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We study a multivariate ultrastructural measurement error (MUME) model with more
than one response variable. This model is a synthesis of multivariate functional and
structural models. Three consistent estimators of regression coefficients, satisfying the
exact linear restrictions have been proposed. Their asymptotic distributions are derived
under the assumption of a non-normal measurement error and random error components.
A simulation study is carried out to investigate the small sample properties of the
estimators. The effect of departure from normality of the measurement errors on the
estimators is assessed.
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1. Introduction

In any statistical study, it is very important that the data are measured accurately. Though all efforts are made to ensure
this, yet in somepractical situations, the basic assumption of themeasurability of observations is often violated. This happens
due to various reasons. These reasons can be inaccurate responses of people or incomplete observability of some variables.
For example, variables like air pollutant levels, counts of some hormones in the body and rainfall etc. cannot be truly
observed.

Measurement error is the difference between the observed and the true value of a variable. When such an error creeps in
and is significant, the statistical procedures designed for the ‘‘no measurement error’’ case do not lead to correct and valid
decisions. For example, the least squares estimator (LSE) is the best linear unbiased estimator of the regression coefficient
if there is no measurement error. The same LSE becomes biased and inconsistent in the presence of measurement error.
Hence, the study of effect of measurement error gains importance.

When the predictors cannot be measured truly, some additional information is required for consistent estimation
of regression coefficients. When there is only one predictor, this additional information could be the knowledge of the
measurement error variance, ratio of error variances or reliability ratio etc. When there are p predictors, this information is
available in the form of a variance-covariance matrix of measurement errors, a reliability matrix or instrumental variables.
More details can be found in [1,5–7,17,19].

In some cases, there is some prior information available about the regression coefficients, e.g. the availability of exact
linear restrictions on regression coefficients. This information is obtained from past experience of the experimenter
and/or long association with the study. Utilization of this information leads to an improvement in the LSE of regression
coefficients. In the without measurement error case, a consistent LSE satisfying the exact linear restrictions is provided
in [15]. Shalabh [20] considered the consistent estimation of regression coefficients under exact linear restrictions for the
univariate ultrastructural measurement error model with more than one predictor.
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In this paper, we study the multivariate ultrastructural measurement error (MUME) multiple regression model. We
propose some consistent estimators that satisfy the exact linear restrictions on regression parameters. This model is a
synthesis of the multivariate functional and structural models (Ref. [3]). The multiple regression model is a special case
of this model. Such models arise in real life as often more than one correlated variable is observed. For example, in medical
sciences, generally more than one body characteristic of the subjects under study is recorded. These characteristics can be
cholesterol level and blood pressure etc. and the interest is to relate these to the amount of different nutrients in the daily
diet. Similarly, in botanical studies, the observed characteristics of a plant are leaf diameter, mass of root ball and diameter
of bloom etc. We wish to regress these on the amount of several minerals present in the soil and the amount of light and
water received by each plant. It is quite possible that the variables involved in the study may possess measurement errors.

The paper is structured in five sections. Section 2 specifies the MUME multiple regression model and lists additional
statistical assumptions. In Section 3, we propose three consistent estimators of regression parameters satisfying the exact
linear restrictions. These estimators are derived under the knowledge of reliabilitymatrix. Section 4 includes the asymptotic
distribution of the suggested estimators. In Section 5, Monte-Carlo simulations are carried out to study the finite sample
properties of the estimators. The effect on the properties of the proposed estimators is assessed in case of departure from
normality of the measurement errors. Appendix provides few definitions and the detailed derivations of theoretical results.

2. Model specifications

The multivariate regression model (without measurement error) is specified as

Zn×q = Dn×pBp×q + En×q, (2.1)

where Z,D, B and E are matrices of dependent variables, independent predictors, regression coefficients and equation error
terms respectively. For i, k = 1, 2, . . . , q; j = 1, 2, . . . , n, we write

Z =

Z(1), Z(2), . . . , Z(q)


where Z(i) = [z1i, z2i, . . . , zni]′ ;

D =

D(1),D(2), . . . ,D(n)

′ with D(j) =

dj1, dj2, . . . , djp

′
;

B =

B(1), B(2), . . . , B(q)


with B(k) =


β1k, β2k, . . . , βpk

′
;

E =

E(1), E(2), . . . , E(q)


with E(i) = [ϵ1i, ϵ2i, . . . , ϵni]′ .

Let Σo be a matrix with (i, k)th element σϵik = cov

ϵji, ϵjk


and diagonal elements σ 2

ϵi = var

ϵji


for j = 1, 2, . . . , n

(Ref. [22]). Then ΣE = [In ⊗Σo] denotes the variance-covariance matrix of E. This indicates that q observations on the jth
trial have variance-covariance matrixΣo but observations from different trials are uncorrelated. For observable matrices Z
and D, the system of equations given by (2.1) can be estimated consistently (Ref. [13]).

We assume that Z is observable but D is unobservable and can be observed only through X with additional measurement
error∆ as

Xn×p = Dn×p +∆n×p, (2.2)

where X =

X(1), X(2), . . . , X(n)

′ with X(j) =

xj1, xj2, . . . , xjp

′;

∆ =

∆(1),∆(2), . . . ,∆(n)

′ with∆(j) =

δj1, δj2, . . . , δjp

′ for j = 1, 2, . . . , n.

When Z is also measured with error, then without loss of generality, this additional measurement error can be combined
with matrix E.

Let

Dn×p = Mn×p + Ψn×p, (2.3)

where M =

M(1),M(2), . . . ,M(n)

′ with M(j) =

Mj1,Mj2, . . . ,Mjp

′ is a matrix of fixed components and Ψ =

Ψ(1),

Ψ(2), . . . ,Ψ(n)
′
with Ψ(j) =


ψj1, ψj2, . . . , ψjp

′ is a matrix of random components.
The structural form of the measurement error model arises when all rows of M are identical. In this case, rows of X will

be independent and identically distributed with some multivariate distribution. For a null matrix Ψ , the matrix X is fixed
but measured with error. This case specifies a functional measurement error model. When both Ψ and∆ are null matrices,
we get the specifications of a classical regression model.

For knownmatrices R1, R2 and θ , it is supposed that some prior information is available regarding B in the form of linear
restrictions expressed as

(R1)r1×p Bp×q (R2)q×r2 = θr1×r2 . (2.4)

R1 and R2 respectively impose exact linear restrictions on the parameters of individual equations and across equations. This
information can be available from past experience of the experimenter with similar studies or studies conducted in the past
and/or long association with the study. An example of exact linear restrictions is the Cobb–Douglas production function in
economics with the condition of constant returns to scale. This condition gives the sum of regression coefficients as unity.
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The knowledge of ratios of dependent variables or expressing some dependent variables as a linear combination of others
can be incorporated using R2. This prior information is available from the application of reduced rank regression methods
in previous studies featuring the same dependent variables (Ref. [16]).

Eqs. (2.1)–(2.4) specify themultivariate ultrastructuralmeasurement error (MUME)multiple regressionmodelwith exact
linear restrictions on the coefficient matrix B. No distributional assumption is imposed on the measurement error and the
random error components except the finiteness of the first four moments of their distributions.

