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Note

The distribution of the ratio X/Y for all centred
elliptically symmetric distributions
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Abstract

This note describes the relationship between ratios of random variables from centred elliptically symmetric
distributions and the Cauchy distribution, with particular reference to a recent article in this journal by
Nadarajah [On the ratio X/Y from some elliptically symmetric distributions, J. Multivariate Anal. 97 (2006)
342–358].
© 2006 Elsevier Inc. All rights reserved.
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Theorem 1 (when corrected), Corollaries 1 and 5 of Nadarajah [4] all give the same result for the
distribution of the ratio Z = X/Y when E = (X, Y ) follows three particular bivariate elliptically
symmetric distributions centred at zero. This is no coincidence. What is not acknowledged in that
paper is that the result is a general one for any bivariate elliptically symmetric distribution centred
at zero, nor that it has the simple form

f (z) =
√

1 − �2

�(1 + z2 − 2�z)
(1)

(where � is the correlation) nor that this in turn is a general (relocated and rescaled) Cauchy
density �−1fC(�−1(z − �)) where � = �, � = √

1 − �2 and fC(z) = {�(1 + z2)}−1. (Figure
1(a) of [4] therefore plots Cauchy distributions.)

The link between ratios of (centred) elliptic random variables and the Cauchy distribution is
well known. In the (centred) spherically symmetric case, it is particularly simple to explain. Let
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S = (U, V ) follow such a distribution. Matching [4] by reversing the usual roles of U and V for
clarity and using polar coordinates, U = R sin � and V = R cos � where � follows a uniform
distribution so that T = U/V = tan � and hence T ∼ fC . See [2] for many further distributional
relationships arising readily from simple trigonometric considerations.

In the (centred) elliptically symmetric case, make the usual transformation E = �1/2S where
� is the bivariate correlation matrix. Write p = √

1 + � + √
1 − � and q = √

1 + � − √
1 − �.

Then a little basic algebra shows that Z = (pT + q)/(qT + p) and further standard manipula-
tions show that this function of a standard Cauchy random variable follows the general Cauchy
distribution (1). The result that Z must follow a general Cauchy distribution (but without explic-
itly specifying the constants involved) is given by Arnold and Brockett [1, Theorem 2]. Also,
given that T is standard Cauchy, result (1) follows immediately (with constants specified) from
the result on the distribution of Mobius transformations of Cauchy random variables given at (3)
of [3].

The correction to Theorem 1 of [4] mentioned at the start of this note is to add the requirement
that the location parameters � = � = 0 (alternatively, note that Z there should equal (X −
�)/(Y − �)). For nonzero � and/or �, however, the marginal distribution of Z, which depends
on the specific elliptical distribution in question, seems to eschew elegance and leads to the
rebarbative mathematics that fills much of Nadarajah’s paper.
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