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The Chung—Smirnov law of the iterated logarithm and the Finkelstein functional
law of the iterated logarithm for empirical processes are used to establish new
results on the central limit theorem, the law of the iterated logarithm, and the
strong law of large numbers for L-statistics with certain bounded and smooth
weight functions. These results are used to obtain necessary and sufficient condi-
tions for almost sure convergence and for convergence in distribution of some well-
known L-statistics and U-statistics, including Gini’s mean difference statistic. A law
of the logarithm for weighted sums of order statistics is also presented.  © 2001
Academic Press
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1. INTRODUCTION

Throughout this article, {X, X,;n>1} will denote a sequence of inde-
pendent identically distributed (i.i.d.) real random variables with common
distribution function F given by F(x)= P(X <x), x€ %, the real line. For
each positive integer n, let X;.,<X,.,< --- <X,,., be the order statistics
of X, X5, .., X,,. Let H be a real-valued measurable function defined on %.
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Linear combinations of order statistics (in short, L-statistics) are statistics
of the form

where the weights ¢; ,, 1 <i<n,n>1, are real numbers.

Much is known about the limiting behaviour of L-statistics, including
asymptotic normality properties, Berry—Esséen-type bounds for normal
approximation, Cramér-type large deviations, laws of the iterated
logarithm, and Kolmogorov-type strong laws of large numbers under quite
general conditions. See Helmers (1977), Helmers et al. (1988), Mason
(1982), Mason and Shorack (1992), Sen (1978), Shorack (1972), Stigler
(1974), van Zwet (1980), Wellner (1977a, 1977b), and, in particular, the
two books by Serfling (1980) and Shorack and Wellner (1986) and references
therein. However, these results all require H(-) to be a known function of
the form H(-)= H,(-)— H,(-) with each H, being increasing and left-con-
tinuous. Furthermore, H,(-) and H,(-) must also satisfy

|H(G()| <Myt~ (1—1)"%  0<z<]1, (L1)
for some fixed positive M, d,, and d,, where
G(t) =inf{s; F(s)>1}, 0<t<l.

Some conditions on {c¢;,;1<i<n,n>1} are also needed. One often
chooses

i .
c,-,n=J<>, I<isn, nxl,
n

where J(¢) satisfies some continuity conditions on (0, 1) as well as
()| <Myt~ 2(1—1)"%, 0<t<], (1.2)

for some fixed positive M,, b,, and b,. To obtain central limit theorems or
laws of the iterated logarithm for

¥ (3] Hx,). ez

i=1

it is also assumed that

a=max{b, +d, by+d,} <3.
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(However, it is worth noting that conditions like (1.1) and (1.2) are only
relevant when the weight function J(-) is unbounded, whereas J(-) will be
assumed to be bounded in our results below.)

The main objective of this paper is to find necessary and sufficient condi-
tions for the law of the iterated logarithm (LIL) and the central limit
theorem (CLT) for L-statistics when the weight function J(-) is bounded
and smooth. Our main result, Theorem 2.1 below, imposes no conditions
on the function H(-), except that E(|H(X)|) be finite; as noted above, other
authors have required more stringent conditions on H(-), including (1.1).
However, our results apply only to functions J(-) in a smaller class (the
class of Lipschitz functions of order one) than do earlier results, which
require only continuity conditions and (1.2). Nonetheless, our results can
be applied in situations where earlier results cannot; Theorem 3.4, which
presents limit theorems for Gini’s mean difference, is a good example.

It may be useful at this point to outline the main idea behind our
approach. Let {U, U,;n>1} represent a sequence of iid. random
variables with uniform (0, 1) distribution. Then it is well known that

{X. X,;n>1} £ {G(U). GU,):n>1},
where “=" means “equal in distribution.” It now follows that
{(X;.s1<i<nn>=1} = {G(U,-:,,);léign,n>l},

where U,

i:n>

1 <i<n, are the order statistics of U;, 1 <i<n. Note that
P(U,#U;forall 1<i<j<o)=1,

so we have that

Z J< > G(Ui.»))

i=1

= ¥ AU HGUN+ Y (5] =00 | HG(W, )

i=1 i=1

n

= Z JU) HGU)) + Y. (J(D,(U;.,))—J(U,.,) HG(U,.,))

i=1 i=1

4S8, +R,, nx=1, (1.3)

where D, is the empirical distribution function of U,, U,, ..., U,. Clearly,
classical results can be applied to S,, which is a sum of iid. random
variables. We will apply some known results for empirical processes to
determine the limiting behaviour of R,. It will be seen that the limiting
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behaviour of Y7, J(£) H(X;.,), n>1, under both the law of the iterated
logarithm and the central limit theorem, does not depend only on that of

1, JU) HG(UY) n>1.

