�2

+{1
n

:
n

i=1

|m~ n(Xi)&Yi |
2=

1�2

&{1
n

:
n

i=1

| f (Xi)&Yi |
2=

1�2

+{1
n

:
n

i=1

| f (Xi)&Yi |
2=

1�2

&{1
n

:
n

i=1

| f (X i)&Yi, L|2=
1�2

+{1
n

:
n

i=1

| f (Xi)&Yi, L| 2=
1�2

&[E | f (X)&Y , L| 2]1�2

+[E | f (X)&Y, L|2]1�2&[E | f (X)&Y |2]1�2= .

Now we give upper bounds for the terms in each row of the right-hand side
of the last inequality: The second and seventh term are bounded above by

sup
f # Tn Fn

}{1
n

:
n

i=1

| f (Xi)&Yi, L|2=
1�2

&[E | f (X)&Y , L| 2]1�2 }
(observe mn # Tn Fn and Bn Fn /Tn Fn). Because of (4) and f # Bn Fn /Fn

the fifth term is bounded above by 0. For the third term observe that if
x, y # R with | y|�;n and z :=(x6 (&;n)) 7;n , then |z& y|� |x& y|.
Therefore the third term is also not greater than zero.
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Using these upper bounds and the triangle inequality for the remaining
terms one gets

[E( |mn(X)&Y |2 | Dn)]1�2& inf
f # Bn Fn

[E | f (X)&Y |2]1�2

�2 } [E |Y&Y , L|2]1�2+2 } {1
n

:
n

i=1

|Yi&Yi, L|2=
1�2

+2 } sup
f # Tn Fn

}{1
n

:
n

i=1

| f (Xi)&Yi, L|2=
1�2

&[E | f (X)&Y , L| 2]1�2 } .
Because of (34) and the strong law of large number this implies

lim sup
n � �

([E( |mn(X)&Y |2 | Dn)]1�2& inf
f # Bn Fn

[E | f (X)&Y |2]1�2)

�4 } [E |Y&Y , L|2]1�2 a.s.

With L � � one gets the assertion. K

Because of Lemma 2 the assertion of Theorem 1 and Theorem 2 follows
from (34) and (35) with Fn=Su, M and Fn=SD , resp. To show (35) we will
use the following lemma.

Lemma 3. Let Fn=Fn((X1 , Y1), ..., (Xn , Yn)) be a data-dependent set of
functions f : Rd � R (n # N). Let hFn

: Rd � R _ [�] be a data-dependent
function and c : C �

0 (Rd) � R be a data-independent function such that for
every m # C �

0 (Rd) there is a function g # Fn with

|g(x)|�c(m) and |m(x)&g(x)|�c(m) } hFn
(x) (x # Rd). (39)

Then (33) and

+([x # Rd | hFn
(x)>#] & [&L, L]d) � 0 a.s. (40)

for every L, #>0 imply

inf
f # Bn Fn

|
Rd

| f (x)&m(x)| 2 +(dx) � 0 a.s.

for every m # L2(+)

Before we will prove this lemma we give an example for possible
functions hFn

and c.
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Example 8. Let Fn be the set of all functions f : R2 � R which are
constant on each set of a data-dependent partition Pn=[An, 1 , An, 2 , ...] of
R2. Then it is easy to see that (39) holds with

hFn
(x)=diam(An, i) := sup

u, v # An, i

|u&v| (x # An, i)

and

c(m) :=max[- 2 } &m(1, 0)&� , - 2 } &m(0, 1)&� , &m&�].

In this case one can choose fixed xi # An, i (i # N) and can define

g( } )=:
i

IAn, i
( } ) m(xi).

Proof of Lemma 3. Because of m # L2(+) and C �
0 (Rd) dense in L2(+) we

can assume w.l.o.g. that m # C �
0 (Rd).

Choose g # Fn with | g(x)|�c(m) and |m(x)& g(x)|�c(m) } hFn
(x) for

every x # Rd. Because of (33) and c(m)<� we can assume w.l.o.g.
g # BnFn .