Let γ1c and γ2c be the Pearson’s coefficient of skewness and kurtosis of a random variable C . For i = 1, 2, . . . , q and
j = 1, 2, . . . , n, the following assumptions are made:

1. Elements of vector E(i) = [ϵ1i, ϵ2i, . . . , ϵni]′ are independent with mean 0, variance σ 2
ϵi, third moment γ1ϵiσ 3

ϵi and fourth
moment (γ2ϵi + 3)σ 4

ϵi;
2. δji are independent and identically distributed random variables with mean 0, variance σ 2

δ , third moment γ1δσ 3
δ and

fourth moment (γ2δ + 3)σ 4
δ ;

3. ψji are independent and identically distributed random variables with mean 0, variance σ 2
ψ , third moment γ1ψσ 3

ψ and
fourth moment (γ2ψ + 3)σ 4

ψ ;
4. ∆,Ψ and E are mutually independent;
5. M(n) → σM as n → ∞.

Assumption 5 implies that

lim
n→∞

n−1M ′M = lim
n→∞

n−1
n−

j=1

M(j)M ′

(j) = σMσ
′

M = finite;

lim
n→∞

n−1M ′an = lim
n→∞

n−1
n−

j=1

M(j) = σM = finite,

where an is an (n × 1) unit vector. In the long run, the possibility of any trend in the observations is avoided by using
assumption 5 (Refs. [17,18]).

3. Estimation of parameters

It is a well known fact that when predictors are measured with error, we need some prior information for a consistent
estimation of parameters (Ref. [5]). Gleser [6] proposed a consistent estimator of regression coefficients using the reliability
matrix associated with predictors.

ForΣX = [n−1M ′M + σ 2
ψ Ip + σ 2

δ Ip] andΣD = [n−1M ′M + σ 2
ψ Ip], it can be shown that

limΣX = [σMσ
′

M + σ 2
ψ Ip + σ 2

δ Ip] = Σ (say) (3.1)

and

limΣD =

σMσ

′

M + σ 2
ψ Ip


= Σ − σ 2

δ Ip, (3.2)

using assumption 5 and Lemma A.1. The reliability matrix K = Σ−1

Σ − σ 2

δ Ip

is a generalization of the reliability ratio

used in psychometric studies (Refs. [1,5]). A consistent estimator of K can be utilized to construct consistent estimators of
regression coefficients. Gleser [6] suggested a consistent estimator of B asB1 = K−1

X
B, (3.3)

where KX = Σ−1
X ΣD is a consistent estimator of K andB = (X ′X)−1(X ′Z) is the LSE of B.

Since

p limB1 = B, (3.4)

hence the estimatorB1 is consistent. But it does not satisfy the exact linear restrictions given by (2.4).
In the following discussion, we propose three consistent restricted estimators of B using (3.3).

3.1. First proposed consistent estimator of B

In the without measurement error case, D is observable. Hence a restricted estimator of B is obtained by minimizing

G = tr

(Z − DB)′ (Z − DB)


, (3.5)

with respect to B under (2.4) (Ref. [10]). Our aim is to derive a restricted estimator in the measurement error case. Since D
is unobservable, we observe X = D +∆with additional measurement error∆. Minimizing

G1 = tr

(Z − XB)′ (Z − XB)


, (3.6)
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under (2.4) leads to the following estimatorBr = B + (X ′X)−1R′

1


R1(X ′X)−1R′

1

−1 
θ − R1BR2


(R′

2R2)
−1R′

2. (3.7)

Using assumptions 1–5 and Lemma A.1, we observe that

p limBr ≠ B. (3.8)

Hence we have to search for another restricted estimator which is consistent as well. For this purpose, we define

G2 = G1 − tr

B′ (nΣX )


Ip − KX


B

. (3.9)

The motivation for defining G2 emanates from the following conditional expectation

E {G1|Z,D} = E

tr


((Z − DB)−1B)′ ((Z − DB)−1B)


|Z,D


= G + tr


B′


nσ 2

δ Ip

B


(using assumption 2)

= G + tr

B′ (nΣX )


Ip − KX


B

. (3.10)

The last equality follows, sinceΣX

Ip − KX


= ΣX


Ip −Σ−1

X ΣD


= ΣX −ΣD = σ 2
δ Ip.

Replacing the unknownΣX in G2, and using (3.1), (3.9) and Lemma A.1(vi),G2 = G1 − tr

B′


X ′X

 
Ip − KX


B

. (3.11)

In order to obtain the restricted estimator, we use the method of Lagrangian multipliers and minimize

G3 = G2 − 2λ′

1 (θ − R1BR2) λ2, (3.12)

where λ1 and λ2 are vectors of Lagrangian multipliers of order (r1 × 1) and (r2 × 1). Solving the equations

∂G3

∂B
= X ′XKXB − X ′Z − R′

1λ1λ
′

2R
′

2 = 0; (3.13)

∂G3

∂λ1
= (θ − R1BR2) λ2 = 0; (3.14)

∂G3

∂λ2
= (θ − R1BR2)

′ λ1 = 0, (3.15)

we obtain the estimatorB2 = B1 + K−1
X (X ′X)−1R′

1


R1K−1

X (X ′X)−1R′

1

−1 
θ − R1B1R2


(R′

2R2)
−1R′

2. (3.16)

Using (2.4), (3.3) and (3.4), it is observed that p limB2 = B and R1B2R2 = θ . Hence B2 is a consistent estimator satisfying
the linear restrictions (2.4).

Remark 3.1. LetW =

X ′X


KX be the weight matrix. Then minimization of the weighted function

GW = tr
B1 − B

′
W

B1 − B


(3.17)

with respect to B and under the restrictions (2.4), gives the resulting estimator asB2.

This observation leads to the proposal of two more restricted estimators of B.

3.2. Second proposed consistent estimator of B

Let the weight matrix be W = (X ′X). Another restricted estimator of B is obtained by minimizing tr
B1 − B

′ 
X ′X


B1 − B


with respect to B when R1BR2 = θ . Using the Lagrangian multiplier method, we equate to zero, the first order

derivatives of

tr
B1 − B

′ 
X ′X

 B1 − B


− 2λ′

1 (θ − R1BR2) λ2, (3.18)

with respect to B, λ1 and λ2. This results in the estimatorB3 = B1 + (X ′X)−1R′

1


R1(X ′X)−1R′

1

−1 
θ − R1B1R2


(R′

2R2)
−1R′

2. (3.19)

Consistency of the estimatorB3 is implied by (3.4) and assumptions 1–5. This consistent estimator also satisfies (2.4), since
R1B3R2 = θ .
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3.3. Third proposed consistent estimator of B

We take the weight matrix W = Ip in (3.17). Minimizing tr
B1 − B

′ B1 − B


with respect to B under (2.4), the
proposed estimator is found to be

B4 = B1 + R′

1


R1R′

1

−1 
θ − R1B1R2


(R′

2R2)
−1R′

2. (3.20)

Using (2.4) and (3.4), this estimator is found to be consistent and R1B4R2 = θ .

4. Large sample properties of estimators

The derivation of the exact distributions of estimators Bj, j = 1, 2, 3, 4 is difficult. Even if obtained, the complexity
of the expressions makes it very difficult to draw inferences. Hence in the following theorem, we derive the large sample
distributions for these estimators.