This approach is straightforward. The empirical process is a powerful
tool which has now become a standard technique in proving limit
theorems. (See, for example, Gilat and Hill (1992), Helmers ez al. (1988),
Mason and Shorack (1992), Shorack and Wellner (1986), and the refe-
rences therein.) Our main result (Theorem 2.1) and its proof will appear in
Section 2. In Section 3, we show how this approach can be applied to
obtain necessary and sufficient conditions for either almost sure con-
vergence or convergence in distribution of some well-known L-statistics or
U-statistics.

It is very natural to consider the case of general weights ¢, ,, 1 <i<n,
n>=1, with

sup lc;n] < o0,

1<isnnz=1

and to ask about the limiting behaviour of

This question will be resolved in Section 4.

2. MAIN RESULTS

Let X be a real random variable with distribution function F(x) and U
a random variable with uniform (0, 1) distribution. Let H(-) be a real
Borel-measurable function defined on # with

E(|H(X)]) < o0. (2.1)
Let J(-) be a Lipschitz function of order one defined on [0, 1]; this is
equivalent to the existence of an almost everywhere bounded Lebesgue
derivative J'(-) of J(-). Write
w=u(F,J, H)=E(J(U) HG(U))) = E(Z)
where Z =J(U) H(G(U)),

1
Y= —Z+ﬂ—f0 (Iiyey —1) J'(1) H(G(1)) dt. (2.2)
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Then u exists and is finite and Y and Z are both well-defined random
variables under (2.1). Moreover,

%= Var(Y)=E(Y?). (2.3)

To see this, note that (2.3) can hold if and only if

E(Y)= —E <f0 Iig<y — 1) J'(1) HG(1)) dt> —0. (2.4)

Since E(l{y<y)=t, (24) follows from an application of the Fubini
theorem, subject to the existence of the integral

I= fJ' £) dt = jo H(G(1) dJ(1) = E(J'(U) H(G(U))).

But J(-) has an almost everywhere bounded Lebesgue derivative J'(-).
From this fact and the equality E(|H(X)|)=E(|H(G(U))|) < oo, it follows
that 7 exists and is finite; Clearly, 6% < oo if and only if

E(Z?) < . (2.5)
Recall that a sequence of random variables {&,; n> 1} is called bounded
in probability if
lim sup P(|¢,|=x)=0.

x—o00 n=1

The main result of this paper, which provides necessary and sufficient con-
ditions for certain L-statistics with bounded and smooth weight functions
to obey the LIL and CLT, will now be presented.

THEOREM 2.1. Let {X,X,;n>1} be a sequence of iid. random
variables. Let H(-) be a real Borel-measurable function defined on R such that
(2.1) holds, and let J(-) be a Lipschitz function of order one defined on [0, 1].
Define u and Z by (2.2). Then the following three statements are equivalent:

(i) E(Z*) < oo;

¥ 7 () H ) -
(il) lim sup —=1
n— o0 /2n loglogn
(1) HX,0)
1

Jn

< o0 a.s.; (2.6)

;n=11{ is bounded in probability.
(2.7)
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Moreover, if any of (1), (i1), or (iii) holds, then o is finite and

¥ (1) HOX ) =
lim sup (lim inf) =1 — e as (28

n—s>ow  n—o /2n loglogn

and

(2 HCX ) -

4 N0, 52), (2.9)

. . « d » e
where a? is defined by (2.3) and “—” means convergence in distribution.

