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This paper discusses the problem of testing the sphericity of a covariance matrix in high-
dimensional frameworks. A new test procedure is put forward by taking the maximum of
two existing statistics which are proved weakly independent in our settings. Asymptotic
distribution of the new statistic is derived for generally distributed population with a fi-
nite fourth moment. Extensive simulations demonstrate that the proposed test has a great
improvement in robustness of power against variousmodels under the alternative hypoth-
esis.
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1. Introduction

Large-scale statistical inferences involving covariance matrices are increasingly encountered in many scientific research
fields, such as signal processing, image processing, genetics, and stock marketing. A basic problem among such inferences is
the sphericity test for covariancematriceswhen the number of observations is not negligiblewith respect to the sample size.

Generally, let x1, . . . , xn, xi ∈ Rp, be a sequence of independent and identically distributed zero-mean random vectors
with a common population covariance matrix Σp. The sample covariance matrix takes the form Sn =

n
i=1 xix

′

i/n.
Hypotheses regarding to the sphericity test are

H0 : Σp = σ 2Ip vs. H1 : Σp ≠ σ 2Ip,

where σ 2 is the unknown scalar proportion. Our interest is to study this test based on Sn for general population, in an
asymptotic framework where both p and n tend to infinity with p/n → c ∈ (0, ∞).

There are a number of works in the literature addressing the sphericity test in high-dimensions. Ledoit and Wolf [12]
generalized the locally best invariant (LBI) test which was set up by [9,10] in a fixed p context. This result was later refined
in [18] by applying anunbiased estimator of tr(Σ2

p )/p. Fisher et al. [8] studied ahomogeneous test constructed fromunbiased
estimators of tr(Σk

p )/p, k = 2, 4.However, these tests heavily rely on an assumption that the sample is normally distributed.
For non-normal cases, Chen et al. [6] developed a new method where the statistic was constituted by some well selected
U-statistics, but this technique carries a burden of doing extensive computations. Srivastava et al. [20] proved that the test
in [18] is still valid when the kurtosis of the underlying distribution is close to 3, the Gaussian case. Recently, Wang and
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Yao [21] corrected the LBI test and the Gaussian likelihood ratio test [1] in high-dimensions for arbitrary distribution, and
provided a finite fourth moment. For more references, one is referred to [11,19,5,15,4], etc.

Among all these tests, we are particularly interested in those from [18,8]. Asymptotic joint distribution of these two test
statistics is derived for general populations under both the null and alternative hypotheses. With this joint distribution, we
are surprised to find that the two tests are almost independent when the limiting ratio c is large, so that one test statistic
has significant changes while the other may not, and vice versa. This inspires us to propose a new test procedure that can
reject the sphericity hypothesis when any of the two statistics is large. It turns out that the new test achieves excellent
performance on robustness of power compared with the original ones.

The rest of the paper is organized as follows. Section 2 reviews the unbiased estimators of tr(Σk
p )/p built on normality

assumption and investigates their asymptotic behaviors for general population under moment conditions. In Section 3,
we discuss the relationship between Srivastava’s test and Fisher et al.’s test, and then formulate our new test procedure.
Section 4 reports simulation results and Section 5 presents conclusions and remarks. Technical proofs are deferred to the
last section.

2. Estimators of tr(Σk
p )/p and their asymptotic properties

Let Hp and Fn be spectral distributions of Σp and Sn, respectively. Then integer moments of Hp and Fn are defined by

αk :=


tkdHp(t) =

1
p
tr(Σk

p ) and β̂k :=


xkdFn(x) =

1
p
tr(Skn),

k = 0, 1, 2, . . . . Assuming the sample data are normally distributed, estimators of αi, i = 1, 2, 3, 4, employed in succession
in [18,8,7] were proved to be unbiased, consistent, and asymptotically normal. Moreover, these estimators can be expressed
as polynomials of β̂k’s, i.e.,

α̂1 = β̂1,

α̂2 = τ2


β̂2 − cnβ̂2

1


,

α̂3 = τ3


β̂3 − 3cnβ̂2β̂1 + 2c2n β̂

3
1


,

α̂4 = τ4


β̂4 − 4cnβ̂3β̂1 −

2n2
+ 3n − 6

n2 + n + 2
cnβ̂2

2 +
10n2

+ 12n
n2 + n + 2

c2n β̂2β̂
2
1 −

5n2
+ 6n

n2 + n + 2
c3n β̂

4
1


,

where cn = p/n, τ2 = n2/[(n− 1)(n+ 2)], τ3 = n4/[(n− 1)(n− 2)(n+ 2)(n+ 4)], and τ4 = n5(n2
+ n+ 2)/[(n+ 1)(n+

2)(n + 4)(n + 6)(n − 1)(n − 2)(n − 3)]. When the underlying distribution is not normal, we show that the unbiasedness
does not hold any more for α̂2, α̂3, and α̂4, but the consistency and asymptotic normality can be retained under suitable
assumptions.

