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1. Introduction

In this paper we consider minimax generalized Bayes estimators of the regression coefficients in the general linear model
with homogeneous spherically symmetric errors. We start with the familiar linear regression model Y = AB + € where Y is
an N x 1 vector of observations, A is the known N x p design matrix of rank p, 8 is the p x 1 vector of unknown regression
coefficients, and € is an N x 1 vector of experimental errors. We assume that € has a spherically symmetric distribution with
adensity o “Nf(¢’e /6?), where o is an unknown scale parameter and f (-) is a nonnegative function on the nonnegative real
line, which satisfies

/oo N2 (Hdt < oo. (1.1)

0

The problem is to estimate 8. The least squares estimator of g is B = (A’A)"'A’y. In order to treat the estimation problem
from the decision-theoretic point of view, we measure the loss in estimating 8 by b with the so-called scale invariant
“predictive loss” functions

L(b, B, %) = 072(b — B)YA'A(b — B). (1.2)
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Then the risk function of an estimator b is given by R(b, 8, 6?) = E[L(b, B8, 5)]. The least squares estimatorB is minimax
with constant risk. Therefore, b is a minimax estimator of 8 if and only if R(b, B8, 0%) < R(,é, B, %) forall B and o2, and the
search for estimators better than ,B is a search for minimax estimators. It is, of course, well known that estimators dominating
B exist when p > 3. In this paper, we study generalized Bayes minimax estimators.

To simplify expressions and to make matters a bit clearer it is helpful to rotate the problem via the following
transformation, so that the matrix (A’A)~!, which is proportional to the covariance matrix of 3 for the general situation,
becomes diagonal. Let P be the p x p orthogonal matrix of eigenvectors of (A’A)~!, withd; > dy > --- > d, as eigenvalues,
it follows that

P'(AA)'P=D, PP=I,
where D = diag(dy, ..., dp). Letalso Q be an N x N orthogonal matrix such that

D—]/ZP/
(")

Next, define two random vectors X = (Xy,...,Xp) andZ = (Z;, ..., Z,) wheren = N — p by

(5o

Then (X', Z")’ has the joint density given by
o P F({(x—0) (x — 0) + 22} /o), (1.3)

where & = D~/2P’ 8. Notice also that X and Z'Z can be expressed as D~'/2P' and (y — AB)' (y — AB), respectively. Also, as
is customary, denote Z’'Z by S. We assume throughout this paper thatp > 3andn > 1.

The original problem is thus equivalent to estimation of & under the loss function L(§, 8, 6?) = (6 — ) (8§ — 8)/0%. We
will consider the problem in this equivalent canonical form.

This paper is best viewed as a companion paper to Maruyama and Strawderman [1]. In that paper a class of minimax
generalized Bayes estimators was derived for the above canonical problem when the errors were normally distributed, and
a subclass was shown to be generalized Bayes and minimax for the entire class of spherically symmetric error distributions.

In this paper we enlarge the class of generalized Bayes minimax estimators for each of above classes of distributions. To
do so we must first enlarge the class of minimax estimators to accommodate non-monotone shrinkage functions. Section 2
is based on this generalization. Section 3 develops an extended class of generalized Bayes minimax estimators for spherical
normal error distributions. To a large extend, the results therein represent extensions to the case of unknown variance, of
the results of Maruyama [2,3] in the known variance case. Section 4 extends these results to the case of general spherically
symmetric error distributions with unknown scale. A subclass of the estimators in Section 3 is shown to be generalized Bayes
and minimax for the entire class of spherical error distributions simultaneously (subject to finiteness of moments). We give
some numerical results in Section 4.1.

2. Minimaxity
In this section, we give a sufficient condition for minimaxity in the general spherically symmetric case.

Theorem 2.1. Suppose (X', Z')’ has a distribution given by (1.3). Then &4 given by

5¢={1_ S ¢(”X”2>}x (2.1)
X112 N

is minimax if

¢ (w)

w

{(n+2)p(w) —2(p — 2)} — 4¢" (W) {1 + p(w)} < 0. (2.2)

The interesting point of the theorem is that the sufficient condition for minimaxity does not depend on f. Such
distributional robustness has already been noted in the literature, but only the following tractable subset of the above result
is typically used:

Corollary 2.1. If ¢ is monotone nondecreasing and 0 < ¢(w) < 2(p — 2)/(n + 2), &y is minimax in the general spherically
symmetric case.