Remarks. (1) From our proof, it will be clear that the almost sure
limit set of the sequence

3 (1) X ) -

i=1

/2n loglogn

is equal to the interval [ —a, g].

in=>1

(i1) The use of weight functions which are Lipschitz of order one is
restrictive, and rules out many interesting L-statistics. However, Theorem
2.1 includes the classical LIL and the classical CLT as special cases (take
J(t)=1, te[0,1], and H(x)=x, xe ), where other limit theorems for
L-statistics do not. Consider the following

ExampLE 2.1. Let p>1 and {X, X,;n>1} be a sequence of iid.
random variables with the common density function

CP
Sx)=< IxP (L xDP”

0, |x| <e,

|x[>e

where C, >0 is a constant such that [*_ f(x) dx =1, Lx =log, max{e, x},
and L,x=L(Lx), x€ A. Clearly,

EX)=0 and EX*)=—Z&.
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Choose H(x)=x and J(¢)=1. One can check that no previous result can
be used to determine the value of

Z J<;>in Z Xi:n
lim sup <=1 = lim sup

n—>oo  /2n loglogn n—>o0o  /2n loglogn

or the convergence in distribution of the sequence

Z J<:Z>th
lim sup <=L~~~
n— oo \/’;

even though the classical LIL and classical CLT, respectively, assert that
the limit superior equals (2C,/(p —1))"* almost surely and the limit dis-
tribution is N(0, 2C,/(p —1)).

(i) The following example provides a situation in which the func-
tion H(-) cannot be written as the difference of two increasing, left-con-
tinuous functions, so that previous results in the literature do not apply,
but for which our Theorem 2.1 yields a conclusion.

cn=1

ExampPLE 2.2. Let W be a standard Wiener process on #£ (ie.,
{W(2); =0} and {W(—1t);t>0} are two independent copies of a Wiener
process starting from 0), and let {X, X,;n>1} be a sequence of iid.
random variables, independent of W. For any given path of W, consider
L-statistics of the form

i
. n
As is well known, for almost every path of W, W cannot be represented in

the form W=W, —W, with W, 1 and left-continuous. Thus the almost
sure value of

Y WX~ 4,
lim sup =1

n— oo /2n loglogn

and convergence in distribution of the sequence

Y LW(X,.,)—A,
i=1 " in>1

i
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for some sequence {4,;n>1}, cannot be obtained using any law of the
iterated logarithm or central limit theorem for L-statistics established so
far. However, using Theorem 2.1 above, we have

ro

Z - W(Xi:n)_nluw
. i=1 "

lim sup

n— o /2nloglogn

= O-W a.s.

and

where

Zy = UW(G(U)), tw =Ev(Zw).
1
Vo= —~Zy +pw =] Uwey =0 WQUO) di. o3y = Eu(Y3y).

and E represents the expectation with respect to U.
(iv) A LIL for weighted sums established by Tomkins (1975, 1976)

implies that
- i
Z J <> X;

; n 1 12
lim sup ‘=1:<f J(1) dt> a.s.
n—>oo  /2n loglogn 0

for any Lipschitz function J(-) of order one defined on [0, 1] if E(X)=0
and E(X?)=1. (In fact, Li and Tomkins (1996) showed that the converse
is true if [ J(¢) dt #0.) There are similarities between this result and (2.8),
but note that the limiting values are not equal; that is,

f J2(t) dt # Var(Y),
0

where Y is defined as in (2.2).

(v) It will be clear from the proof of Theorem 2.1 that one can
replace J(£), 1<i<n, n>1 in (2.6), (2.7), (2.8), and (2.9) with J(ti:n)

b
1<i<n,nzl, foranyt,,e[0,1], 1 <i<n, satisfying max, ;. |t; ,— 5l
=0(ﬁ) as n— oo.
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(vi) An interesting open problem is to extend Theorem 2.1 to the
case where J(-) is absolutely continuous but with a Lebesgue derivative
J'(-) that may not be almost everywhere bounded. As noted by a referee,
the assumptions (2.1) and (2.5) would have to be amended, perhaps to

E(J'(U) HGU))l) <o and  E({J'(U) H(G(U))}?) < 0,

but the techniques used to prove Theorem 2.1 may also yield results in the
case where J'(-) is not almost everywhere bounded.