Let L, #>0. Then

inf
f # Bn Fn

|
Rd

| f (x)&m(x)| 2 +(dx)�|
Rd

| g(x)&m(x)| 2 +(dx)

�|
Rd"[&L, L]d

| g(x)&m(x)|2 +(dx)

+|
[x # Rd | hFn

(x)>#] & [&L, L]d
|g(x)&m(x)|2 +(dx)

+|
[x # Rd | hFn

(x)�#] & [&L, L]d
|g(x)&m(x)|2 +(dx)

�2 } (c(m)2+&m&2
�)

} [+(Rd"[&L, L]d )++([x # Rd | hFn
(x)>#] & [&L, L]d )]

+#2 } c(m)2

� 2 } (c(m)2+&m&2
�) } +(Rd "[&L, L]d)+#2 } c(m)2 a.s.

because of (40). With L � � and # � 0 one gets the assertion. K
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Next we explain how we will show (34). In Theorem 1 and in Theorem 2
Fn , and therefore also TnFn , are spaces of piecewise defined functions
which depend on the data. We will construct spaces of piecewise defined
functions which do not depend on the data and which contain TnFn for
every sample, and we will show (34) for these spaces.

To describe such sets of piecewise defined functions we use the following
notation: Let 6=(?j)j be a family of finite or countably infinite partitions
?j=[Aj, 1 , Aj, 2 , ...] of Borel-measurable subsets of Rd and let G be a fixed
set of functions g : Rd � R. Then

G b 6 :={ f = :
Aj # ?

gj IAj } ?=[Aj] # 6, gj # G=
is the set of all functions which are obtained by applying a different
function of G within each cell of a selected partition of 6.

In order to show (34) for such spaces of functions, we will use the following
lemma, whose formulation needs the notions of VC dimension and
partitioning numbers (Definitions 2 and 3 in the appendix).

Lemma 4. Let N # N and let 6 be a family of partitions of Rd such that
no partition of 6 consists of more than N sets. Let G be a set of functions
g : Rd � R. Assume |Y|�;n a.s. and let t>0 be arbitrary. Then the following
inequality holds:

P \ sup
f # Tn G b 6 }

1
n

:
n

i=1

| f (Xi)&Y i |
2&E | f (X)&Y |2 }>t+

�8 } 2n(6) } 2N } \128e;2
n

t
log \128e;2

n

t ++
VG

+ } N

} exp \&
nt 2

2048;4
n+ .

We will apply the Borel�Cantelli lemma in order to obtain (34) from the
above inequality.

Proof of Lemma 4. Set

Hn :=[h : Rd_R � R : h(x, y)=| f (x)&T;n
y|2 ((x, y) # Rd_R)

for some f # Tn G b 6].

For h # Hn one has 0�h(x, y)�4;2
n ((x, y) # Rd_R). Using the notion

of covering numbers (Definition 1 in the appendix) and Lemma 5 one
concludes
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P _ sup
f # Tn G b 6 }

1
n

:
n

i=1

| f (Xi)&Yi |
2&E | f (X)&Y |2}>t&

=P _ sup
h # Hn

}1n :
n

i=1

h(Xi , Yi)&Eh(X, Y) }>t&
�8E \N \ t

8
, Hn , (X, Y )n

1++ exp \&
nt2

2048;4
n+ . (41)

Next we bound the covering number in (41). Observe first, that if
hj (x, y)=| fj (x)&T;n

y|2 ((x, y) # Rd_R) for some functions fj bounded in
absolute value by ;n ( j=1, 2), then

1
n :

n

i=1

|h1(X i , Yi)&h2(Xi , Yi)|

=
1
n

:
n

i=1

| f1(Xi)&T;n
Yi+ f2(Xi)&T;n

Yi | } | f1(Xi)& f2(X i)|

�4;n
1
n

:
n

i=1

| f1(Xi)& f2(Xi)| .

Thus

N \ t
8

, Hn , (X, Y)n
1+�N \ t

32;n
, Tn G b 6, Xn

1+ . (42)

Using the notions of VC dimension and partitioning numbers (Defini-
tions 2 and 3 in the appendix), Lemma 8 and Lemma 6, one gets

N \ t
32;n

, TnG b 6, Xn
1+�2n(6) { sup

z1 , ..., zm # X
1
n

N \ t
32;n

, Tn G, zm
1 +=

N

�2n(6) \2 \ 4e;n

t�32;n
log \ 4e;n

t�32;n++
VTnG

+

+
N

�2n(6) 2N \128e;2
n

t
log \128e;2

n

t ++
VG

+ } N

(43)

where we have used the relation VTn G+ �VG+ , which follows directly from
the definition of the VC dimension. (41)�(43) imply the assertion. K
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5. PROOF OF THEOREM 1

Because of Lemma 2 it suffices to show (34) and (35).