Theorem 4.1.

n

1
2
Bj − B


, j = 1, 2, 3, 4 have an asymptotic Matrix Normal distribution that is

n
1
2
Bj − B

 d
−→ MNp,q


Op×q, Aj


Λqp×qp


A′

j


. (4.1)

Op×q is the mean matrix with all elements zero. The matrix Λ is such that when it is partitioned into square matrices of order
(q × q), the (s, t)th partitioned matrix for s, t = 1, . . . , p is given by

Λst =

σ 2
δ + σ 2

ψ

 
tr


ese′

t

 
Σo + σ 2

δ B
′KB


+ B′Kete′

sσMσ
′

MKB


+ σ 2
δ B

′ete′

s


σ 2
ψK − σ 2

δ K

B

+ e′

tσMσ
′

Mes

Σo + σ 2

δ B
′K 2B + σ 2

ψB
′K

2
B


+ N (γ ) . (4.2)

In the above matrix,

es : a (p × 1) vector with the sth element as one and all other elements are zero;
N (γ ) : function of coefficients of skewness and kurtosis as given in Appendix;

A1 =

(ΣK)−1

⊗ Iq

;

A2 = A1 −


(ΣK)−1 R′

1


R1 (ΣK)−1 R′

1

−1
R1 (ΣK)−1


⊗


R2


R′

2R2
−1 R′

2


;

A3 = A1 −


Σ−1R′

1


R1Σ

−1R′

1

−1
R1 (ΣK)−1


⊗


R2


R′

2R2
−1 R′

2


;

A4 = A1 −


R′

1


R1R′

1

−1 R1 (ΣK)−1


⊗


R2


R′

2R2
−1 R′

2


.

The proof is given in the Appendix.

From (4.1), it is clear that all the estimators are asymptotically unbiased. This holds as asymptotic mean of
n

1
2
Bj − B


, j = 1, 2, 3, 4 is a matrix with all elements zero. From (4.2), we observe that the deviation from normality

of the random error term ϵji does not affect the asymptotic behavior of the estimators. This further indicates that the non-
normality of elements of the measurement error matrix ∆ and the random component matrix Ψ of true predictors affect
the asymptotic variance-covariance matrix of estimators. The function N (γ ) suggests that the non-normality inflates the
variance of estimators.When elements of∆ andΨ are normally distributed, the functionN (γ ) vanishes from the expression
of the asymptotic variance-covariance matrix.

The next section discusses the small sample properties of the estimators through a simulation study.

5. Simulation study

Large sample theory tells about the behavior of the estimators’ distributions only in the central part. So the overall
distributions are studied for finite samples using Monte-Carlo simulations. We use MATLAB for simulation purposes.
To assess the effect of departure from normality of measurement error and random error component, the distributions
considered are

I. Normal Distribution (with no skewness and kurtosis);
II. Central t-Distribution (with zero skewness and non-zero kurtosis);
III. Gamma Distribution (with non-zero skewness and kurtosis).
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(a) Normal-Dist. (b) t-Dist. (c) Gamma-Dist.

Fig. 1. MAB of all estimators.

The elements of matrices ∆ and Ψ are randomly generated from the univariate versions of the above distributions. For
simulations, we consider a system where the variance-covariance matrix of the random disturbance matrix E is such that
σϵik = ρσ 2

ϵ and σ 2
ϵi = σ 2

ϵ , i and k varies from 1 to q. ρ is the common correlation coefficient among the columns of E.
The elements of matrix E are generated using Multivariate Normal, Multivariate t and Multivariate Gamma distributions to
incorporate the appropriate correlation among components (Ref. [9]).

Using definition (A.3), we define the mean bias matrix (MBM) and the mean square error matrix (MSEM) respectively as

MBM
B = E

B − B


and

MSEM
B = E


vec

B − B
′

×


vec

B − B
′
′


.

Simulations are performed for various sample sizes to compute the estimatorsBj, j = 1, 2, 3, 4 for different combinations
of (ρ, σ 2

ϵ , σ
2
ψ , σ

2
δ ). These are specified as (0.8, 0.5, 0.5, 0.5), (0.8, 0.5, 0.5, 1.0), (0.8, 0.5, 1.0, 0.5), (0.8, 0.5, 1.0, 1.0), (0.8, 1.0,

0.5, 0.5), (0.8, 1.0, 0.5, 1.0), (0.8, 1.0, 1.0, 0.5), (0.8, 1.0, 1.0, 1.0).
The matrices R1, R2, θ and B are fixed a priori as

B =

2.4 12.4 −1.9
1.3 −5.3 6.5
1.9 7.5 −1.3


; R1 =

[
0.3 0.5 0.8
0.5 0.7 0.8

]
; R2 =

1.0 0.3
1.0 0.4
0.5 0.4


; θ =

[
10.78 4.35
13.40 5.51

]
.

The random variables following the considered distributions have been scaled suitably to have mean zero and variances
specified in different combinations. These distributions differ only with respect to skewness and kurtosis. The experiment is
run 10,000 times for each combination and MBM and MSEM are computed empirically forBj, j = 1, 2, 3 and 4. To compare

the MBM of estimators, we compute the Frobenius norm of MBM defined as ‖MBM‖F =


tr


MBM′

× MBM

. This is

called the mean absolute bias (MAB). Similarly the MSEMs of estimators are compared using trace of the MSEM denoted by
tr(MSEM).

For Normal, t and Gamma distribution, Fig. 1 shows the plots of MAB of all estimators for various sample sizes and
ρ, σ 2

ϵ , σ
2
ψ , σ

2
δ


= (0.8, 0.5, 0.5, 1.0).

Looking at Fig. 1, it is observed that MAB fluctuates a lot for different sample sizes and may not lead to clear conclusions.
Hence instead of mean bias, we prefer to use the concept of median bias. The median bias matrix (MedBM) and median
square error matrix (MedSEM) are defined as

MedBM
B =


median

B − B


and

MedSEM
B = median


vec

B − B
′

×


vec

B − B
′
′


.

The median absolute bias (MedAB) is the Frobenius norm of MedBM. The simulations results for MedAB and tr(MedSEM),
of all estimators for different sample sizes, distributions and parametric combinations are displayed in Tables 1–8.