Proof of Theorem 2.1. As mentioned in Section 1, one may set without
loss of generality X,,=G(U,) and X;.,=G(U,.,) for 1 <i<n and n>1,
where {U,;n> 1} is a sequence of iid. uniform (0, 1) random variables
and U,.,<U,.,< --- <U,., are the order statistics of U,, U,, ..., U,. For
each n>1, let D,(t)=n""#{U,<t:1<i<n} and Q,(¢)=inf{s>0:
D,(s)=1t} for 0<t<1. Note that Q,(¢t)=U,., for (i—1)/n<t<i/n and
i=1,2,..,n Let B,(t)=n"?(0,(t)—t) denote the empirical quantile
process. Set K(t) = H(G(t)).

First, we will show that (i) and (ii) are equivalent and that (i) implies
(2.8). To begin with, suppose that E(|K(U)|) < oo and, for some ¢ >0,

|K(z+h) — K(1) = hK'(1)| < ¢ || n(h)

uniformly over ¢, he #, where n(h) |0 as || | 0. For n>1, define
A " i “ i i
T, =n"" “ VKU, )=n"" K -
et 2GR = 2 () k(e ()
7 ! 1/2
Tuz=[ 0 K(Qu () dr=[ (1) Kir+n™ 75 (1) d

;{f( . (l)dt}K<Qn<;>>, T:jol J(t) K(t) dt

Under the hypotheses of the theorem, |J(¢+ /&) — J(t)| <b || uniformly for
t,t+hel0,1], for some b>0. Hence
J(t)—J <

/ i/n i/n
n1J<’>—j J(z)dz‘gj
n (i—1)/n (i—1)/n

S|~
~__~
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so that, as n — oo,

=(1+o(1)) bn™'E(|K(U)|)

=01  as. (2.10)

Set ||/ =supo<,<; |f(2)]. Since ||B,[l <(loglogn)'?* as. for all large n, it
follows that

|K(t+n~"2B, (1)) = K(t) —n~ "B, (1) K'(1)]

log log n>1/2>

<cn~2(loglogn)?y (( ,

l l 1/2
Yy <<0g0gn> > as,
n

and hence that, as n — o0,

K”)m(f —T)—flJ(t)K’(t)Mdt—o(l) as
2loglog n "2 0 S2loglogn | (2i1.)

Now, by the Finkelstein (1971) functional law of the iterated logarithm,

. ! Ba(1)
lim sup J_rj J(1) K'(1) ——m— gy
n— oo 0 /2loglogn

— sup J_rjl JOK()d(1)dt  as,
0

DeF

where

7= {qﬁ(:):jot #(s) ds : D(0)= (1) =0 and jol $2(s) ds<1}.
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Integration by parts implies that, whenever &(-) e #,

f: J(1) K'(2) @(1) dt = [J(1) K(¢) <D(t)]é—f01 {J(1) D(1)}' K1) dt

—jl {J’(z) r #(s) ds + J(1) ¢(t)}K(t) dr
0 0

1>

_ (&), (2.12)

It now follows from (2.10), (2.11), and (2.12) that

) n 1/2 . n i 1 d
llills;}pi<2logh)yq> <n ,-; J<n> KU,.,) — L J(1) K(1) z>

=sup (F1(D)) a.s. (2.13)

DeF

The arguments used by Shorack and Wellner (1986) will now be used to
show that (2.13) remains true even if the assumptions on K(-) are relaxed.
In view of (2.1) and (2.5), it follows that, for any given ¢ >0, there exists
a function K,(-) such that, uniformly over ¢, he #, |K, (t+h)— K, (t)—
hK, (1) <c, |h| n,(h), where ¢,>0 is a constant and #,(h) |0 as |k| |0,

E(|K(U)-K,(U)])<e,  Var(Y—-Y,)<e¢, and  Var(Z-Z,)<e,

where
1
Z=JU KUY, Y= =Zotp— | gy —0 (0 K (1) dr,
0

and u,= E(Z,). Define K,(-)=K(-)—K,(-) and 2,=u—pu,. Thus, (2.13)
holds when K(-) is replaced by K,(-). By (1.3), we have

DT SUED W) ST
+ i (J(Dn(Ui:n))_J(Ui:n))Ks(Ui:n)’ n>1

Now, the Hartman—Wintner—Strassen LIL implies that

Y J(U,) K, (U,) —nu,

lim sup —=1 =./Var(Z—-Z,) as. (2.14)
n— oo /2n loglogn
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Note that