Proof of (34). Let 6n be the family of all partitions of R consisting
of Kn+2M+2 or less intervals and let G be the set of all polynomials of
degree not greater than M. Then Fn /G b 6n and therefore it suffices to
show (34) with Fn replaced by G b 6n . G is a linear space of functions
of dimension M+1, thus VG+�M+2 (see Lemma 7). It follows from
Example 1 in Nobel (1996) that

2n(6n)�\n+Kn+2M+1
n +�(n+Kn+2M+1)Kn+2M+1.

Now the assertion follows from this and Lemma 4 by an easy application
of the Borel�Cantelli lemma with the help of conditions (14) and (15).

Proof of (35). Because of Lemma 3 it suffices to show (39) and (40).
For m # C �

0 (R) define Qm # Fn by Qm :=�Kn&1
j=&M m(u j) } Bj, M, u . Then (10)

and (12) imply

|Qm(x)|� max
j=&M, ..., Kn&1

|m(uj)| } :
Kn&1

j=&1

B j, M, u(x)�&m&�

for x # R. Let x # [ui , ui+1) for some 0�i�Kn&1. Using (12), (11), and
(10) one gets

|m(x)&Qm(x)|= } :
Kn&1

j=&M

(m(x)&m(uj)) } B j, M, u(x) }
= } :

i

j=i&M

(m(x)&m(u j)) } B j, M, u(x)}
� max

j=i&M, ..., i
|m(x)&m(uj)| } :

i

j=i&M

B j, M, u(x)

�|ui+1&ui&M| } &m$&� .

Therefore (39) is satisfied with

hFn
(x) :={ |ui+1&ui&M|

�
if x # [ui , ui+1) and 0�i�Kn&1
if x<u0 or x�uKn

,

and c(m) :=max[&m&� , &m$&�].
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Let L, #>0. Then

+([x # R | hFn
(x)>#] & [&L, L])

=+ \{(&�, u0) _ .

uj+1&uj&M>#
j=0, ..., Kn&1,

[uj , uj+1) _ [uKn
, �)=& [&L, L]+

�+n \{(&�, u0) _ .

uj+1&uj&M>#
j=0, ..., Kn&1,

[u j , uj+1) _ [uKn
, �)=& [&L, L]+

+ sup
f # G0 b 6n

} 1n :
n

i=1

f (Xi)&Ef (X ) } ,
with G0 consisting of two functions which are constant 0 and constant 1
(resp.).

It follows from (34) that

sup
f # G0 b 6n

} 1n :
n

i=1

f (Xi)&Ef (X ) }
= sup

f # G0 b 6n
} 1n :

n

i=1

( f (Xi)&0)2&E( f (X )&0)2 }� 0 a.s. (n � �).

Thus (40) holds provided that (16) or (17) hold. K

6. PROOF OF THEOREM 2

Because of Lemma 2 it suffices to show (34) and (35).

Proof of (34). Let G be the set of all polynomials of degree less than or
equal to Mx (My) in x ( y), resp. Each function in SD is on each set
[u l

i , u l
i+1)�D l"Dl+1 equal to such a polynomial (l # [1, ..., p]). From this,

(29) and (30) one obtains that there exists a partition ?D consisting of at
most Kn(Mx+1)(My+1) rectangles and one additional set such that each
function in SD is on each cell of ?D equal to some function contained in
G. Let 6n be the family of all such partitions. Then SD �G b 6n and
therefore it suffices to show (34) with Fn replaced by G b 6n .

It is easy to see that in R2 rectangles can partition n points in at most
(n+1)4 ways, hence

2n(6n)�(n+1)4Kn(Mx+1)(My+1).