Tables 1 and 2 lead to the conclusion that the bias and variance of estimators increase as themeasurement error variance
σ 2
δ increases. Similarly, a comparison of Tables 1 and 3 reveals that the bias and variances of estimators decrease as the

variance of true explanatory variables increases.
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Table 1
MedAB and tr(MedSEM) of estimators for


ρ, σ 2

ϵ , σ
2
ψ , σ

2
δ


= (0.8, 0.5, 0.5, 0.5).

n = 15 n = 100B1 B2 B3 B4 B1 B2 B3 B4

Normal MedAB 0.2258 0.1752 0.1757 0.2199 0.0341 0.0282 0.0283 0.0371
tr(MedSEM) 4.9215 2.7934 2.7964 3.0420 0.5469 0.3467 0.3475 0.3589

t MedAB 0.3001 0.2346 0.2330 0.2953 0.0667 0.0535 0.0545 0.0653
tr(MedSEM) 5.0825 2.9088 2.9125 3.1289 0.6017 0.3780 0.3781 0.3918

Gamma MedAB 0.2950 0.2477 0.2440 0.2962 0.0522 0.0413 0.0412 0.0489
tr(MedSEM) 5.1615 2.9686 2.9716 3.1850 0.5773 0.3742 0.3744 0.3780

Table 2
MedAB and tr(MedSEM) of estimators for


ρ, σ 2

ϵ , σ
2
ψ , σ

2
δ


= (0.8, 0.5, 0.5, 1.0).

n = 15 n = 100B1 B2 B3 B4 B1 B2 B3 B4

Normal MedAB 0.4315 0.3494 0.3476 0.4255 0.0751 0.0660 0.0688 0.0810
tr(MedSEM) 10.5905 5.7986 5.8392 6.4087 1.1040 0.6588 0.6646 0.6883

t MedAB 0.5012 0.4112 0.4126 0.5012 0.1131 0.0995 0.0998 0.1122
tr(MedSEM) 11.6394 6.3656 6.4243 7.0478 1.2760 0.7928 0.7957 0.8201

Gamma MedAB 0.5362 0.4559 0.4570 0.5300 0.0926 0.0725 0.0719 0.0816
tr(MedSEM) 11.5267 6.4006 6.3943 6.9241 1.2716 0.8015 0.8024 0.8099

Table 3
MedAB and tr(MedSEM) of estimators for


ρ, σ 2

ϵ , σ
2
ψ , σ

2
δ


= (0.8, 0.5, 1.0, 0.5).

n = 15 n = 100B1 B2 B3 B4 B1 B2 B3 B4

Normal MedAB 0.1695 0.1463 0.1456 0.1717 0.0322 0.0173 0.0179 0.0258
tr(MedSEM) 4.0290 2.3501 2.3504 2.5303 0.4745 0.3067 0.3060 0.3137

t MedAB 0.2462 0.1960 0.1967 0.2307 0.0473 0.0378 0.0382 0.0447
tr(MedSEM) 4.0866 2.4043 2.4090 2.6061 0.5103 0.3278 0.3284 0.3357

Gamma MedAB 0.2004 0.1427 0.1436 0.1834 0.0266 0.0147 0.0152 0.0225
tr(MedSEM) 4.1269 2.4700 2.4701 2.6496 0.5011 0.3240 0.3235 0.3286

Table 4
MedAB and tr(MedSEM) of estimators for


ρ, σ 2

ϵ , σ
2
ψ , σ

2
δ


= (0.8, 0.5, 1.0, 1.0).

n = 15 n = 100B1 B2 B3 B4 B1 B2 B3 B4

Normal MedAB 0.3013 0.2253 0.2241 0.2783 0.0607 0.0382 0.0395 0.0522
tr(MedSEM) 8.5831 4.8597 4.9021 5.3184 0.9417 0.5954 0.5952 0.6095

t MedAB 0.4307 0.3379 0.3400 0.4163 0.0794 0.0701 0.0711 0.0785
tr(MedSEM) 9.2685 5.2174 5.2455 5.7161 1.0759 0.6801 0.6828 0.7022

Gamma MedAB 0.4266 0.3479 0.3404 0.4058 0.0755 0.0529 0.0536 0.0630
tr(MedSEM) 9.0768 5.2846 5.2878 5.6606 1.0473 0.6711 0.6703 0.6785

We also perform a graphical analysis of simulation results to study the properties of estimators in depth. Only a few
graphs are presented here. Fig. 2 shows the frequency curves of bias in the elements of different estimators. The results are
for


ρ, σ 2

ϵ , σ
2
ψ , σ

2
δ


= (0.8, 0.5, 0.5, 1.0)when elements of E,Ψ and∆ are normally distributed.

In Fig. 2, the frequency curves are more peaked and concentrated around zero for n = 100 as compared to n = 15 for all
elements of different estimators. Hence it can be concluded that estimators become unbiased and consistent as the sample
size increases.

The tr(MedSEM) and MedAB of all estimators against the sample size are plotted in Figs. 3 and 4. In these figures,
ρ, σ 2

ϵ , σ
2
ψ , σ

2
δ


= (0.8, 0.5, 0.5, 1.0) and elements of E,Ψ and ∆ are (a) normally distributed, (b) t distributed and (c)

gamma distributed.
Figs. 3 and 4 show that for all estimators, tr(MedSEM) andMedAB gradually decrease to zero as the sample size increases.

This validates the theoretical findings that the estimators are asymptotically consistent and unbiased.



K. Jain et al. / Journal of Multivariate Analysis 102 (2011) 264–280 271

(a)B1 . (b)B2 .

(c)B3 . (d)B4 .

Fig. 2. Frequency curves of bias for different estimators.

Table 5
MedAB and tr(MedSEM) of estimators for


ρ, σ 2

ϵ , σ
2
ψ , σ

2
δ


= (0.8, 1.0, 0.5, 0.5).

n = 15 n = 100B1 B2 B3 B4 B1 B2 B3 B4

Normal MedAB 0.2500 0.1953 0.1970 0.2456 0.0401 0.0334 0.0321 0.0401
tr(MedSEM) 4.8627 2.7922 2.8024 3.0469 0.5430 0.3429 0.3439 0.3564

t MedAB 0.3285 0.2523 0.2562 0.3143 0.0525 0.0487 0.0493 0.0556
tr(MedSEM) 5.1624 2.9335 2.9487 3.2262 0.6128 0.3856 0.3871 0.3992

Gamma MedAB 0.3279 0.2582 0.2604 0.3176 0.0606 0.0506 0.0519 0.0635
tr(MedSEM) 5.2223 3.0127 3.0147 3.2321 0.6077 0.3832 0.3824 0.3861
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Table 6
MedAB and tr(MedSEM) of estimators for


ρ, σ 2

ϵ , σ
2
ψ , σ

2
δ


= (0.8, 1.0, 0.5, 1.0).

n = 15 n = 100B1 B2 B3 B4 B1 B2 B3 B4

Normal MedAB 0.4420 0.3429 0.3429 0.4220 0.0725 0.0577 0.0603 0.0749
tr(MedSEM) 10.7463 5.9002 5.9588 6.5587 1.0766 0.6724 0.6745 0.6990

t MedAB 0.5879 0.4724 0.4689 0.5811 0.1104 0.0887 0.0893 0.1067
tr(MedSEM) 12.0278 6.5083 6.5860 7.2060 1.2845 0.7838 0.7887 0.8131

Gamma MedAB 0.5337 0.4527 0.4534 0.5222 0.1147 0.0986 0.0974 0.1111
tr(MedSEM) 11.4446 6.3605 6.3712 6.8856 1.2748 0.8114 0.8099 0.8225

Table 7
MedAB and tr(MedSEM) of estimators for


ρ, σ 2

ϵ , σ
2
ψ , σ

2
δ


= (0.8, 1.0, 1.0, 0.5).

n = 15 n = 100B1 B2 B3 B4 B1 B2 B3 B4

Normal MedAB 0.1838 0.1317 0.1272 0.1729 0.0194 0.0136 0.0137 0.0179
tr(MedSEM) 4.0306 2.3411 2.3492 2.5595 0.4712 0.3011 0.3016 0.3101

t MedAB 0.2454 0.1974 0.1967 0.2428 0.0666 0.0528 0.0534 0.0616
tr(MedSEM) 4.1819 2.4050 2.4135 2.5953 0.5197 0.3319 0.3328 0.3399