For completeness we give the proof. We use the version derived in Kubokawa and Srivastava [4] but earlier versions appear
in Robert [5] and elsewhere.
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Proof. Let
F(x) = %/ f(t)dt

and define

E[hX,2)] = //h(x, 20 Nf <w + Z'ZZ) dxdz
o o

EF[h(X,2)] = //h(x, 2)oNF ((x—@l*@) + i—j) dxdz,

where h(x, z) is an integrable function. Note that F (x) is not necessarily a probability density, and hence EF is not necessarily
an expectation symbol in any strict sense.
The identities corresponding to the Stein and chi-square identities for the normal distribution [6,7],

E[(X; — 0)h(X, 2)] = o*EF[(3/0X)h(X, 2)], (2.3)
E'[Sg(5)] = 0*E [ng(S) + 258/ (S)], (2.4)

where S = Z'Z, are useful in our proof.
The risk of §4 is given by

RO, 0%, 84) = E [(85 — 0) (84 — 6)/0?]

s? X112 S IX 12
— 2 f 2 f 2 (X .
=R@O,0°,X)+E |: 2 ”2¢) < S >:| 2E |: ZHX”ZX,(X, ) ( S )] . (2.5)

Let W = ||X||2/S. For the second term in (2.5), using (2.4), we have

g {z(“xllzm_F[ FW) / }
: [oznxnz s =E | (n+2)=— = —4pW)p'W)|.

For the third term in (2.5), using (2.3), we have

| Lo .<IIXH2>_] <M><||2> _ F[ pW) ||X||2{¢'(w>_¢(w> }
ZE Lz(x, 0)X; S P S =E|p— +2 m v (|

Hence we have

pW)
w

R(0,0%,84) —R(O,0% X) =EF [ {(n+2)p(W) —2(p — 2)} — 4¢' (W) (1 + p(W))

which completes the proof. O

An immediate corollary, which we believe is often more tractable, is given by dividing the left-hand side of the inequality

(2.2) by {1+ ¢ (w)}p(w)/w.

Corollary 2.2. (i) 64 given by (2.1) is minimax if
m+2)pw) —2(p-2) A @' (w) <0
1+ ¢(w) P (w)
(ii) Suppose 0 < ¢p(w) < M, and we'(w)/¢d(w) > —M,. The estimator §, given by (2.1) is minimax if

(n+2)M; —2(p —2)
14+ M,

(2.6)

+4M, < 0.

It is clear that part (ii) of the corollary above allows ¢ to be non-monotonic. Actually we show in the next section that there
exists a class of minimax generalized Bayes estimators with non-monotone ¢.
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3. An extended class of generalized Bayes minimax estimators in the normal case

In this section, we extend a class of generalized Bayes minimax estimators in Maruyama and Strawderman [1] in the
normal case.

Suppose the sampling distribution of (X, Z’)’ is normal with covariance matrix o'?I, and mean vector (', 0')’. As in
Maruyama and Strawderman [ 1], the class of hierarchical priors we consider is as follows;

01n, & ~ Np(0, n~ ' (1 = A7), n~ 7, 2 ~ A%(1 = 2)°. (3.1)
Then the marginal density of X, S, A and 7 is proportional to

n A ns np/2+n/2+e)hp/2+a
/eXp —x=01P+ —81*t - = | ————~——db
RP 2 1

- X 2 (1 —A)p/2=b
S
o exp (= (1 -+ 2) ) P2/ 0120 (1 = ), (32)
where w = ||x|?/s. Under quadratic loss, the generalized Bayes estimator for such a hierarchical priors can be expressed
as (3.2),
.~ EmO|X,S E(An|X,S w
9=<n|>=<h_<m »X=0_¢<vx_ (33)
E(mIX,S) EmIX,S) w
Whenp/2 +n/2+e+2 >0,
(o] ns
/ PP/ oy (—5(1 n )\w)) dy oc (14 Aw)~P2-n/2=e=2, (3.4)
0
hence

fOl )LP/2+G+1(-1 _ )\)b(] + w}\)—p/Z—n/Z—e—de
fol API2+0(1 — Q)D(1 + wA)—P/2—n/2—e=2(), ’

p(w) =w (35)

which is well defined fora > —p/2 — 1and b > —1.
Here is a result of Maruyama and Strawderman [1].