Z (J(Dn(Utn)) _J( Ui:n)) ka(Ui:n)

< max |J(D,(U,.,))—J(U,;. )l i

1<i<n =
<b<max D,(U.) — ,,,|> 3 1K)
1<i<n P
<b sup D0 —1] 3 1KUY (2.15)
0o<r<l1 i=1

So, applying the Chung—Smirnov LIL for empirical processes (see Chung
(1949) and Smirnov (1944)) and the Kolmogorov strong law of large
numbers (SLLN), we have

z (‘](Dn(Utn))_J(Utn)) ]%S(Ui:n)

lim sup —=1

n— o0 /2n loglogn

Hence, by (2.14) and (2.16), for every ¢ >0,

<(b2) E(K,(U)])  as.
(2.16)

Var(Z — Z,) + (b/2) E(IK,(U)|)

<e?+bhe  as. (2.17)

Note that

f {J/(t) f ¢(s)ds+J(t)¢(t)}K8(t)—> (@) as 0.
0 0

It is now a straightforward matter to show that (2.13) holds in general.
Moreover, it can be shown that sup,. s (@) =0, where o is defined by
(2.3). Hence, (ii) holds if and only if ¢ is finite which is equivalent to (i),
and (i) implies (2.8).

We now prove that (i) and (iii) are equivalent and (2.9) holds under (i).
Kolmogorov (1933) proved that, for every 4 >0,

lim P(/n sup |D,(1)—1|=2)=2 Y exp(—2k*}?).

n— oo 0<r<l1 k=0
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This fact, combined with the same argument used above, implies that

Z (J(Dn(Uln))_J(Utn)) K(Ui:n)
=1 ;n>1{( is bounded in probability.

Jn

Therefore, (2.7) holds if and only if

Z J(U;) K(U;) —np

Jn

which is, in turn, equivalent to (2.5). So (i) and (iii) are equivalent. Note
that, for any 6 >0,

;n>=1| is bounded in probability,

1

lim sup lim sup P | —= >0 =0
el0 p n— oop \/];
(2.18)
and, by the same argument used above, we have
Z J<l> Ke(Ui:n)_n:ue
. n
i=1 % N(0, 62). (2.19)

N

Combining (2.18) with (2.19) yields (2.9). |

3. APPLICATIONS AND EXAMPLES

In this section we show how our techniques can be applied to obtain
necessary and sufficient conditions for either almost sure convergence or
convergence in distribution of some specific L-statistics and U-statistics.

As an application of our approach, we state the following interesting
result. Its proof follows easily from the method used in (2.15) and the
Chung-Smirnov LIL for empirical processes.

THEOREM 3.1. Let {X, X,;n>1} and {U, U,;n>1} be two sequences
of ii.d. random variables such that U is uniformly distributed on (0, 1). Let
H(-) be a real Borel-measurable function defined on # and let J(-) be a
Lipschitz function of order one defined on [0, 1].
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204
(i) If there exists a real sequence {b,;n>1} such that
b, — as n— oo (3.1)
and
> IH(X))
i=1
m ———0  as, (32)
n— oo n /bn
then, for any real sequence {a,;n>1},
z J <:l> H(Xi:n) —d,
lim sup (lim inf) £=1
n—o>o  no o 2n(log logn) b,
Y. J(U) H(G(U,)) —a,
a.s. (3.3)

= lim sup (lim inf) £=1
n— o 2n(log logn) b,

(ii) If there exist sequences {b,;n>1} and {a,;n> 1} such that (3.2)
holds and

J(U) H(G(U))) —a,
1 _d) y
. (x),

INeE

1

where A(x) is a distribution function, then

i J<l> H(Xi:n)_an
=1\ < A(x).

nb,
As a corollary of Theorem 3.1, we have the following result; its proof is
left to the reader.
COROLLARY 3.2. Let H(-) and J(-) be as in Theorem 3.1. Let
Z=J(U) H(G(U)).