Gamma MedAB 0.2372 0.1924 0.1931 0.2343 0.0507 0.0429 0.0437 0.0471
tr(MedSEM) 4.1186 2.4061 2.4023 2.5687 0.5155 0.3351 0.3347 0.3388

Table 8
MedAB and tr(MedSEM) of estimators for


ρ, σ 2

ϵ , σ
2
ψ , σ

2
δ


= (0.8, 1.0, 1.0, 1.0).

n = 15 n = 100B1 B2 B3 B4 B1 B2 B3 B4

Normal MedAB 0.3142 0.2507 0.2472 0.3016 0.0432 0.0373 0.0386 0.0475
tr(MedSEM) 8.2648 4.7693 4.7894 5.1759 0.9572 0.6040 0.6051 0.6214

t MedAB 0.4552 0.3600 0.3612 0.4499 0.0850 0.0616 0.0635 0.0750
tr(MedSEM) 9.1887 5.1926 5.1990 5.6467 1.0582 0.6811 0.6829 0.6954

Gamma MedAB 0.4370 0.3536 0.3525 0.4266 0.0495 0.0391 0.0395 0.0521
tr(MedSEM) 9.0793 5.2467 5.2428 5.6679 1.0636 0.6746 0.6740 0.6876

(a) Normal-Dist. (b) t-Dist. (c) Gamma-Dist.

Fig. 3. tr(MedSEM) of all estimators.

From Tables 1–8 and Figs. 3 and 4, it is concluded that tr(MedSEM) and MedAB for restricted estimators are less than
that for unrestricted estimator for all distributions and sample sizes. This means that use of prior information improves the
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(a) Normal-Dist. (b) t-Dist. (c) Gamma-Dist.

Fig. 4. MedAB of all estimators.

(a)B2 . (b)B3 . (c)B4 .

Fig. 5. tr(MedSEM) of estimators for different distributions.

estimators in terms of the variance-covariance matrix and bias. Since

tr

MedSEM

B2


∼= tr

MedSEM

B3

< tr


MedSEM

B4

, (5.1)

and

MedAB
B2


∼= MedAB

B3

< MedAB

B4

, (5.2)

hence weighted restricted estimators B̂2 and B̂3 are equivalent in terms of variance-covariance matrix and bias but both
dominate the unweighted restricted estimator B̂4. This happens for small as well as large sample sizes. The same ordering
is observed with respect to tr(MedSEM) and MedAB for all parametric combinations.

To assess the effect of non-normality of random error component and measurement error, we plot tr(MedSEM)
and MedAB of estimators for Normal, t and Gamma distributions in Figs. 5 and 6. This is done for


ρ, σ 2

ϵ , σ
2
ψ , σ

2
δ


=

(0.8, 0.5, 0.5, 1.0).
It is observed that tr(MedSEM) andMedAB are smallest for Normal distribution. From the tables, Figs. 5 and 6, it is noticed

that the variance and bias of the estimators gets inflated due to non-normality. In case of Gamma and t-distributions, the
variances of estimators are close to each other. However, the bias is greater in the case of Gamma-distribution as compared
to t-distribution when the sample size is small. As the sample size increases, the trend gets reversed.
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(a)B2 . (b)B3 . (c)B4 .

Fig. 6. MedAB of estimators for different distributions.

6. Conclusion

Using the knowledge of the reliability matrix associated with predictor variables, three consistent and restricted
estimators of regression coefficient matrix are proposed. No distributional form is imposed on measurement errors and
random error components. Asymptotic properties of the estimators are derived. The effect of departure from Normality of
measurement error and the small sample properties of the estimators are studied using aMonte-Carlo simulation study. It is
observed that the incorporation of additional information in the form of exact linear restrictions provides better estimators.
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Appendix

Definition A.1 ([4]). Let {An : n = 1, 2, . . .} be a sequence of randommatrices and {bn : n = 1, 2, . . .} be a sequence of real
numbers. For all i and j,

(i) An =

(An)ij


= OP(bn) if every element of the randommatrix An is OP(bn), that is, ∀n, ε > 0 and a positive real number

k (depending on ε),

P
(An)ij

 ≤ kbn


≥ 1 − ε;

(ii) An = oP(bn) if every element of the randommatrix An is oP(bn), that is, p lim (An)ij
bn

= 0;
(iii) p lim An = A if p lim(An)ij = Aij.

Definition A.2 (Vec(.) Operator). For a (p × q) matrix A =

a1, . . . , aq


where ai; i = 1, . . . , q each of order (p × 1), are

columns of A, vec(.) is given by

vec(A) =

a′

1 · · · a′

q
′
, a column of order (pq × 1) .

The following definition is extracted from [8].

Definition A.3. The random matrix Xp×n is said to follow a matrix-variate Normal distribution with the mean matrix Mp×n

and the covariance matrix (W ⊗Ω) if vec

X ′


∼ Npn


vec


M ′


,W ⊗Ω


whereWp×p > 0 andΩn×n > 0.

The notation used is X ∼ MNp,n (M,W ⊗Ω). More details about matrix-variate Normal distribution can be found in [2,12].
The following lemmas state a few results that are used in the derivations that follow.

Lemma A.1. As n → ∞

(i) n−
1
2 M ′E = n−

1
2 M ′Ψ = n−

1
2 M ′∆ = OP(1);

(ii) n−
1
2Ψ ′∆ = n−

1
2∆′E = n−

1
2Ψ ′E = OP(1);
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(iii) n−
1
2∆′∆− n

1
2 σ 2

δ Ip = OP(1), n−
1
2Ψ ′Ψ − n

1
2 σ 2

ψ Ip = OP(1);
(iv) p lim(n−1∆′∆) = σ 2

δ Ip, p lim(n−1Ψ ′Ψ ) = σ 2
ψ Ip;

(v) p lim(n−1M ′E) = p lim(n−1M ′Ψ ) = p lim(n−1M ′∆) = p lim(n−1Ψ ′∆) = p lim(n−1∆′E) = p lim(n−1Ψ ′E) = 0;
(vi) p lim(n−1X ′X) = Σ, p lim(n−1X ′Z) =


Σ − σ 2

δ Ip

B whereΣ = [σMσ

′

M + σ 2
ψ Ip + σ 2

δ Ip].

The proofs follow using the Definition A.1 and assumptions 1–5.

Lemma A.2. Let C =

cij


be a (m × m) matrix. Let ‖C‖1 = max1≤i≤m

∑m
j=1

cij and ‖C‖2 = max1≤j≤m
∑m

i=1

cij be the
maximum column sum and maximum row sum matrix norms respectively. If ‖C‖1 < 1 and/or ‖C‖2 < 1, then (Im − C) is
invertible and (Im − C)−1

=
∑

∞

i=0 C
i, where Co

= Im.

For the proof, one can refer to [14].

Lemma A.3. Let Vn =
∑n

j=1 UjnXj where X1, . . . , Xn are (p × 1) independent and identically distributed random vectors with
E


Xj


= 0, and U1n, . . . ,Unn are (q × p) non-stochastic matrices. Suppose that limn→∞ cov (Vn) = Λ; where

Λij
 < ∞, for

each i, j and Λ is + ve definite. If there exists a function ω(n) such that limn→∞ ω(n) = ∞, and if elements of ω(n)Ujn are

bounded, then Vn
d

−→ Nq(0,Λ) as n → ∞.