Theorem 3.1 (Maruyama and Strawderman [1]). Supposeb > 0,e > —p/2 —n/2 — 1and —p/2 — 1 < a < n/2 + e. Then
¢(w) is monotone increasing and approaches (p/2 + a + 1)/(n/2 + e — a) as w — oo. Hence 84 with ¢ given by (3.5) is
minimax if

- p/2+a+1 <2p—2.

~n/24+e—a” n+2

The key assumption of the theorem is b > 0 while the estimator with ¢ (w) itself is well defined when b > —1. In fact,
there is a big difference between the two cases: b > 0and —1 < b < 0. An immediately apparent difference is that
(1 — A)? is unbounded for —1 < b < 0 while it is bounded for b > 0. Technically, because of this unboundedness, the
standard integration by parts technique fails to work well when —1 < b < 0. Furthermore the shrinkage factor ¢(w) for
—1 < b < 0is not often monotonic, which means the tractable sufficient condition for minimaxity given by Corollary 2.1
is not applicable.

We will see below that proving minimaxity with b < 0 requires a different approach from that in Maruyama and
Strawderman [1]. Actually it will be done through the expression of ¢ by hypergeometric functions

(@)i(B)i il
(y) 1

where («); = « - - - (¢ +i—1).The following lemma summarizes the relationships we use. All formulas are from Abramowitz
and Stegun [8] and the number following AS in each expression below is the formula number in Abramowitz and Stegun [8].

Fla, Biyi) =1+ (3.6)
i=1

Lemma 3.1. e AS.15.3.1

1
Fla, B;y:2) = __f 1A -0 P A — ) de (3.7)

r)yry - Jo
wheny > 8 > 0.
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e AS.15.34
Flo,B:v;2) =(1—=2)""F(a, y — B; v: 2/(z — 1)). (3.8)
e AS.15.2.25
y(1—=2)F(a, B;v;2) —yF(a,B—1;y:2) +2(y —a)F(a, B; v +1;2) = 0. (3.9)
e AS.15.2.18
(y —a—PB)F(a,B;v;2) —(y —a)Fl@a—1,8;y;2) + B0 —2)F(a, B+ 1;¥;2) = 0. (3.10)
e AS.15.1.20
Iy —a—p)

;iqu(a,ﬁ;y;Z)— Iy —a) (= f) (3.11)
wheny #0,—1,-2,...andy —a — 8 > 0.

e AS.15.3.10

L -1 . oy Tat+B)

Zlgr%{ log(1 —2)} 'F(o, B;a+ B;2) = F @I @) (3.12)
e AS.15.3.3

Fla, Bivi2)=(1—2)" " PF(ly —a,y — B; v; 2). (3.13)
e AS.15.2.1

(d/d2)F(a, B; y;2) = {aB/y}Fla+ 1,8+ 1,y + 1;2). (3.14)

We first use Lemma 3.1 to re-express ¢ (w).

Lemma 3.2. Let ¢ be given by (3.5). Then provideda > —p/2 — 1,b > —1andp/2 +n/2 4+ e+ 2 > 0, ¢(w) is expressed as

1—G(®v)
P = prea o 21
p/2+atl v
where
) = F(b,p/24+n/2+e+1;p/2+a+ b+ 2;v)

T F(b+1,p/2+n/2+e+1;p/2+a+b+2;v)
Proof. Using (3.7) and (3.8), we have

r@ry—a

o) (1+2)F(a,y = B;v:2/(1+2)) (3.16)

1
/ 11— 4 tz)dt =
0
when y > B > 0and hence by (3.5)
v p/24a+1Fb+1,c;d+1;v)

= 3.17

$(w) 1—v d F(b+1,c;d;v) ( )
wherev =w/(w+ 1),c =p/2+n/2+e+2,andd = p/2 + a+ b + 2. Using (3.9) and (3.10), we have
F(b+1,c—1;d;v)

=-1

o) + (1—v)F(b+1,c;d;v)
c—1
= -1+
n/2+e—a+ (p/2+a+ 1)G()
1—-Gw
= Wui() 0 (3.18)
p/2tatl + G(v)

The next lemma gives properties of ratios of hypergeometric functions such as G, which we employ in demonstrating
minimaxity.

