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Abstract

We introduce regularized wavelet-based methods for nonlinear regression modeling when design points
are not equally spaced. A crucial issue in the model building process is a choice of tuning parameters that
control the smoothness of a fitted curve. We derive model selection criteria from an information-theoretic
and also Bayesian approaches. Monte Carlo simulations are conducted to examine the performance of the
proposed wavelet-based modeling technique.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Smoothing methods in non-parametric regression have received considerable attention, and
various methods have been proposed for function estimation including kernel-based smoothing,
splines and other basis expansions (see, for example, [8,11] and references given therein). These
methods are known to be effective when underlying functions are sufficiently smooth.

In contrast, wavelets provide useful methods for analyzing data with intrinsically local prop-
erties, such as discontinuities and sharp spikes, and have given rise to significant activity in the
field of statistics. Wavelets form an orthonormal basis and enable multiresolution analysis by
localizing a function in different phases of both time and frequency domains simultaneously,
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and thus offer some advantages over traditional Fourier expansions. Theoretical and practical
developments of their use in statistics have been made by Donoho et al. [6,7], Hall and Patil [9],
among others. These papers focused on density estimation and regression estimation with the
use of nonlinear thresholding, and demonstrated remarkable local adaptivity for large classes of
irregular functions.

It might be noticed that the vast majority of wavelet-based regression estimation has been
conducted within the setting that given data are of decimal length and have equally spaced design
points. For the case that the design points are not equally spaced, the corresponding design matrix
is no longer orthogonal, and wavelet-based decomposition/reconstruction procedure cannot be
directly applied. Several different approaches for this case of unequally spaced design points have
been made by Hall and Patil [9], Hall and Turlach [10], Antoniadis and Fan [2] and Pensky and
Vidakovic [15] among others.

The aim of the present paper is to propose linear shrinkage methods to wavelet smoothing within
the setting of unequally spaced and non-decimal design points. We consider the modification of
the irregularity of design points to be a wavelet-based density estimation, which differs from the
methods based on interpolation and averaging.

A crucial point in the model building process is the selection of several tuning parameters.
The linearity of the proposed wavelet estimator makes it possible to select smoothing parameters
by using the generalized cross-validation. We also propose nonlinear regression modeling via
regularized wavelet-based methods when the design points are not equally spaced, and then
derive model selection criteria from an information-theoretic and Bayesian viewpoints.

This paper is organized as follows. In Section 2 we describe the wavelet-based regression model
with the basic concepts of wavelets. A regularized wavelet-based method is given for nonlinear
regression modeling when design points are not equally spaced. In Section 3 we present model
selection criteria to choose smoothing parameters. Section 4 includes Monte Carlo simulations
to investigate the performance of our modeling techniques and model selection criteria. Some
concluding remarks are given in Section 5.

2. Wavelet methods

In this section, we present nonlinear regression models based on a regularized wavelet-based
method.

2.1. Wavelets

Here, we briefly describe the basic concepts of wavelets. Let �(t) and �(t), respectively, be
father and mother wavelets. Assume that �(t) is an orthonormal function with compact support
on R, which satisfies∫

�(t) dt = 1,

∫
�(t)�(t − l) dt = �0l ,

for l ∈ Z, and

�(t) =
∑
k∈Z

pk�(2t − k), (1)

where �0l is the Kronecker delta and {pk} is a finite sequence such that
∑

k∈Z pk = 2,
∑

k∈Z
pkpk+2l = 2�0l and

∑
k∈Z (−1)kp1−k = 0.
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Define the mother wavelet �(t) by

�(t) =
∑
k∈Z

(−1)kp1−k�(2t − k), (2)

where {pk} is the same sequence appearing in expression (1) for the father wavelet �(t). It follows

that � also has compact support on R, and that
∫

�(t) dt = 0. Further, if
∑

k∈Z (−1)kkvpk = 0

for 1�v�r with some integer r �1, then the moment condition
∫

tv�(t) dt = 0 is satisfied (for

1�v�r). There exist several families of wavelet bases. It remains an issue about which pair of
wavelet bases should be chosen in nonlinear regression modeling (see e.g. [14] for this issue).