The above result, known as the Central Limit Theorem is due to Malinvaud [11].

Lemma A.4. vec(ABC) =

C ′

⊗ A

vec(B), where A, B and C are three matrices such that the product (ABC) is defined.

A few expressions, helpful in the proof of Theorem 4.1 are derived below.
Define H = n−

1
2 S − n

1
2ΣX , where S = X ′X and let h = n−

1
2

X ′ [E −1B]


+ n

1
2 σ 2

δ B.
Using Lemma A.1, it can be easily seen that h = OP(1),H = OP(1),ΣX = O(1) and ΣD = O(1), where ΣX and ΣD are

defined in Section 3. Using definitions of H and h, we have

S−1
=


nΣX + n

1
2 H

−1
=


nΣX


Ip + n−

1
2Σ−1

X H
−1

= n−1

Ip + n−

1
2Σ−1

X H
−1

Σ−1
X = n−1


Ip − n−

1
2Σ−1

X H + OP

n−1Σ−1

X , using Lemma A.2

= n−1

Ip − n−

1
2Σ−1

X H

Σ−1

X + OP

n−2 (A.1)

and X ′ [E −1B] = n
1
2 h − nσ 2

δ B. Now using (2.1), (2.2) and (3.3), we haveB1 = K−1
X

B = Σ−1
D ΣX


B + S−1X ′ (E −1B)


= Σ−1

D ΣX


B +


n−1


Ip − n−

1
2Σ−1

X H

Σ−1

X + OP

n−2 

n
1
2 h − nσ 2

δ B


= n−
1
2Σ−1

D h + n−
1
2Σ−1

D H

σ 2
δ Σ

−1
X


B +Σ−1

D


ΣX − σ 2

δ Ip

B + OP


n−1

= n−
1
2Σ−1

D h + n−
1
2Σ−1

D HKXB +Σ−1
D ΣDB + OP


n−1 where KX =


Ip − KX


= σ 2

δ Σ
−1
X .

Hence n
1
2
B1 − B


= Σ−1

D


h + HKXB


+ OP


n−

1
2


(A.2)

and n
1
2
B1 − B

′
=


h′

+ B′KXH

Σ−1

D + OP


n−

1
2


. (A.3)

Applying the vec( ) operator on both sides of (A.3) and using Lemma A.4, we get

vec

n

1
2
B1 − B

′


=

Σ−1

D ⊗ Iq
 

vec

h′


+ vec


B′KXH


+ OP


n−

1
2


. (A.4)

For the estimatorB2, using (3.16)B2 − B


=
B1 − B


+ K−1

X S−1R′

1


R1K−1

X S−1R′

1

−1 
θ − R1B1R2


(R′

2R2)
−1R′

2. (A.5)

Eq. (A.1) gives

(SKX )
−1

= K−1
X S−1

= Σ−1
D ΣXS−1

= Σ−1
D ΣX


n−1


Ip − n−

1
2Σ−1

X H

Σ−1

X + OP

n−2

= n−1

Σ−1

D ΣX


Ip − n−

1
2Σ−1

X H

Σ−1

X + OP

n−1 . (A.6)
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Using (A.6), we write

n−1 
R1K−1

X S−1R′

1

−1
=


R1


nK−1

X S−1 R′

1

−1

=


R1


Σ−1

D ΣX


Ip − n−

1
2Σ−1

X H

Σ−1

X + OP

n−1 R′

1

−1

=


R1D − n−

1
2 R1Σ

−1
D HΣ−1

X R′

1 + OP

n−1−1

where R1D = R1Σ
−1
D R′

1

=


R1D


Ir1 −


n−

1
2 R−1

1D R1Σ
−1
D HΣ−1

X R′

1 − OP

n−1−1

=


Ir1 −


n−

1
2 R−1

1D R1Σ
−1
D HΣ−1

X R′

1 − OP

n−1−1

R−1
1D

=


Ir1 + n−

1
2 R−1

1D R1Σ
−1
D HΣ−1

X R′

1


R−1
1D + OP


n−1 , using Lemma A.2. (A.7)

Using (A.2),B1 = n−
1
2Σ−1

D


h + HKXB


+ B + OP


n−1


.

Hence R1B1R2 = n−
1
2 R1Σ

−1
D


h + HKXB


R2 + R1BR2 + OP


n−1


.

Using (2.4), this gives θ − R1B1R2 = −n−
1
2 R1Σ

−1
D


h + HKXB


R2 + OP


n−1


⇒


θ − R1B1R2

 
R′

2R2
−1 R′

2 = −n−
1
2 R1Σ

−1
D


h + HKXB


R2


R′

2R2
−1 R′

2 + OP

n−1 . (A.8)

Using (A.2) and (A.6)–(A.8) in (A.5), we haveB2 − B


= n−
1
2Σ−1

D


h + HKXB


+ OP


n−1

−


Σ−1

D ΣX


Ip − n−

1
2Σ−1

X H

Σ−1

X + OP

n−1

× R′

1


Ir1 + n−

1
2 R−1

1D R1Σ
−1
D HΣ−1

X R′

1


R−1
1D + OP


n−1

×


n−

1
2 R1Σ

−1
D


h + HKXB


R2


R′

2R2
−1 R′

2 + OP

n−1

= n−
1
2Σ−1

D


h + HKXB


+ OP


n−1

−


Σ−1

D R′

1 − n−
1
2Σ−1

D HΣ−1
X R′

1 + OP

n−1

×


R−1
1D + n−

1
2 R−1

1D R1Σ
−1
D HΣ−1

X R′

1R
−1
1D + OP


n−1

×


n−

1
2 R1Σ

−1
D


h + HKXB


R2


R′

2R2
−1 R′

2 + OP

n−1

= n−
1
2Σ−1

D


h + HKXB


+ OP


n−1

−


Σ−1

D R′

1R
−1
1D + n−

1
2Σ−1

D R′

1R
−1
1D R1Σ

−1
D HΣ−1

X R′

1R
−1
1D

− n−
1
2Σ−1

D HΣ−1
X R′

1R
−1
1D − n−1Σ−1

D HΣ−1
X R′

1R
−1
1D R1Σ

−1
D HΣ−1

X R′

1R
−1
1D + OP


n−1 

×


n−

1
2 R1Σ

−1
D


h + HKXB


R2


R′

2R2
−1 R′

2 + OP

n−1.