From this one obtains the assertion as in the proof of Theorem 1.
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Proof of (35). Because of Lemma 3 it suffices to show (39) and (40). It
follows from Lemma 1 that (39) is satisfied with

hFn
(x) :={

h0
x

max[2, Mx] l+
h0

y

max[2, My] l if x # ,
l

i=p0

D0
i > ,

l&1

i=p0

D0
i

for some p0�l�p,
� otherwise

and c(m) :=max[c1 , c2] } (&m&�+&m(1, 0)&�+&m(0, 1)&�). As in the proof
of Theorem 1 (40) follows from (34) and

+n([x # R2 | hSD
(x)>#] & [&L, L]2) � 0 a.s. (44)

for every L, #>0.
Let L, #>0 be arbitrary. Choose q # N minimal such that

h0
x �max[2, Mx]q+h0

y �max[2, My]q�#. Because of (18) and (27) we can
assume w.l.o.g. that

[&L, L]2�[Ln+2h0
x , Rn&2h0

x]_[Ln+2h0
y , Rn&2h0

y]

(thus [u0
j , u0

j+1] & [&L, L]2{< implies [u0
j&1 , u0

j+2]�[Ln , Rn]2) and
q� pn .

If [uq
j , uq

j+1] & [&L, L]2{< and [uq
j , uq

j+1) contains more than Cn of
the X1 , ..., Xn , then (31) implies [uq

j , uq
j+1)�D0

l for 1�l�q and therefore

[x # R2 | hSD
(x)>#] & [uq

j , uq
j+1)=<.

Using this and (22) one gets

+n([x # R2 | hSD
(x)>#] & [&L, L]2)

� :
[u

j
q , uq

j+1
) & [&L, L]2{<, +n([u

j
q , uq

j+1
))�Cn�n

+n([uq
j , uq

j+1))

�
Cn

n
} \max[2, Mx]q } �2L

h0
x |+2+

} \max[2, My]q } �2L
h0

y |+2+� 0 (n � �). K
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APPENDIX

A. Proof of Lemma 1

For l # N0 and f # C(R2) define

Qlf := :
j # Z2

Q l
j f } B l

j

for some linear functionals Q l
j : C(R2) � R. It is possible to choose Q l

j such
that

|Q l
j f |�c3 } & f &� (45)

for all f # C(R2), j # Z2,

&Qlf & f &��c4 } (& f (:, 0)&� } (h l
x):+& f (0, ;)&� } (h l

y) ;) (46)

for all :�Mx+1, ;�My+1, f # C (:, ;), and

Ql+1(Qlf )=Qlf (47)

for all l # N0 , f # C(R2). Here c3 , c4 are constants independent of f, l, h0
x ,

h0
y (see Schumaker (1981), Theorems 12.5�12.7).
Define

Q� lf := :
j # Z2, supp B

j
l�Dl

(Q l
j f ) } B l

j

and

Q l
SD

f :=Q� p0f + :
l&1

i=p0

Q� i+1( f &Qif )

for p0�l� p.
It follows directly from the definition of D0

l that

Q� lf |Dl
0=Qlf |D

0
0

for all l # N0 . Using this and (47) one gets

Q l
SD

f |�l
i=p0

Di
0=Q� p0f |�l

i=p0
Di

0+ :
l&1

i=p0

Q� i+1( f &Qif ) |�l
i=p0

Di
0

=Qp0f |�l
i=p0

Di
0+ :

l&1

i=p0

(Qi+1f |�l
i=p0

Di
0&Qi+1(Qif ) |�l

i=p0
Di

0+
=Qlf |�l

i=p0
Di

0 . (48)
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Now we prove (25). Let p0�l� p and x # � l
i= p0

D0
i . Then (48), (45), (12),

and (46) imply

| f (x)&Q p
SD

f (x)|�| f (x)&Q l
SD

f (x)|+ } :
p&1

i=l

Q� i+1( f &Qif )(x) }
�| f (x)&Qlf (x)|+c3 } :

p&1

i=l

& f &Qif &�

�c4 } [& f (:, 0)&� } (h l
x):+& f (0, ;)&� } (h l

y);]

+c3 } :
p&1

i=l

c4 } {& f (:, 0)&� } \ h l
x

max[2, Mx] i&l+
:

+& f (0, ;)&� } \ h l
y

max[2, My] i&l+
;