Assumption (a). The sample and population sizes n, p both tend to infinity, in such a way that cn = p/n → c ∈ (0, ∞).

Assumption (b). There is a doubly infinite array of i.i.d. random variables (wij), i, j ≥ 1, satisfying

E(w11) = 0, E(w2
11) = 1, E(w4

11) < ∞,

such that for each p, n, letting Wn = (wij)1≤i≤p,1≤j≤n, the observation vectors can be represented as xj = Σ
1/2
p w.j where

w.j = (wij)1≤i≤p denotes the jth column ofWn.

Assumption (c). The population spectral distributionHp ofΣp weakly converges to a probability distributionH , as p → ∞,
and the sequence of spectral norms (∥Σp∥) is bounded.

Assumptions (a)–(c) are classical conditions of the central limit theorem for linear spectral statistics of sample covariance
matrices, see [2,3]. From the third assumption, moments of Hp converge to the corresponding moments of H , that is,

αk → α̃k :=


tkdH(t),

as p → ∞, for any fixed k ∈ N.

Lemma 1. Suppose that Assumptions (a)–(c) hold, then

(i) the estimator α̂k is strongly consistent, i.e.,

α̂k − αk
a.s.
−→ 0, k = 1, 2, 3, 4.
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(ii) If in addition E(w4
11) = 3, then

n

α̂1 − α1, α̂2 − α2, α̂3 − α3, α̂4 − α4

′ D
−→ N4(0, A), (1)

where the covariance matrix is given in Appendix A.1.

Lemma 1 states strong consistency and asymptotic normality of the estimators α̂k’s. The convergence in (1) is the same as
Theorem 2 in [7] which assumedw11 is standard normal, while our result only requires thatw11 matches a standard normal
variable at the first, second and fourth moments. If the fourth moment is not equal to 3, then the distribution in (1) may
have a large change. We present below such a result which is also the cornerstone of our test procedure.

Lemma 2. In addition to Assumptions (a)–(c), suppose that Σp is diagonal for all p large. Then

n

α̂1 − α1, α̂2 − α2, α̂3 − α3, α̂4 − α4

′ D
−→ N4(v, B),

where the mean vector v and the covariance matrix B are respectively

v = ∆ ·

 0
α̃2
3α̃3
6α̃4

 and B = A +
∆

c
·

 α̃2 2α̃3 3α̃4 4α̃5
2α̃3 4α̃4 6α̃5 8α̃6
3α̃4 6α̃5 9α̃6 12α̃7
4α̃5 8α̃6 12α̃7 16α̃8

 (2)

with the constant ∆ = E(w4
11) − 3 and the matrix A defined in (1).

Lemma 2 presents a new central limit theorem for the estimators α̂k’s under general fourthmoment ofw11, assumingΣp
is diagonal. One can see from (2) that both the mean vector and the covariance matrix create shifts from those in (1), which
meanwhile denies the unbiasedness of α̂k for k = 2, 3, 4. When neither ∆ = 0 nor Σp is diagonal, the limiting distribution
will become more complex, depending on the eigenvectors of Σp, see [16].

3. Test procedure

From the Cauchy–Schwarz inequality, moments of Hp satisfy

dk :=
α2k

α2
k

− 1 ≥ 0, k ∈ N. (3)

The equality in (3) holds if and only if the hypothesis of sphericity stands, which is often used in the sphericity test.
Srivastava [18] tested if d1 = 0, while Fisher et al. [8] examined if d2 = 0. Their statistics are respectively

Ts :=
α̂2

α̂2
1

− 1 and Tf :=
α̂4

α̂2
2

− 1,

which are consistent estimators of d1 and d2.

Theorem 1. Suppose that Assumptions (a)–(c) hold.