Lemma 3.3. Let

_ _Fb.Biysv)
KO = r o180 3.19)

for f >0and0 < b+ 1<y <b+ 1+ B.Then,
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Fig. 1. The graph of K (v).
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Fig. 2. The graph of K(v) around the global minimum point.

i) K(0)=1

i) lim,_,1 K(v) = 0.

(iii) If b = 0, K (v) is monotone decreasing.

(iv) If =1 < b < 0and y > B, K(v) is monotone decreasing.

v) If =1 < b < 0and y < B, the minimum of K (v) is a negative value and K (v) approaches 0 from below as v approaches 1.
Also infy<,<1 K(v) > b/(b+ 1).

Note: In Fig. 1, we give a graph of behavior of the function K (v) for the following cases:

(1) b=05,8=15,y = 1.75,
() b= —05,8=15,y = 1.75,
() b= —05,8=2y = 1.75,

where three cases (1), (II), and (III) correspond with (iii), (iv), and (v) of Lemma 3.3, respectively. Fig. 2 focuses attention
on the behavior of K(v) around the global minimum point in case (III). We clearly see that K (v) for the case (III) is not a
monotone function. Therefore small changes of 8 and y around 8 = y affect the behavior of K (v) dramatically.

Proof. First note that K(0) = 1 by (3.19). Next by (3.11) and (3.13),

. _ r INa+pB8—
lim(1 = 2)" Y F(a, B; y;2) = W%grﬁ)” (3.20)

wheny > 0and y — o — B < 0. Hence we have by (3.20), (3.12) and (3.11) respectively,

s g TIT B+ B —p)
o)

(1—-v)

ify—=b—p8<0

F(b, B;y;v) ~ {—log(l—v)}m ify —b—8=0 (3.21)
r(y)yr(y —b—p)

'y —b)I'(y —pB)

ifo<y—-b—-8<1
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and also by (3.20)

B ry)yrb+1+g-vy)
rb+1nrep

where f (v) =~ g(v) means lim,_, 1 f(v)/g(v) = 1. We easily see that the ratio F(b, 8; y; v)/F(b+ 1, B; y; v) = K(v) goes
to zero as v — 1 under the assumption y — b — 8 < 1. Hence part (ii) follows.

When b > 0, K(v) is decreasing from the monotone likelihood ratio property of the kernel of k(v). Hence the first
assertion of part (iii) follows.

When —1 < b < 0and y — 8 > 0, the numerator F(b, §; y; v) is always positive because it can be rewritten as
1 - v)V‘b‘ﬁF(y — b,y — B; y; v). Also the numerator F (b, 8; y; v) with —1 < b < 0 is decreasing in v and the positive
denominator F(b + 1, B; y; v) is increasing in v. Hence the second assertion of part (iii) follows.

To show part (iv), note that I"(x) > Oifx > Oand I'(y) < 0if —1 <y < 0.By assumption —1 <b <0,y < B,8 > 0,
0 <b+1 <y < b+ 1+ B.It then follows using the additional assumptions in the first and third lines of (3.21), that there
is exactly 1 negative factor in each constant term and hence each constant term is negative. Since, also, the denominator
of K(v), F(b + 1, B; y; v), is positive, it follows that K (v) approaches 0 from below as v approaches 1. Let K (v) take on its
minimum value at vg. Using the formula

(A/B) = (B'/B){A'/B' — A/B}
and (3.14), we have K(vy) = K;(vg) where
b Fb+1,8+1y+1v)
b+1Fb+2,8+ 1y +1v)
Sinceb/(b+ 1) < 0and b + 1 > 0, K;(v) is increasing in v. Therefore

Fb+1,8;y;v)~ (1 ify—b-—8<1 (3.22)

Ki(v) =

K() > K(vg) = K1(v9) > K1(0) =b/(b+ 1). (3.23)
Hence part (iv) follows. 0O

The following corollary gives the behavior of ¢ (w) and follows immediately from Lemmas 3.2 and 3.3.