According to the scale j ∈ Z and the shift k ∈ Z, define the translations of � and �, respectively,
by

�jk(t) = 2j/2�(2j t − k), �jk(t) = 2j/2�(2j t − k).

It follows that �jk(t) and �jk(t) are orthonormal, i.e.∫
�jk(t)�jm(t) dt = �km,

∫
�jk(t)�lm(t) dt = �j l�km,

for j, k, l, m ∈ Z, and
∫

�jk(t)�lm(t) dt = 0 for j � l.

By using �jk(t) and �jk(t) as basis functions, any function h ∈ L2(R) can be expressed as a
series expansion

h(t) =
∑

k

ck�j0k
(t) +

∞∑
j � j0

∑
k

cjk�jk(t), (3)

with arbitrary resolution level j0 ∈ Z. This is called the wavelet expansion of h in L2(R). Due to
the orthonormality, each coefficient in Eq. (3) is uniquely expressed by the L2-products of h and
�jk , and of h and �jk , given, respectively, by

ck =
∫

h(t) �j0k
(t) dt, cjk =

∫
h(t) �jk(t) dt.

For further details we refer Chui [4] and Daubechies [5].

2.2. Wavelet-based regression models

In the sequel, we discuss a wavelet-based regression modeling. Suppose we have L observa-
tions {(xl, tl); l = 1, . . . , L}, where x1, . . . , xL are observed values at design points t1, . . . , tL,
respectively. It is assumed that the data are generated from a regression model

xl = h(tl) + εl, l = 1, . . . , L, (4)

where the errors εl are a sequence of independent random variables with mean 0 and Var(εl) < ∞,
and h(t) = E(X | T = t ) is an unknown regression function. Then h(t) is estimated from the
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data by using some smoothing techniques. The unknown function h(t) is assumed to be included
in a class of functions spanned by a set of basis functions {�k(t)}, for which we use wavelet bases.

Without loss of generality, we rescale the points {tl; l = 1, . . . , L} to be contained in the
interval [0, 1]. In the regression model of Eq. (4), we first assume that the unknown function h(t)

may be expressed as

h(t) =
2j1∑
k=1

�k�j1k
(t),

where �j1k
(t) are the father wavelet bases with some resolution level j1 ∈ Z. It then follows

from the orthonormality of {�j1k
(t); k ∈ Z} that each coefficient is uniquely determined as

�k =
∫

h(t)�j1k
(t) dt .

2.3. Wavelet decomposition and shrinkage methods

It is known as the discrete wavelet transformation that the 2-scale relations of (1) and (2) yield
the following decomposition:

2j1∑
k=1

�k�j1k
(t) =

2j0∑
k=1

ck�j0k
(t) +

j1−1∑
j=j0

2j∑
k=1

cjk�jk(t), (5)

where j0 ∈ Z indicates the lowest resolution level.
In considering computational methods, it is often the case in wavelet-based estimates that the

design points {tl; l = 1, . . . , L} are taken to be decimal and equally spaced. For these cases,
Amato and Vuza [1] introduced the shrinkage method in high-resolution coefficients as c̃∗

jk =
c̃jk/(1+ �dj ), where c̃jk are decomposed from the initial coefficients �̃k ≡ xk for k = 1, . . . , 2J ,
� > 0 is a smoothing parameter and dj = 2(j−j0+1) is a level-dependent constant. Note that the
above shrinkage method of coefficients differs from nonlinear methods such as hard thresholding
c̃∗
jk = c̃jk �(|c̃jk| > �) and soft thresholding c̃∗

jk = sgn(c̃jk)(|c̃jk| − �) �(|c̃jk| > �), both of
which have been mainly used in wavelet-based estimates ([6,7,9] among others).