(i) If Σp is diagonal for all p large, then

n

Ts − d1, Tf − d2

′ D
−→ N2(µ, Ω), (4)

as (n, p) → ∞, where the mean vector is µ = ∆ · (α̃2/α̃
2
1, 4α̃4/α̃

2
2)

′ with ∆ = E(w4
11) − 3 and the covariance matrix

Ω = (ωij) with its entries

ω11 =
4

cα̃6
1


2α̃3

2 − 4α̃1α̃2α̃3 + 2α̃2
1 α̃4 + cα̃2

1 α̃
2
2 + ∆ · (α̃3

2 − 2α̃1α̃2α̃3 + α̃2
1 α̃4)


,

ω12 =
8

cα̃3
1 α̃

3
2


2α̃1α̃2α̃6 + cα̃1α̃2α̃

2
3 + cα̃1α̃

2
2 α̃4 − 2α̃1α̃

2
4 + 2α̃2α̃3α̃4 − 2α̃2

2 α̃5

+ ∆ · (α̃2α̃3α̃4 − α̃1α̃
2
4 − α̃2

2 α̃5 + α̃1α̃2α̃6)

,

ω22 =
8

cα̃6
2


4α̃3

4 − 8α̃2α̃4α̃6 + 4α̃2
2 α̃8 + 8cα̃2

2 α̃3α̃5 + 4cα̃3
2 α̃6 − 4cα̃2α̃

2
3 α̃4

+ 8c2α̃3
2 α̃

2
3 + 4c2α̃4

2 α̃4 + c3α̃6
2 + ∆ · (2α̃3

4 − 4α̃2α̃4α̃6 + 2α̃2
2 α̃8)


.

(ii) If E(w4
11) = 3 then the convergence in (4) also holdswith the same limitingmean vector (actually zero vector) and covariance

matrix.
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(iii) Under the null hypothesis,

n

Ts, Tf

′ D
−→ N2(µ0, Ω0),

as (n, p) → ∞, where themean vector isµ0 = (∆, 4∆)′ and the covariancematrixΩ0 = (ω0ij)withω011 = 4, ω012 = 16,
and ω022 = 8(8 + 12c + c2).

Theorem 1 illustrates asymptotic joint distribution of Ts and Tf under various cases. Conclusions (i) and (ii) reveal
that Ts and Tf become less dependent as the dimensional ratio c gets larger, because their limiting correlation coefficient
ω12/

√
ω11ω22 is roughly proportional to 1/c. This fact demonstrates the two tests can complement and reinforce each other

in high-dimensional frameworks, especially when c is large. Conclusion (iii) shows that the original test procedures built
on normality assumption are not applicable to general population with E(w4

11) ≠ 3, as they may suffer from serious size
distortion. Note that the asymptotic null distribution of Ts has already been obtained in [21] as the null distribution of their
corrected John’s test.

Based on these findings, we present our test statistic Tm as the maximum of standardized Ts and Tf , that is,

Tm := max


nTs − ∆

2
,

nTf − 4∆
8(8 + 12cn + c2n )


.

Notice that the two components in Tm are both asymptotically standard normal under the sphericity hypothesis. Taking
their maximum demonstrates our test will reject the sphericity when any of them is large.

Theorem 2. Suppose that Assumptions (a)–(c) hold.

(i) Under the null hypothesis, for any x ∈ R,

P (Tm ≤ x) →

 x

−∞

 x

−∞

1

2π

1 − ρ2

exp

−

u2
− 2ρuv + v2

2(1 − ρ2)


dudv,

as (n, p) → ∞, where ρ = 4/

2(8 + 12c + c2).

(ii) If the spectral distribution H ≠ δσ 2 , a Dirac point measure at σ 2, then, for any x ∈ R,

P (Tm > x) → 1, as (n, p) → ∞.

This theorem is a direct result of Theorem 1, where the first conclusion sets forth the asymptotic null distribution of our
test and the second guarantees its consistency.

4. Simulation study

Wenumerically evaluate finite-sample performance of the corrected Srivastava’s test and Fisher et al.’s test, still denoted
by Ts and Tf , and our test Tm. The test in [6] and the corrected likelihood ratio test in [21] are excluded from our comparison,
since the former is similar to Ts and the latter is not defined for p ≥ n, see [21]. Empirical sizes and powers of the studied
tests are reported in two scenarios of distribution:

(I) w11 ∼ N(0, 1), (II) w11 ∼
Γ (5, 2) − 5/2

√
5/4

.

In the second scenario, w11 is actually a standardized Gamma-distributed random variable with E(w4
11) = 4.2. The dimen-

sional settings are n = 50, 100, 150, 200, 250, 300 and p = cn with c = 1, 5, 10, 20. The nominal significance level is fixed
at α = 0.05, and the number of independent replications is 10000.

Tables 1 and 2 collect empirical sizes of the three tests, where the covariance matrix is set to be Σp = Ip. The results
show that, under the scenario (I) of normal distribution, all the sizes are close to the nominal significance level. Under the
scenario (II) of Gamma distribution, there is slight size distortion for the tests when p and n are small, but this distortion
fades away as p and n are increased.