If
E(|H(X)|) <o,  EZ?) =,
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and Z is in the domain of attraction of the normal distribution, then there
exist sequences {a,;n>1} and {b,>0;n>1} such that

¥ (1) H)-a,

i=1
b

-4 N(O, 1), (3.5)

n

where b,, may be chosen as
b a2 2 1
n=supsc:c °E(Z I{IZI<c})>Z
and a,, may be taken as

a, =bﬁ E(ZI{|Z| <b,}).

n

Remark. 1t is interesting to note that, under the conditions of Corollary
3.2, the sequences {a,;n>1} and {b,;n>1} are determined by Z,
whereas, by contrast, the limiting behaviour in Theorem 2.1 depends on g,
which is a function of Y, where Y is defined by (2.2).

Let {X, X,;n>1} be a sequence of i.i.d. random variables. Gini’s mean
difference,

Y X=Xl

1<i<j<n

nn—1)

is a well-known U-statistic for unbiased estimation of the dispersion
parameter

0=E(|X;— X, 1);

see, e.g., Serfling (1980, p. 263) or Shorack and Wellner (1986, p. 676). It
may be represented as an L-statistic as follows:

2 Z |Xi_Xj|:l i <4’i_1 _2>Xi:n' (3-6)

n(”_1)1<i<j<n no_ n—1

Using Theorem 2.1, we can establish the following analogues of classical
SLLN, LIL, and CLT for Gini’s mean difference.

THEOREM 3.3. (i)

lirrln S:.}p nn—1)

Y Xi—X|<w a.s. (3.7)

1<i<j<n
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if and only if
E(|X]) < o0. (3.8)

In either case,

lim

Jim Ty L WX XI=EING-Xa)as o (39)

1<i<j<n

(1) For some 0,

lim sup | &
n— oop 2 loglogn

if and only if

2
nn—1)

Y Xi—X|—-0|<w as.  (3.10)

1<i<j<n

E(X?) < 0. (3.11)

In either case, 0= E(|X; — X,|) and

n 2
li lim inf X —X.|—0
nsup ( it ) 2loglogn <n(n— 1) KE‘K,‘ 1Xi= X >

=(—)o as, (3.12)

where

o0
Jzzf

— 0 — o0

| y—x]| dF(x)}2 dF(y)— 0> (3.13)

I8

(i) For some 0,

2
{ﬁ <n(n— 0 Y X=X —9>; n= 1} is bounded in probability
1<i<j<n (314)

if and only if (3.11) holds. In either case, 0 = E(| X, — X,|) and

ﬁ( 2 Y |X,.—Xj|—9>—i>N(0, a?), (3.15)

nn—1) I<izj<n
where a? is defined as in (3.13).

Remark. Shorack and Wellner (1986, p. 677) observed that (3.15) holds
under the more stringent assumption that E(|X]|**°) < oo for some J > 0.
The “if part” of Theorem 3.3(i) is covered in Helmers et al. (1988).
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Proof of Theorem 3.3. Take J(t)=4t—2,0<t<1,and H(x)=x, xeX.
Then (3.8) implies that

and

21Xl
lim =L —=0 as., (3.16)
n— oo n /bn
where b, =n/loglogn — co as n — oo. By Theorem 3.1, we have that

Z J<l> Xi:n
lim =t "

n— oo n

=0 a.s. (3.17)

Note that (3.8) also implies that

<= Y x| -0 a.s. as n— 0. (3.18)

So (3.6), (3.17), and (3.18) together imply that (3.9) holds.
We now prove that (3.7) implies (3.8). Obviously, (3.7) implies that

n

. 2
limsup 2 o1y 2

i=1

| X5 1 — Xyl <00 a.s.

Since {|X,,_;—X,,[;n>1} is a sequence of iid. random variables, it
follows that E(|X; — X,|'?) < co, which is equivalent to

E(1X, ') < 0. (3.19)



208 LI, RAO, AND TOMKINS

Thus (3.18) holds. Combining (3.6) and (3.7) with (3.18), we have that

lim sup < oo a.s. (3.20)
n— oo n
Note that (3.19) is equivalent to
Y 1Xl
lim =L—=0 as.
e n
By Theorem 3.1 and (3.20), then,
Y. J(U) GU) > (1) %
lim sup —=4 =lim sup —=L

n— oo 2n(loglogn)n®*  n—~ /2n(loglogn) n?