For the case that the design points are not decimal and unequally spaced, Hall and Turlach
[10] and Antoniadis and Fan [2] relaxed the restrictions by approximating the design points by
the elements of some dyadic points {l/2J ; l = 1, . . . , 2J } with 2J �L, by using the wavelet
interpolation. Hall and Patil [9] and Antoniadis and Pham [3] approached this problem instead
by assuming that the design points are independent random variables each with identical density
function w(t). The estimator given by Hall and Patil [9] is ĥ(t) = ĝ(t)/ŵ(t) in which the
density w(t) and g(t) = h(t)w(t) are estimated separately by a nonlinear wavelet estimate. This
method may, however, have practical limitations because one needs to determine the degree of
smoothness separately for w(t) and g(t), and in consequence the behavior of the estimator ĥ(t)

could be unstable.
Another approach for unequally spaced design points is to estimate the coefficients �k in (5)

based on the equation∫
h(t)�j1k

(t) dt =
∫

h(t)�j1k
(t)

w(t)
w(t) dt

= E

{
E(X | T )�j1k

(T )

w(T )

}
,
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which yields �̃k = L−1∑L
l=1 xl�j1k

(tl)/ŵ(tl). This type of empirical coefficient estimators
was introduced by Pensky and Vidakovic [15], who used the kernel density estimate
of w(t).

We propose to use the wavelet density estimate of w(t) for the above empirical coefficients. It

follows from
∫

w(t)�j1k
(t) dt = E{�j1k

(T )} that a wavelet density estimator is given by

ŵ(t) =
2j1∑
k=1

1

L

L∑
l=1

�j1k
(tl) �j1k

(t). (6)

Hence we use the estimators of wavelet coefficients given by

�̃k = 1

L

L∑
l=1

xl�j1k
(tl)

ŵ(tl)
, (7)

as the basis for a regression model with unequally spaced design points, where ŵ(t) is given by
Eq. (6). Then by extending the shrinkage method introduced by Amato and Vuza [1], we have an
estimator of h(t) in the form

ĥ�(t) =
∑

k

c̃k�j0k
(t) +

j1−1∑
j=j0

1

1 + �dj

∑
k

c̃jk�jk(t)

=
∑

k

�̂k�j1k
(t), (8)

where � = (j0, j1, �) is a set of smoothing parameters, the coefficients c̃k and c̃jk are decomposed
from the empirical coefficients proposed in Eq. (7), and �̂k are reconstructed by using the inverse
of the discrete wavelet transformation.

Let ĥ�(t) = (ĥ�(t1), . . . , ĥ�(tL))T be an L-dimensional vector, and let B be the L × 2j1 basis
matrix whose elements are given by B(lk) = �j1k

(tl). It follows that the estimator in Eq. (8) can

be written as ĥ�(t) = B�̂, and that

�̂ = W(I + � S)−1WT BT �x

= (I + � WSWT )−1BT � x, (9)

where S = diag(02j0 , dj0 12j0 , . . . , dj1−112j1−1) denotes the shrinkage matrix, and � = diag

(BBT 1L)−1 = L−1diag(ŵ(t1)
−1, . . . , ŵ(tL)−1). The matrix WT denotes the discrete wavelet

transformation, which translates the coefficients (�̃1, . . . , �̃2j1 )
T of {�j1k

(t) ; k ∈ Z} into the

coefficients of {�j0k
(t) ; k ∈ Z} and {�jk(t) ; k ∈ Z}j1−1

j=j0
in the wavelet expansion (5), and

consists of the 2-scale sequences {pk} and {(−1)kp1−k} of wavelet bases (see [17] for further
detail). It may be noted that BT �x = (�̃1, . . . , �̃2j1 )

T coincides with Eq. (7).

2.4. Regularized wavelet-based methods

We now show that the proposed estimator (8) and its vector form (9) can also be formulated as
the solution of the regularized log-likelihood function.
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Suppose that the errors εl in (4) are independently, normally distributed with mean 0 and
variance �2. Then the regression model can be expressed as

f (xl | tl ; �, �2) = 1√
2	�2

exp

{
− (xl − bT

l �)2

2�2

}
, l = 1, . . . , L,

where B = (b1, . . . , bL)T is the vector of wavelet bases and � = (�1, . . . , �2j1 )
T is the vec-

tor of the corresponding wavelet coefficients. We estimate the coefficients of wavelet bases by
maximizing the regularized log-likelihood function

��∗(�, �2) =
L∑

l=1


l log f (xl | tl ; �, �2) − L�∗

2
�T K�

= −1

2

L∑
l=1


l log(2	�2) − 1

2�2

L∑
l=1


l (xl − bT
l �)2 − L�∗

2
�T K�, (10)

where the weights 
l are the lth diagonal elements of �, which is based on the densities estimation

of the design points. Maximization of the function expressed by Eq. (10) yields

�̂ = (BT �B + L�̂2�∗K)−1BT � x, �̂2 = 1

tr(�)
(x − B�̂)T �(x − B�̂).