Corollary 3.1. Assume thate > —p/2 —n/2 —1,—p/2—1<a<n/2+eandb > —1. Then

(i) limy_ oo p(w) = @ Wwherea = (p/2 +a+1)/(n/2 +e — a).

(ii) When b > min(n/2 + e — a — 1, 0), ¢(w) is monotone increasing.

(iii) When —1 < b < min(n/2 + e — a — 1, 0), ¢ (w) is not monotonic.
(iv) When

n/24+e—a
p/24+n/2+e+1
1—b/(b+1 2 1
0 < pw) < /b+1) (p/2+a+1) .
1/a +b/(b+1) n/24+e—a+b(p/2+n/2+e+1)

<b < min(n/2+e—a—1,0), (3.24)

Note: By analogy with the known variance case [9,10,3], it may be expected that the choice —1 < b < 0 would lead to
a non-monotone ¢. However part (ii) of the corollary shows that this need not be true in the unknown variance case, and
in fact monotonicity depends on the relationship between n, a and e. The addition of the restriction (3.24) in part (iv) is
necessitated by the fact that limy_, _1 b/(b + 1) = —o0. Hence a value of b close to —1 would cause the upper bound on ¢,
{1—-b/(b+ 1}/{1/a + b/(b+ 1)} to be negative. Thanks to the restriction, the denominator is positive.

The next result gives a lower bound for w¢’(w) /¢ (w).

Lemma 3.4.
w¢/(w) . (p/2+a+2)b (3.25)
d(w) b+1
provided thate > —p/2 —n/2 —1,—p/2 —1<a<n/2+e—aand —1 <b < min(n/2+e—a—1,0).
Proof. Note
{wA(w)/B(w)}' /{A(w)/B(w)} = 1+ wA'(w)/A(w) — wB'(w)/B(w).
Hence

w¢/(w) - fOl AP/2+a+2(1 _ )»)b(] + wk)_c_ld)» fOl )LP/2+11+1(1 _ }\)b(l + w}\)—c—ld)\‘
= C —
$(w) o APFaH1(1 — 2)b(T 4 wh)~cdA o Ap/2Fa(1 — 2)b(1 4 wi)—cdA



2162 Y. Maruyama, W.E. Strawderman / Journal of Multivariate Analysis 100 (2009) 2155-2166

where c = p/2 +n/2 + e + 2. Using (3.7) and (3.8), we have
wwm):_ﬂwg+a+2nb+uc+ud+2w)_§+a+1ﬂb+Lc+ud+nw}+L
¢ (w) d+1 F(b+1,c;d+ 1;v) d F(b+1,c;d;v)

where v = w/(w + 1) andd = p/2 + a + b + 2. Using (3.9) and (3.10),
we' (w) F(b+1,c+1;d+1;v)_F(b+1,c+1;d;v)}+]
¢ (w) F(b+1,¢c;d+ 1;v) F(b+1,c;d;v)

=c(1—v) {
p F(b,c;d+ 1;v) p F(b,c; d; v)
= (2+a+2) (Bras) Loty
(3+a+ Fo+lcdrto 2 T rertado
Note F(b,c;d+ 1; v) > F(b, c; d; v) since —1 < b < 0. For v which satisfies F(b, c; d; v) > 0, we have
weo’ (w) p/2+a+2 B p/2+a+1 -0
o(w) Fb+1,c;d+1;v) Fb+1,cdv))
because F(b + 1, ¢; d; v) > F(b+ 1, ¢; d + 1; v). For v which satisfies F(b, ¢; d + 1; v) > 0 > F(b, c; d; v), we'(w) /P (w)
is clearly nonnegative. For v which satisfies F(b, c;d + 1; v) < 0and —1 < b < min(n/2 + e — a — 1, 0), we have
/ F(b,c;d+ 1; b
w¢(w)2<g+a+2) (b.c;d+ 1 v) Z<B+a+2)—
¢ (w) 2 Fb+1,¢c;d+1;v) 2 b+1
by Lemma 3.3(iv). O

=F(b,c; d; v)(

The main result is the following.