=0 as.,

which implies that, for all ¢ >0,
1
E(|J(U) G(U)|**~*) =J [(4t—2) G(1)|**~* dt < 0. (3.21)
0
It is easy to check that (3.21) is equivalent to

1 [e'e]
[ 1GmPerdr= [ x| dR()

0 —
=E(|X]*?~%) < 0.
In particular, we have that
E(1X]72 (L, | X)) < oo,
which is equivalent to (cf, e.g., Feller, 1946)
Y x|

lim i=1 0 a.s.

n—wn /n%loglogn
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Using Theorem 3.1 and noting (3.20) again, we have that

i J(U;) G(U))

I iz — lim
n—e /2n(log log n) n'/loglogn n—e 2nt"7

=0 a.s.,

which is equivalent to
E(lJ(U) GU)|"™") < 0
and hence
E(|X|™'") < c0.

Consequently, E(|X|%3(L,|X])"?)< oo. Repeating the above argument
yields

> 1X|
lim i=1

=1 _
n—>o p . /nfloglogn

Using Theorem 3.1 and noting (3.20) again, we have that

a.s.

n

Y. J(U) G(U) Y. J(U) G(U,)

li i=1 i

— 1
”*00\/2n(log log n) n/loglogn n— ﬁn

< 0 a.s.

which is equivalent to
E(lJ(U) G(U)]) < 0

and hence (3.8) follows. The proof of (i) is therefore complete.

A similar approach can be used to show that (3.10) and (3.14) each
imply that (3.11) holds and = E(|X,; — X,|). An application of Theorem
2.1 will then yield (ii) and (iii). [

Another important application of our approach and results relates to the
expectation of order statistics. Let 0, = E(X.;), where X|., is the minimum
value (smallest order statistic) in a sample of size k. Then an estimate of
0, based on a sample of size n is

—1
n .
T,= <k> Y, min{X; .., X},

(n, k)
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where the sum 3, ;) is taken over all subsets 1<i;j<--- <iy<n of
{1,2,..,n}.

As noted by Lee (1990, p. 65), T, can be expressed as an L-statistic as
follows:

where ¢4, ¢,, ..., Cx_, are constants depending on k only. Note that

() s o
k)" k!

and, for i=1,2, .., n,

N k—1
. k<1_l> s J=1>
(n—i)k=J n n

R/
°()

Let J(t)=(1—1)*""', 0<t<]1, and H(x)=x, xe . Using Theorems 3.1
and 2.1, we have the following results.

THEOREM 3.4. Let {X,X,;n=1} be a sequence of iid. random
variables.

(i) If there exists p>% such that

E(1X]7) < o0, (3.22)
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then, for each integer k > 1, the following three statements are equivalent:

E( |min{X1,X2, o Xpp ) < 00

limsup |T,| < o a.s.

n— oo

< 0 a.s.

In each case,
k n l k—1
lim 7,= lim — ) <1—> X,.,=0, a.s.
n— oo n—o N i1 n

(i1) Define 6,=E(X,.,). If E(|X|)<oo, then the following five
statements are equivalent:

E(1- UGN = (1—Fx)* 2 x> dFix) <

— 0

n 1/2
limsup (| ———— |T,— 0] <0 a.s.

n>w \2loglogn
lim sup <o a.s.

n \Nk—1
S
n>o0o  /2nloglogn |/ =4 n k

{n'?(T,—0,); n>1} is bounded in probability

k : AN O . . -
— (> (1—-= X;.,—— |;n=1} is bounded in probability.
ﬁ i=1 n k

In each case,

n 172
li liminf) ({ —— T,—0
1nm_’sgp(1nn11£)<2 10g10gn> (T =01

k n i k—1 0k
= lim sup (lim inf) ———————= < < > X,-:,,—>
P /2n loglogn ; k

= (i) ko, a.s.,

n'2(T,—0,) % N(0, K*02),

and
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where oz = Var(Y,) and

O

Y= —(1-0U)"'G(U)+ 2

= [ Uiy —001= 0 GO0,

Remarks. (i) 1If we replace
min{X; , .., X, }
with
max{X;, .., X, },

then, similarly,

1
— 2 max{X;, .., X}

AR
k

1

[ gy =00 =K1 =02 G0y dr
0

=<Z ik_lXi:n+d1 Zik_in:n+ +dk—1 Z Xi:n)s
| .

i=1 i=1

n
<k> (k—1)

where d,, d,, ..., d,_, are constants depending on k only. Thus, we can

derive an analogue of Theorem 3.4 for the U-statistic

1
7(2}() max{ X, , ... X}, n=k,
(&)

and the L-statistic

k n N k—1
- <l> X;. s n>l.
n;_

n

(i1) It follows from Theorem 3.1 that

k n i k—1
- X,.
n ,-; <n> nr

< 0 a.s.