The estimator �̂ is equivalent to the expression of Eq. (9) upon substituting � = L�̂2�∗ and
K = WSWT , and the replacement of BT �B by the identity matrix I .

Noting that WT � is the discrete wavelet transformation that gives the vector of coefficients
in the wavelet expansion of {�j0k

(t)} and {�jk(t)}j1−1
j=j0

from �, the penalty term in Eq. (10) can

be expressed as �T WSWT � = ∑j1−1
j=j0

dj‖�∗
j‖2

2, where �∗
j denotes the vector of coefficients

corresponding to {�jk(t)} and the constant dj = 2(j−j0+1) is proportional to
∫

|�′′
jk(t)|2 dt ,

which may be considered as the degree of oscillation in �jk(t).

3. Selection of smoothing parameters

In this section, we give model selection criteria for the choice of smoothing parameters.

3.1. Generalized information criterion

It may be noted that the estimator ϑ̂ = (�̂1, . . . , �̂2j1 , �̂2
)T obtained by maximizing Eq.

(10) can be regarded as an M-estimator defined to be the solution of the implicit equations∑L
l=1 �(xil | tl ; ϑ) = 0 with

�(xl | tl ; ϑ) = �
�ϑ

{

l log f (xl | tl ; ϑ) − �∗

2
�T K�

}
, l = 1, . . . , L.

Hence, by using the result given in Konishi and Kitagawa [13, p. 889], we obtain the model
selection criterion for evaluating the statistical model f (xl | tl ; �̂, �̂2

) estimated by the regularized
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wavelet-based method,

GIC = −2
L∑

l=1

log f (xl | tl ; ϑ̂) + 2 tr{R(�)−1Q(�)},

where the (2j1 + 1) × (2j1 + 1) matrices R and Q are given by

R(�) = 1

L�̂2

⎡⎢⎢⎣BT �B + �K
1

�̂2 BT ��

1

�̂2 �T �B
1

2�̂2 tr(�)

⎤⎥⎥⎦ ,

Q(�) = 1

L�̂4

⎡⎢⎢⎢⎢⎣
(
BT ��2 − �

L
K �̂1T

L�
)

B
1

2
BT

(
�3

�̂2 − �

)
� + �(L − tr(�))

2L
K �̂

1

2
�T

(
�3

�̂2 − �

)
B

1

4�̂4 �T �41L − 1

4
tr(�)

⎤⎥⎥⎥⎥⎦ ,

(11)

where � = (
1, . . . ,
L)T , � = diag(x1 − bT
1 �̂ , . . . , xL − bT

L �̂) and K = WSWT .

3.2. Bayesian information criterion

Konishi et al. [12] extended Schwarz’s BIC [16] to the evaluation of models fitted by the
maximum penalized likelihood method. Using the result given in Konishi et al. [12, p. 30] and
taking the prior density for the unknown parameter vector ϑ to be a multivariate normal distribution
given by

	(ϑ | �) = (2	)−(p−k)/2(L�)(p−k)/2|Kp|1/2
+ exp

(
−L�

2
ϑT Kpϑ

)
,

where Kp is a p × p matrix of rank p − k and |Kp|+ denotes the product of p − k non-zero
eigenvalues of Kp, we have

GBIC = −2
L∑

l=1

log f (xl | tl ; ϑ̂) + �

�̂2 �̂T WSWT �̂

+ (2j0 + 1) log
L

2	
− (2j1 − 2j0) log

�

L�̂2 + log |R| − log |WSWT |+ ,

where R is given by (11).
We choose the optimal values of the smoothing parameters included in wavelet estimator (9)

by minimizing either GIC or GBIC.