=
�(c4+2 } c3 } c4) } [& f (:, 0)&� } (h l

x):+& f (0, ;)&� } (h l
y) ;];

thus (25) is proved.
Next we prove (26). Let x # R2 be arbitrary. Then (45), (12), (46), and

the definition of p0 imply

|(Q p
SD

f )(x)|�c3 } & f &�+ :
p

i=p0

c3 } & f &Qif &�

�c3 & f &�+c3 c4 :
p

i=p0
{& f (1, 0)&� }

h p0
x

max[2, Mx] i&p0

+& f (0, 1)&� }
h p0

y

max[2, My]i&p0=
�c3 } & f &�+c3 } c4 } [& f (1, 0)&�+& f (0, 1)&�]. K

B. Some Results of the Vapnik�Chervonenkis Theory

In this section we list the definitions and results of the Vapnik�Cher-
vonenkis theory which we have use in Sections 4, 5, and 6. An excellent
introduction to most of these results can be found in Devroye et al. (1996).

We start with the definition of covering numbers of classes of functions.

Definition 1. Let Fn be a class of functions f : Rd � R. The covering
number N(=, Fn , zn

1) is defined for any =>0 and z n
1=(z1 , ..., zn) # Rd } n
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as the smallest integer k such that there exist functions g1 , ..., gk : Rd � R
with

min
1�i�k

1
n

:
n

j=1

| f (zj)&gi(zj)|�=

for each f # Fn .

If Zn
1=(Z1 , ..., Zn) is a sequence of Rd-valued random variables, then

N(=, Fn , Zn
1) is a random variable with expected value EN(=, Fn , Zn

1). The
next result due to Pollard is the main tool in the proof of (34).

Lemma 5 (Pollard (1984), Section II.5, Th. 24). Let Fn be a class of
functions f : Rd � [0, B], and let Zn

1=(Z1 , ..., Zn) be Rd-valued i.i.d. random
variables. Then for any =>0

P _ sup
f # Fn

} 1n :
n

i=1

f (Z i)&Ef (Z1) }>=&
�8E \N \ =

8
, Fn , Zn

1++ exp \&
n=2

128B 2+ .

To bound covering numbers we use the following definition of the VC
dimension.

Definition 2. Let D be a class of subsets of Rd and let F�Rd. One
says that D shatters F if each subset of F has the form D & F for some D
in D. The VC dimension VD of D is defined as the largest integer k for
which a set of cardinality k exists which is shattered by D.

A connection between covering numbers and VC dimensions is given by
the following lemma, which uses the notation VFn

+ for the VC dimension
of the set

F+
n :=[[(x, t) # Rd_R : t� f (x)] : f # Fn]

of all graphs of functions of Fn .

Lemma 6 (Haussler (1992), Th. 6). Let Fn be a class of functions
f : Rd � [&B, B]. Then one has for any zn

1 # Rd } n and any =>0

N(=, Fn , zn
1)�2 \4eB

=
log \4eB

= ++
VFn

+

.

The following result is often useful for bounding the VC dimension.
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Lemma 7 (Dudley (1978)). Let Fn be a k-dimensional vector space of
functions f : Rd � R. Then the class of sets of the form [x # Rd: f (x)�0],
f # Fn , has VC dimension less than or equal to k.

We apply the above results to sets of piecewise defined functions. Let
6=(?j) j be a family of partitions of Rd and let G be a fixed set of functions
g: Rd � R. Set

G b 6 :={ f = :
Aj # ?

gj IAj } ?=[A j] # 6, gj # G= .

In order to bound covering numbers of such sets of functions we need the
following definition, which is due to Lugosi and Nobel (1996).

Definition 3. Let 6 be a family of partitions of Rd. Let
xn

1=[x1 , ..., xn]�Rd. Every element ?=[Aj : j] # 6 induces a partition
[Aj & xn

1 : j] of xn
1 . Let 2(xn

1 , 6) be the maximal number of distinct
partitions of xn

1 induced by elements of 6 (without regarding the order of
appearence of the individual sets) and define the partitioning number
2n(6) by

2n(6)=max[2(xn
1 , ?) : x1 , ..., xn # Rd].

Lemma 8 (Nobel (1996)). Let N # N and let 6 be a family of partitions
of Rd such that no partition of 6 consist of more than N sets. Let G be a
class of functions g: Rd � R. Then one has for each x1 , ..., xn # Rd and each
=>0

N(=, G b 6, xn
1)�2n(6)[ sup

z1 , ..., zm # x
1
n , m�n

N(=, G, zm
1 )]N.
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