(3.23)
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if and only if
E(lmax{ Xy, .., X;}|) < oco. (3.24)

provided only that (3.22) holds with p > 2/3. In either case,

lim Ek Z = E(max{ X, ... Xx}) as. (3.25)

n— oo

This generalizes Theorem 1.1 of Gilat and Hill (1992), who dealt only with
the case p=1.

ExamPLE. Let {X, X,;n>1} be a sequence of iid. random variables
with common density function

5
f(x)ZW 1{x<71}-

It is easy to check that
E(1X]) = o0

Thus, Theorem 1.1 of Gilat and Hill (1992) cannot be applied to determine

hm—Zz

noow N
However,
E(1X]**) < 0
and
E(lmax{ Xy, .., X;}|) < E(|max{ X, X,}|) <o for all k=2

Consequently, (3.23), (3.24), and (3.25) imply that, for every k=2,

lim

n— oo

k n
F Z *71X;., = E(max{X,, .., X;})

zj*:o . Skx dx

_x)(Sk/6)+1

__ ks
- 5k—6 -
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4. THE LAW OF THE LOGARITHM FOR L-STATISTICS

Let {X, X,;n>1} be a sequence of i.i.d. random variables with
EX)=0 and EX? =L

It is natural to try to extend our results to sums of the form >7_, ¢, , X;.,,
n>=1, where {c; ,; 1 <i<n,n>1} is a uniformly bounded triangular array

of real numbers. Li et al. (1995) showed that, for almost all such arrays, the
weighted sums

n
Y cinXi nx=l,
i=1

obey what they called a Law of the Logarithm, i.e.,

Z ci,nXi
0<limsup =f——<w a.s. (4.1)

n—>oo /25 logn

It follows that

n

Z ci,nXi
lim sup —=1

=
n—o  /2n loglogn

In this section, we give a version of (4.1) for L-statistics. Before we state
our result, we introduce some more notation. Let ¥ ={(i,n); 1<i<n,
n>1}. For a given probability measure v on the Borel o-field of %, let
S = F(v) denote the support of v. We will consider only those probability
measures for which & is bounded. Let P’ = v” be the product probability
measure on the Borel o-field of &~

a.s.

THEOREM 4.1 (A Law of the Logarithm for L-Statistics). Let {X, X,,;
n=1} be a sequence of iid. random variables and H(-) a real valued
measurable function defined on R such that E(H?*(X)) < co. Then, for any
given probability measure v on the Borel ag-algebra of # with bounded sup-
port &S =F(v), there exists a set Q, = S such that

P(Q,)=1
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and, for any {c; ,; (i,n)e I} €,

Z Ct',nH(Xi:n) —hy
lim sup (lim inf) =1 =(—)o as,

n—sow  n—ow /2n logn

where

pu=E(H(X) | v(dr)

<

and

0% = E(H?(X)) (L <t_L sv(ds)>2v(dt)>.

Proof. This result can be deduced using the same argument as that used
in Theorem 2.4 of Li et al. (1995). |

Remark. 1f E(H(X))=0 and 0< E(H*(X))< oo, then for almost all
choices {c¢;,;(i,n)e#} of triangular arrays of real numbers with

ipn»

SUP(; myes|Ci n| <M < 00 for some constant M >0, the L-statistics
Z Ci,nH(Xi,n)a n?h
obey the Law of the Logarithm, i.e.,

Z ci,nH(Xi:n)
0 < lim sup —=1

n— o J2nlogn

< o0 a.s.

It follows that

Ci,nH(Xi:n)
lim sup —=1 = a.s.

n— oo /2n loglogn

Thus, for almost all choices {c, ,; (i,n)€.#} of triangular arrays of real
numbers with sup; ,yc sl¢; ,| <M < oo, the LIL for L-statistics

I M=

fails.
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