After simplification, we get

n
1
2
B2 − B


= Σ−1

D


h + HKXB


−Σ−1

D R′

1R
−1
1D R1Σ

−1
D


h + HKXB


R2


R′

2R2
−1 R′

2 + OP


n−

1
2


. (A.9)

Using (A.3), (A.4) and Lemma A.4, we get

vec

n

1
2
B2 − B

′


=


Σ−1

D ⊗ Iq

−


Σ−1

D R′

1R
−1
1D R1Σ

−1
D


⊗


R2


R′

2R2
−1 R′

2


×


vec


h′


+ vec


B′KXH


+ OP


n−

1
2


. (A.10)

Using (3.19), we can writeB3 − B


=
B1 − B


+ S−1R′

1


R1S−1R′

1

−1 
θ − R1B1R2


(R′

2R2)
−1R′

2. (A.11)
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Consider

n−1 
R1S−1R′

1

−1
=


R1


nS−1 R′

1

−1
=


R1


Ip − n−

1
2Σ−1

X H

Σ−1

X + OP

n−1 R′

1

−1
, using (A.1)

=


R1X − n−

1
2 R1Σ

−1
X HΣ−1

X R′

1 + OP

n−1−1

where R1X = R1Σ
−1
X R′

1

=


R1X


Ir1 −


n−

1
2 R−1

1X R1Σ
−1
X HΣ−1

X R′

1 − OP

n−1−1

=


Ir1 −


n−

1
2 R−1

1X R1Σ
−1
X HΣ−1

X R′

1 − OP

n−1−1

R−1
1X

=


Ir1 + n−

1
2 R−1

1X R1Σ
−1
X HΣ−1

X R′

1


R−1
1X + OP


n−1 , using Lemma A.2. (A.12)

Therefore using (A.1), (A.2), (A.8) and (A.12) in (A.11), we writeB3 − B


= n−
1
2Σ−1

D


h + HKXB


+ OP


n−1

−


Ip − n−

1
2Σ−1

X H

Σ−1

X + OP

n−1

× R′

1


Ir1 + n−

1
2 R−1

1X R1Σ
−1
X HΣ−1

X R′

1


R−1
1X + OP


n−1

×


n−

1
2 R1Σ

−1
D


h + HKXB


R2


R′

2R2
−1 R′

2 + OP

n−1

= n−
1
2Σ−1

D


h + HKXB


+ OP


n−1

−


Σ−1

X R′

1 − n−
1
2Σ−1

X HΣ−1
X R′

1 + OP

n−1

×


R−1
1X + n−

1
2 R−1

1X R1Σ
−1
X HΣ−1

X R′

1R
−1
1X + OP


n−1

×


n−

1
2 R1Σ

−1
D


h + HKXB


R2


R′

2R2
−1 R′

2 + OP

n−1

= n−
1
2Σ−1

D


h + HKXB


+ OP


n−1

−


Σ−1

X R′

1R
−1
1X + n−

1
2Σ−1

X R′

1R
−1
1X R1Σ

−1
X HΣ−1

X R′

1R
−1
1X

− n−
1
2Σ−1

X HΣ−1
X R′

1R
−1
1X − n−1Σ−1

X HΣ−1
X R′

1R
−1
1X R1Σ

−1
X HΣ−1

X R′

1R
−1
1X + OP


n−1

×


n−

1
2 R1Σ

−1
D


h + HKXB


R2


R′

2R2
−1 R′

2 + OP

n−1.

After simplification, we get

n
1
2
B3 − B


= Σ−1

D


h + HKXB


−Σ−1

X R′

1R
−1
1X R1Σ

−1
D


h + HKXB


R2


R′

2R2
−1 R′

2 + OP


n−

1
2


. (A.13)

Using (A.3), (A.4) and Lemma A.4, this leads to

vec

n

1
2
B3 − B

′


=


Σ−1

D ⊗ Iq

−


Σ−1

X R′

1R
−1
1X R1Σ

−1
D


⊗


R2


R′

2R2
−1 R′

2


×


vec


h′


+ vec


B′KXH


+ OP


n−

1
2


. (A.14)

Using (3.20), (A.2) and (A.8), we writeB4 − B


=
B1 − B


+ R′

1


R1R′

1

−1 
θ − R1B1R2


(R′

2R2)
−1R′

2

= n−
1
2Σ−1

D


h + HKXB


+ OP


n−1

+ R′

1


R1R′

1

−1

n−

1
2 R1Σ

−1
D


h + HKXB


R2(R′

2R2)
−1R′

2 + OP

n−1 .

After simplification, we get

n
1
2
B4 − B


= Σ−1

D


h + HKXB


− R′

1


R1R′

1

−1 R1Σ
−1
D


h + HKXB


R2


R′

2R2
−1 R′

2 + OP


n−

1
2


. (A.15)

Using (A.3), (A.4) and Lemma A.4, we get

vec

n

1
2
B4 − B

′


=


Σ−1

D ⊗ Iq

−


R′

1


R1R′

1

−1 R1Σ
−1
D


⊗


R2


R′

2R2
−1 R′

2


×


vec


h′


+ vec


B′KXH


+ OP


n−

1
2


. (A.16)
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Proof of Theorem 4.1. LetM ′

(j),Ψ
′

(j),∆
′

(j) and E ′

(j) be jth rows of M , Ψ ,∆ and E respectively.
Since,

h =


n−

1
2

X ′ (E −1B)


+ n

1
2 σ 2

δ B


= n−
1
2

X(1), . . . , X(n)

 E ′

(1)
...

E ′

(n)

 − n−
1
2


X(1), . . . , X(n)

 ∆
′

(1)
...

∆′

(n)

 − nσ 2
δ Ip

 B

= n−
1
2

n−
j=1


X(j)E ′

(j) −

X(j)∆′

(j) − σ 2
δ Ip


B

.

After taking a transpose, we get

h′
= n−

1
2

n−
j=1


E(j)M ′

(j) + E(j)Ψ ′

(j) + E(j)∆′

(j) − B′∆(j)M ′

(j) − B′∆(j)Ψ
′

(j) − B′

∆(j)∆

′

(j) − σ 2
δ Ip


.

Applying vec( ) operator and using Lemma A.4, this leads to

vec

h′


= n−

1
2

n−
j=1


M(j) ⊗ Iq, Ipq, Ipq,−M(j) ⊗ B′,−Ip ⊗ B′,−Ip ⊗ B′




vec

E(j)


vec


E(j)Ψ ′

(j)


vec


E(j)∆′

(j)


vec


∆(j)


vec


∆(j)Ψ

′

(j)


vec


∆(j)∆

′

(j) − σ 2
δ Ip




=

n−
j=1

C1jW1j (A.17)

where for j = 1, . . . , n, the C1j of order qp ×

2qp + 2p2 + p + q


are matrices of constants and W1j of order


2qp +

2p2 + p + q

× 1 are independent and identically distributed random vectors.

Now, we write

H =


n−

1
2

X ′X


− n

1
2ΣX


= n−

1
2

M ′Ψ + M ′∆+ Ψ ′M + Ψ ′∆+∆′M +∆′Ψ


+


n−

1
2Ψ ′Ψ − n

1
2 σ 2

ψ Ip


+


n−

1
2∆′∆− n

1
2 σ 2

δ Ip

. (A.18)

Consider,

n−
1
2

M ′Ψ + M ′∆+ Ψ ′M + Ψ ′∆+∆′M +∆′Ψ


= n−

1
2


M(1), . . . ,M(n)

 
Ψ

′

(1)
...
Ψ ′

(n)

 +

∆
′

(1)
...

∆′

(n)


 +


Ψ(1), . . . ,Ψ(n)


+ [∆(1), . . . ,∆(n)]

 M ′

(1)
...

M ′

(n)


+


Ψ(1), . . . ,Ψ(n)

 ∆
′

(1)
...