Theorem 3.2. Supposee > —p/2 —n/2 — 1.
(i) [monotone ¢] When

Cpf2-1<a< c(p,m(n/2+e —p/2—1 (3.26)
1+c(p,n)

wherec(p,n) =2(p — 2)/(n+2) and b > min(n/2 4+ e — a — 1, 0), the generalized Bayes estimator is minimax.
(ii) [non-monotone ¢] When
c(p,m(n/2+e) —p/2 -1

—p/2—-—1<a< R (3.27)
cp,n) —a .
—1<—(n +2)4(p Tar Dt D <b < min(0,n/24+e—a—1) (3.28)

wherea = (p/2 +a+ 1)/(n/2 + e —a) = lim,_, o, ¢(w), the generalized Bayes estimator is minimax.

Proof. First we prove part (i). Monotonicity of ¢ follows from Corollary 3.1(ii) since b > min(0, n/2 4+ e —a— 1). Also using
Corollary 3.1(i) and (3.26)

_p/2+a+1 <2p—2
T n/24+e—a” “n+2

Hence minimaxity follows from Corollary 2.1 and part (i) follows.
Next we consider part (ii), the non-monotonic ¢ case. The lower bound in (3.28)

c(p,n) —«
A4p+a+D(x+1)
is negative because of (3.27). Also Corollary 3.1(i) and (3.27) implies
2 1 -2

0 < lim d)(w):oz:p/ tat <2p
w— 00 n/2+e—(1 n+2

Also since the lower bound in (3.28) satisfies

0<¢=a

= c(p, n).

—(n+1)

=c(p, n).

c(p,n) —a ( n/24+e—a ) 1 ( (n+2)c(p, n))
—(n+2) —| - > 1—
4p+a+ D(a+1) p/2+n/2+e+1 oa+1 4p+a—+1)
T a1 p+2p/24+a+1)
1 2
2 7>O7
a+1p
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it follows from Corollary 3.1(iv) that

o
< — = M;.
¢(w)_b+1+ab !

Additionally, by Lemma 3.4(iv),
¢'(w) _ (p/2+a+2)b
w >
p(w) ~ b+1

By Corollary 2.2(ii), it follows that the generalized Bayes estimator is minimax provided

= —M,.

(n+2){M; —c(p, m)}
1+M,

4 AM, <0 (3.29)

but a straightforward calculation shows that this condition is equivalent to
c(p,n) —«a
4p+a+tDe+1)

Hence the generalized Bayes estimator is minimax since (3.28) guarantees that (3.29) is satisfied. This completes the
proof. O

b=—(n+2) (3.30)

Note: A recent paper by Wells and Zhou [11] also derives generalized Bayes estimators in the normal case, some of which
have non-monotone shrinkage functions ¢ (in our notation). The generalized Bayes minimax estimators of Theorem 3.2(ii)
all have non-monotone shrinkage functions and their minimaxity cannot be shown by the methods in Wells and Zhou
[11] which rely on integration by parts. As noted earlier, the assumption that b < 0 causes the usual integration by parts
technique to fail.

The behavior of shrinkage functions of some generalized Bayes estimators and their risk performance will be given in
Section 4.

4. Generalized Bayes estimators for spherically symmetric distributions

In this section, we consider generalized Bayes minimax estimators for spherically symmetric distributions. As shown
in [10,1], the special choice b = —a — 2 in the prior given by (3.1) leads to the separated joint density of 6 and 7,
|6 ~2(P/2Fa+ D y=a=1+e This follows since

1 AlO12 p/2 X \P/? o0 ¢
/exp _ o1~ I )\“(l—k)bdk=n’”’1f 72+ exp (—= 16 ) de
A 2(1—2) 1—x A 2

x ||0||72(p/2+a+1)77*071, (4])

ifp/2 +a+ 1 > 0.Because of this simplification, we make the assumption b = —a — 2 throughout the rest of this section.
Under quadratic loss n(d — 6)'(d — 6), even in the spherically symmetric situation, the generalized Bayes estimator is given
by E(n61X, S)/E(n|X, S) and hence we have the generalized Bayes estimator with respect to our prior,