3.3. Cross-validation and Mallow’s Cp statistic

There exist other ways of selecting the smoothing parameters such as the cross-validation in
the form

CV(�) = 1

L

L∑
l=1

{
xl − ĥ�(tl)

1 − H� (l,l)

}2

,
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where H� (l,l) are diagonal elements of the so-called smoother matrix given by H� = BW(I+
�S)−1WT BT �. By using the smoother matrix H� the generalized cross-validation is given in the
form

GCV(�) =
L∑

l=1

L{xl − ĥ�(tl)}2

{tr(I − H�)}2 .

Mallow’s Cp statistic is given as follows:

Cp(�) =
L∑

l=1

{xl − ĥ�(tl)}2 + 2�̂2tr(H�),

where �̂2 = ∑L−1
l=2 ε̃2

l /(L − 2) and ε̃l = (xl − alxl−1 + blxl+1)/(1 + a2
l + b2

l )
1/2, al =

(tl+1 − tl)/(tl+1 − tl−1) and bl = (tl − tl−1)/(tl+1 − tl−1). See, for example, Eubank [8].

4. Numerical examples

We consider two example problems to investigate the property of the proposed nonlinear
regression modeling. The first example problem is given by real data, while the second arise
from a Monte Carlo simulation.

We first consider the problem of choosing the smoothing parameters by the analysis of the
motorcycle impact data. By using our regularized wavelet procedure, we estimate the regression
function h(t) from given data, in which smoothing parameters � = (j0, j1, �) are selected by
using five different criteria CV, GCV, Cp, GIC and GBIC given in Section 3.

We used the wavelet bases of a symmlet-5 which satisfies the fifth-order moment condition. The
same resolution parameters ĵ0 = 1 and ĵ1 = 4 were chosen for all criteria, but the values of the
smoothing parameters were slightly different; CV, GCV, Cp, GIC and GBIC selected the values
�̂ × 102 = 1.215, 1.420, 1.523, .908 and 3.093, respectively. Fig. 1 shows the curve estimated by

10 20 30 40 50

-100

0

50

-50

Fig. 1. The motorcycle impact data and the curve estimated by using GBIC.
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Fig. 2. The curves with respect to the smoothing parameter � for the five criteria.
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Fig. 3. (a) Blocks is a piecewise constant function h(t) = ∑7
k=1 hkK(t − tk), where K(t) = (1 + sgn(t))/2,

{tk} = {.2, .26, .30, .46, .50, .80, .88} and {hk} = {4, −5, 3, −4, 5, −4.2, 2.1}. (b) Bumps is a sum of bumps
h(t) = ∑7

k=1 hkK((t − tk)/sk), where K(t) = (1 + |t |)−4, {tk} is the same as be used in Blocks,
hk = {4, 5, 3, 4, 5, 4.2, 2.1}, and {sk} = {01, .01, .012, .02, .02, .06, .02}. (c) Heavisine is a sinusoid function
h(t) = 4 sin(4	t) − sgn(t − .3) − sgn(.72 − t), which have the jumps at .3 and .72. (d) Doppler is a sinusoid function
h(t) = 10

√
t (1 − t) sin{2	 · 1.05/(t + .15)}, with spatially varying degree of frequency.
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Table 1
Monte Carlo results for irregular functions (1000 repetitions for each situation)

�/Rx CV GCV Cp GIC GBIC

Blocks MEAN of �̂ (×10−4) 0.528 3.057 4.080 0.348 0.536
0.05 SD of �̂ (×10−4) 0.097 2.346 2.330 0.464 0.795

ASE of ĥ (×10−1) 1.464 1.463 1.469 1.464 1.463
MEAN of �̂ (×10−4) 0.812 4.542 5.058 1.034 1.012

0.1 SD of �̂ (×10−4) 1.123 3.288 3.278 1.580 1.643
ASE of ĥ (×10−1) 4.563 4.510 4.512 4.530 4.530

Bumps MEAN of �̂ (×10−2) 2.182 2.037 2.158 1.234 1.317
0.05 SD of �̂ (×10−2) 0.634 0.498 0.529 0.259 0.210