∆′

(n)

 + [∆(1), . . . ,∆(n)]

Ψ
′

(1)
...
Ψ ′

(n)




= n−
1
2

n−
j=1


M(j)


Ψ ′

(j) +∆′

(j)


+


Ψ(j) +∆(j)


M ′

(j) +

Ψ(j)∆

′

(j) +∆(j)Ψ
′

(j)


. (A.19)

Now 
n−

1
2Ψ ′Ψ − n

1
2 σ 2

ψ Ip


+


n−

1
2∆′∆− n

1
2 σ 2

δ Ip


= n−
1
2

Ψ(1), . . . ,Ψ(n)

 Ψ
′

(1)
...
Ψ ′

(n)

 − n
1
2 σ 2

ψ Ip + n−
1
2

∆(1), . . . ,∆(n)

 ∆
′

(1)
...

∆′

(n)

 − n
1
2 σ 2

δ Ip

= n−
1
2

n−
j=1


Ψ(j)Ψ

′

(j) − σ 2
ψ Ip


+


∆(j)∆

′

(j) − σ 2
δ Ip


. (A.20)
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Using (A.19) and (A.20) in (A.18) and Lemma A.4 with C = Ip, we get

vec

B′KXH


=


Ip ⊗ B′KX


vec(H)

=

n−
j=1

n−
1
2

Ip ⊗ B′KX

 
Ip ⊗ M(j)


,

M(j) ⊗ Ip


, Ip2 , Ip2 , Ip2


×


vec


Ψ ′

(j) +∆′

(j)


Ψ(j) +∆(j)


vec


∆(j)Ψ

′

(j) + Ψ(j)∆
′

(j)


vec


Ψ(j)Ψ

′

(j) − σ 2
ψ Ip


vec


∆(j)∆

′

(j) − σ 2
δ Ip




=

n−
j=1

C2jW2j (A.21)

where for j = 1, . . . , n, the C2j of order qp ×

3p2 + 2p


are matrices of constants and W2j of order


3p2 + 2p


× 1 are

independent and identically distributed random vectors respectively.
Thus using (A.21) and (A.17), we can write


vec


h′


+ vec


B′KXH


=

n−
j=1


C1j, C2j

 [
W1j
W2j

]
=

n−
j=1

UjWj. (A.22)

Since assumptions 1–5 imply that,ω(n)Uj = n
1
2

C1j, C2j


→ L (constant) asn → ∞ andWj for j = 1, . . . , n are independent

and identically distributed random vectors with mean zero. Hence the Central limit theorem (Lemma A.3) gives that
vec


h′


+ vec


B′KXH

 d
−→ Nqp


Oqp×1,Λqp×qp


(A.23)

whereΛ = limn→∞ E


vec

h′


+ vec


B′KXH

 
vec


h′


+ vec


B′KXH

′

is the variance-covariance matrix. It is easy to

see that

Λ = lim
n→∞

E

vec


h′

 
vec


h′

′
+ vec


h′

 
vec


B′KXH

′
+ vec


B′KXH

 
vec


h′

′
+ vec


B′KXH

 
vec


B′KXH

′

.

Let ej be a (p × 1) vector with jth element as one and all other elements as zero. So for any matrix Aq×p, Aej gives the jth
column of A. Thus we can write

vec(A) (vec(A))′ =

Ae1
...

Aep

 
e′

1A
′

· · · e′

pA
′


where the (s, t)th partitioned matrix is given by Aese′
tA

′, for s, t = 1, . . . , p. Hence

Λst = lim
n→∞

E

h′ese′

th + h′ese′

tHKXB + B′KXHese′

th + B′KXHese′

tHKXB


(A.24)

is the (s, t)th partitioned matrix ofΛ.
Using (2.2), (2.3) and definition of h, we write

E

h′ese′

th


= n−1E


E ′ (M + Ψ +∆)− B′∆′ (M + Ψ +∆)+ nσ 2
δ B

′

× ese′

t

×

M ′

+ Ψ ′
+∆′


E −


M ′

+ Ψ ′
+∆′


1B + nσ 2

δ B

.

Using assumptions 1–5 and methods for obtaining expectations of product of stochastic matrices (Ref. [21]), we get

E

h′ese′

th


=

tr


n−1Mese′

tM
′

+


σ 2
δ + σ 2

ψ


tr


ese′

t

 
Σo + σ 2

δ B
′B


+ σ 4

δ B
′ete′

sB

+ γ1δσ
3
δ B

′


apa′

nn
−1Mese′

t ∗ Ip

+


apa′

nn
−1Mese′

t ∗ Ip
′

B + γ2δσ

4
δ B

′

ese′

t ∗ Ip

B.

Writing the expressions for other expectations on similar lines, we get from (A.24)

Λst =

σ 2
δ + σ 2

ψ

 
tr


ese′

t

 
Σo + σ 2

δ B
′KB


+ B′Kete′

sσMσ
′

MKB


+ σ 2
δ B

′ete′

s


σ 2
ψK − σ 2

δ K

B

+ e′

tσMσ
′

Mes

Σo + σ 2

δ B
′K 2B + σ 2

ψB
′K

2
B


+ N (γ ) .
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N (γ ), a function of coefficient of skewness and kurtosis is given by

N (γ ) = B′K

γ1δσ

3
δ


apσ ′

Mese′

t ∗ Ip

+


apσ ′

Mese′

t ∗ Ip
′


+ γ2δσ
4
δ


ese′

t ∗ Ip


KB

+ B′K

γ1ψσ

3
ψ


apσ ′

Mese′

t ∗ Ip

+


apσ ′

Mese′

t ∗ Ip
′


+ γ2ψσ
4
ψ


ese′

t ∗ Ip


KB

+ B′

γ1ψσ

3
ψK − γ1δσ

3
δ K

 
ese′

t ∗ Ip

apσ ′

MK + KσMa′

p


ese′

t ∗ Ip
 
γ1ψσ

3
ψK − γ1δσ

3
δ K


B.

From Eqs. (A.4), (A.10), (A.14) and (A.16), it follows that the asymptotic distribution of vec

n

1
2
Bj − B

′

, for j = 1, 2, 3 and

4 is same as the asymptotic distribution of

vec


h′


+ vec


B′KXH


. Thus (A.23) implies that

vec

n

1
2
Bj − B

′


d
−→ Nqp


Oqp×1, Aj


Λqp×qp


A′

j


(A.25)

where

A1 =

(ΣK)−1

⊗ Iq

;

A2 = A1 −


(ΣK)−1 R′

1


R1 (ΣK)−1 R′

1

−1
R1 (ΣK)−1


⊗


R2


R′

2R2
−1 R′

2


;

A3 = A1 −


Σ−1R′

1


R1Σ

−1R′

1

−1
R1 (ΣK)−1


⊗


R2


R′

2R2
−1 R′

2


;

A4 = A1 −


R′

1


R1R′

1

−1 R1 (ΣK)−1


⊗


R2


R′

2R2
−1 R′

2


.

So now using definitions (A.3) and (A.25), it can be concluded that the random matrices

n

1
2
Bj − B


, j = 1, 2, 3, 4 are

distributed as Matrix-variate Normal, that is,
n

1
2
Bj − B

 d
−→ MNp,q


Op×q, Aj


Λqp×qp


A′

j


. �
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