Jeo Jo~ ORI (X — 62 + S| P2 D dnde
Jeo Jo© nP2aref ({[IX — 6|2 + S} 16| 2#/2+a+Ddnde
Jo OQIX — 0112 4 SH=(tp/2Faze=1) g =2p/2+at gy [y ntp)/2=atef (y)dp
= pr (qIX = 9”2 + S})—(n+p)/2+a—e—l ||9||—2(p/2+a+1)d9 fooo n(n+p)/2_a+ef(77)d77
3 pr o{|IX — 9”2 + S})f(n+p)/2+afe71 ”9”72(p/2+a+1)d0
= pr {IX = 9”2 + S})—(n+p)/2+a—e—1||9||—2(p/2+a+1)d9

(4.2)

/ PP (o < oo, 43)
0

Note that the estimator on the right-hand side of (4.2) does not depend on f and hence is equal to the generalized Bayes
estimator in the normal case. In the normal case, as seen in Section 3, the estimator is well defined ifa > —p/2—1,b > —1
ande > —p/2 — n/2 — 2.Since a = —b — 2, the inequality —p/2 — 1 < a < —1 is also satisfied. Hereafter the estimator
on the right-hand side of (4.2) is denoted by J7 . In summary, we have the following result on §; .
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the behavior around the extreme value

Fig. 3. The graphof ¢(w) of §;, whenp =5,n=10,a=a,,ande =n/4 — 1.

Theorem 4.1. Suppose —p/2 — 1 <a < —lande > —p/2 — n/2 — 2. Then the estimator

5 pr 9({||X _ 9”2 + S})—(n+P)/2+a—e—1”9”—2(p/2+a+1)d9
a,e pr ({||X . 9”2 + 5})7(n+p)/2+a7e71 ||9||—2(p/2+a+1)d9

is generalized Bayes with respect to || || 2®/2+0+ 1 y=a=1+¢€ for the class of spherically symmetric distributions which satisfy the
moment condition (4.3).

We note that Theorem 3.2, together with the general results of Section 2, imply that the normal theory generalized Bayes
estimators in Theorem 3.2 remain minimax (but not necessarily generalized Bayes) for the entire class of spherically
symmetric distributions.

Adding the restriction b = —a — 2 in Theorem 3.2, we have the following generalized Bayes minimaxity result on the
estimator §; , for the entire class of spherically symmetric distributions.

Theorem 4.2. (i) Suppose —p/2 —n/2 —1 <e < —n/4 — 3/2. When

, 2 —p/2 -1
_p/2_1<a§c(p n)(n/2+e) —p/ (4.4)
14+c(p,n)
where c(p, n) = 2(p — 2)/(n + 2), the estimator 3 , is minimax for the entire class of spherically symmetric distributions.
(ii) Supposee > n/4 — 3/2 and n > 2. When
—p/2—1<a<a.p,n,e) (4.5)
where a.(p, n, e) is the larger solution of the equation g(a) = 0 where
g(a) = (2p + 2n + 4e + 4)a® + a{2p* + 2pn + 12p + 7n + 4(p + 3)e + 10}
x 4p* 4+ {7/2}pn + 6(p + 2)e + 7n + 13p + 10,

the estimator 8 , is minimax for the entire class of spherically symmetric distributions.
(iii) The minimax estimator given by (i) and (ii) is also generalized Bayes if (4.3) is satisfied.

Note: Since a,(p, n, ) will be shown to be between (—2, —1) in the proof, minimaxity of the estimator §; , with —2 < a <
a.(p,n,e)(—1 < —a,(p,n,e) — 2 < b < 0), which has non-monotone shrinkage factor ¢, is new compared to Maruyama
and Strawderman [1]. See Fig. 3.