ASE of ĥ (×10−1) 1.339 1.330 1.336 1.295 1.298
MEAN of �̂ (×10−2) 5.982 5.488 5.594 4.448 2.360

0.1 SD of �̂ (×10−2) 2.432 2.235 2.324 2.527 0.571
ASE of ĥ (×10−1) 2.487 2.469 2.472 2.463 2.445

Heavisine MEAN of �̂ (×10−3) 9.580 8.771 9.735 4.099 7.960
0.025 SD of �̂ (×10−3) 3.941 1.871 2.078 1.245 1.377

ASE of ĥ (×10−2) 2.010 1.992 1.999 1.992 1.983
MEAN of �̂ (×10−3) 23.07 26.43 27.87 14.10 17.90

0.05 SD of �̂ (×10−3) 12.090 8.689 9.513 5.342 3.924
ASE of ĥ (×10−2) 4.957 4.908 4.922 4.992 4.876

Doppler MEAN of �̂ (×10−3) 5.110 2.287 2.321 1.701 2.436
0.05 SD of �̂ (×10−3) 1.405 0.392 0.377 0.355 0.380

ASE of ĥ (×10−1) 1.396 1.345 1.344 1.341 1.346
MEAN of �̂ (×10−3) 9.135 6.135 6.209 4.095 5.741

0.1 SD of �̂ (×10−3) 3.020 1.356 1.446 1.058 1.040
ASE of ĥ (×10−1) 2.863 2.801 2.801 2.795 2.793

We fixed the resolution parameters (j0 , j1) = (4 , 6) for the function Blocks and (3 , 5) for the other functions. Sample
size L = 100 is fixed for all situations.

GBIC, while Fig. 2 shows the comparison of the curves with respect to the smoothing parameter
� for the five criteria, in which it may be noted that the vertical ranges differs for each criterion.

The second example is the analysis of the simulated data for which the true regression function
h(t) is given. We used the irregular functions “Blocks”, “Bumps”, “Heavisine” and “Doppler” in
Donoho and Johnston [6], which we had added slight modifications. Fig. 3 shows plots of these
irregular functions.

In the Monte Carlo experiment, we repeatedly simulated the data {(xl, tl) ; l = 1, . . . , 100}
using the true regression model xl = h(tl) + εi . The design points {tl ; l = 1, . . . , 100} were
generated independently from a uniform distribution on [0, 1], and the errors {εi} were generated
independently from normal distributions with the standard deviations � = 0.025Rx and 0.05Rx

for the function Heavisine, and � = 0.05Rx and 0.1Rx for the other functions, where Rx denotes
the range of each h(t) over t ∈ [0, 1].

In all trials, we estimated h(t) by the proposed method using symmlet-5 as a wavelet basis. The
most frequently selected resolution parameters were ĵ1 = 6 and ĵ0 = 4 for the function Blocks,
and ĵ1 = 5 and ĵ0 = 3 for the other functions, so we fixed these parameters and compared the
estimator ĥ(t) with respect to the smoothing parameter �̂.
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Table 1 summarizes the results for the 1000 trials of the Monte Carlo simulations for each
true function, in which the notations MEAN and SD denote the average values and standard
deviations of the smoothing parameter �̂. We calculated the average squared errors (ASE), ASE =∑100

l=1{h(tl) − ĥ(tl)}2/100 for ĥ estimated by using the criteria CV, GCV, Cp, GIC and GBIC.
The goodness of fit can be assessed by the ASE values in the table. In all situations, GCV

and Cp give the similar results. The GBIC, except for a small number of exceptions, achieves
the smallest ASE values, while the GIC tends to yield a relatively small ASE for most cases.
The comparison of SD indicates that both GIC and GBIC give stable estimates of a smoothing
parameter, especially in contrast with those of CV.

5. Concluding remarks

The main aim of the present paper is to introduce nonlinear regression modeling strategies
based on a regularized wavelet method when the design points are not equally spaced. In order to
select the optimum values of smoothing parameters, we obtain the model selection criteria GIC
and GBIC. We observe that our regularized wavelet-based nonlinear modeling strategies with
GIC and GBIC perform well for analyzing noisy data with unequally spaced design points.
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