Proof. First consider that the upper bound of a for minimaxity in Theorem 3.2,
c(p,mn/2+e) —p/2—1

u.(p,n,e) = T+ co.n)

A simple calculation gives
_ (p=2)(n+4e+6)
2(n+2)(1+c(p.m}’

Hence u,(p, n, e) is greater than —2 if and only ife > —n/4 — 3/2. To show (i), note that when —p/2 —n/2 — 1 < e <
—n/4 — 3/2,u,(p, n,e) < —2 and (4.4) satisfies the sufficient condition on a for minimaxity of Theorem 3.2(i). Also since
—a — 2 (=b) is nonnegative, the condition on b is also satisfied. Hence part (i) follows.

u.(p,n,e) +2
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Table 1

The relative risk.

df \ NC 0 1 2 3 4 5 10 E[IX —0]1%]
p=5n=10

5 0.51 0.66 0.82 0.90 0.93 0.95 0.98 8.44

10 0.51 0.71 0.89 0.95 0.97 0.98 0.99 6.22

20 0.51 0.74 0.91 0.96 0.98 0.99 0.99 5.52

(o] 0.51 0.75 0.93 0.97 0.98 0.99 0.99 5.00
p=10,n= 10

5 0.38 0.58 0.77 0.86 091 0.94 0.98 16.5

10 0.38 0.63 0.84 0.92 0.95 0.97 0.99 12.6

20 0.38 0.66 0.87 0.94 0.96 0.98 0.99 11.1

(o] 0.38 0.69 0.89 0.95 0.97 0.98 0.99 10.0

Next we show (ii). When e > —n/4 — 3/2, the estimator with —p/2 — 1 < a < —2 is minimax because —2 < u,(p, n, e)
and —a — 2 (= b) > 0 guarantees minimaxity by Theorem 3.2(i).

Finally we consider the case where —2 < a < —1ande > —n/4 — 3/2. The conditionb = —a — 2 < min(n/2 +e —
a — 1, 0) in Theorem 3.2(ii) is clearly satisfied under the assumption n > 2. Also a straightforward calculation shows that
the inequality

c(p,n) —«
—(n+2) <-a-2=b (4.6)
4p+a+ (e +1)
is equivalent to g(a) < 0. Note, (4.6), for a = —1, is not satisfied because
c(p,n) —« c(p,n) —«
—a—2+ (n+2)— 1 N )
4p+a+D+1) 4p(a+1)
< - 2(p—2)
dp(a+1)
< 0.
Also (4.6), for a = —2, is satisfied because
c(p,n) —« c(p,n) —«
—a—2+(1n+2) ?.m) =(n+2)L
4p+a+Da+1) 4p—D@+1)

Hence g(—2) < 0and g(—1) > 0, which guarantees that the larger solution a, (p, n, e) of the quadratic equation g(a) = 0
should be between —2 and —1. Additionally g (u.(p, n, e)) > 0 because
(p.me) =2+ (n+2) cp.m — o (p.n,e)—2 <0
—u,(p,n,e) — n = —u,(p,n,e) —2 <0,
" 4P+ u.(p,n,€) + D + 1) ’
which means that a,(p, n, e) is smaller than u,(p, n, ). Hence —2 < a < a,(p, n, e) leads to minimaxity. This completes
the proof of (ii).
Part (iii) follows from Part (i), (ii) and Theorem 4.1. O

4.1. Numerical results

In this subsection, we give some numerical results. We consider two casesp = 5,n = 10 and p = 10, n = 10. We also
consider

f() oc (14 t/y)—(l?+n+v)/2

for v = 5,10, 20, co. These choices of v correspond to multivariate-t with degrees of freedom (v = 5, 10, 20) and
multivariate normal (v = o0), respectively. As parameters of the estimator §;,, e = n/4 — 1and a = a.(p,n, e) are
taken. As pointed out in the note just below Theorem 4.2, the corresponding shrin’kage function is not monotone (see Fig. 3).
Forp = 5, 10, a.(p, n, e) is about —1.82 in both cases. The moment condition (4.3) for being generalized Bayes is clearly
satisfied when —a4-e—v/2 < —1. Hence the estimator &, is justified as generalized Bayes only if v > 9. From Theorem 4.2,

the estimator §; , should be minimax for the entire class of spherically symmetric distributions, which include multivariate-

t with v < 8.Table 1reports the minimax risk E[ | X — 6 ||%] and the relative risk which is defined by E[||§ — 8 ||>]/E[||X — 6 ||%].
In the table, NC means (scaled) non-centrality ||6 ]| /p'/%.
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