To compare the powers of the three tests, we study two models under the alternative hypothesis.

Model 1. Σp = Ip +
√
c · diag(1.2, . . . , 1.2  

n/50

, 0, . . . , 0  
p−n/50

),

Model 2. Σp = Ip + diag(0.5, . . . , 0.5  
p/2

, 0, . . . , 0  
p/2

).

Covariance matrices defined in Models 1 and 2 are both diagonal and near sphericity. The difference between them is that,
inModel 1, there is only a small cluster of diagonal elements that deviate from the bulk, while inModel 2 half of the diagonal
elements are apart from the rest.
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Table 1
Empirical sizes in percentages of the tests Ts , Tf , and Tm for standard normal random variables.

n c = 1 c = 5 c = 10 c = 20
Ts Tf Tm Ts Tf Tm Ts Tf Tm Ts Tf Tm

50 5.53 5.08 5.63 5.12 5.03 5.67 4.88 5.08 5.25 4.75 5.14 5.31
100 4.93 5.47 5.70 5.41 5.52 5.68 4.96 4.83 4.84 4.94 4.83 5.08
150 5.14 5.12 5.34 5.15 5.61 5.56 5.10 4.95 5.17 5.25 5.01 5.23
200 5.00 5.47 5.35 5.33 5.23 5.61 5.09 5.16 5.17 5.15 4.82 5.07
250 5.09 5.31 5.40 4.79 5.53 5.38 4.97 4.93 5.21 5.38 5.26 5.40
300 4.74 5.07 5.03 5.25 5.19 5.31 4.91 5.34 5.13 5.22 4.90 5.10

Table 2
Empirical sizes in percentages of the tests Ts , Tf , and Tm for standardized Gamma(5, 2) random variables.

n c = 1 c = 5 c = 10 c = 20
Ts Tf Tm Ts Tf Tm Ts Tf Tm Ts Tf Tm

50 6.56 6.68 7.42 5.45 6.35 6.80 5.28 5.90 6.05 5.43 5.19 5.95
100 4.96 6.23 6.12 5.26 5.72 5.78 5.37 5.96 5.91 5.31 5.05 5.51
150 5.41 6.14 6.20 5.24 5.44 5.55 5.39 5.37 5.57 5.16 4.99 5.36
200 5.57 5.77 5.95 4.86 5.44 5.31 5.05 5.11 5.09 5.25 4.99 5.26
250 4.99 5.18 5.29 5.22 5.53 5.44 5.42 5.59 5.79 5.37 5.15 5.32
300 5.06 5.42 5.36 5.17 5.82 5.73 5.10 5.32 5.25 5.54 5.39 5.30

Empirical powers under Model 1 are plotted in Fig. 1 for normal variables and Fig. 2 for Gamma variables. It is clearly
shown that all the powers grow to 1 as the dimensions increase, which demonstrates the consistency of the three tests.
Moreover, the shift in data distribution does not seem to affect the powers. In comparison of performance, our proposed test
Tm ismore powerful than Ts and is comparable to Tf . Power results underModel 2 are illustrated in Fig. 3 for normal variables
and Fig. 4 for Gamma variables, which exhibit a different pattern from that under Model 1. This time Tm is comparable to
Ts and both of them dominant Tf in power. It seems that the test Tf fails to capture the difference between the null and
the alternative hypotheses with the studied dimensions, especially when c is large. Synthesizing all the results, we may
conclude that the proposed test is more robust than the other competitive ones.

5. Concluding remarks

This paper investigates the problem of testing for sphericity of covariance matrices in high-dimensions. Tests proposed
in [18,8] are corrected to accommodate situations where the underlying distribution is not normal, based on which a new
test procedure is developed by considering the maximum of the two modified statistics. Simulation studies claim that the
new test is more robust in power than the original ones against various models.

The asymptotic results derived in this paper assume that the observations xi’s have zero mean vector. When this is not
true we may replace the sample covariance matrix Sn with its centralized version S∗

n ,

S∗

n =
1

n − 1

n
i=1

(xi − x̄)(xi − x̄)′,

where x̄ =
n

i=1 xi/n. In such a situation, all the conclusions hold if we substitute c∗
n := p/(n − 1) for cn = p/n in the test

statistics, see [21,22].
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Appendix

A.1. Proof of Lemma 1

Suppose that Assumptions (a)–(c) hold, from [17], the spectral distribution Fn converges weakly to a limiting distribution
F c,H , moreover the Stieltjes transform sn(z) of Fn converges almost surely to s(z), the Stieltjes transform of F c,H . Let F cn,Hp be
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Fig. 1. Empirical powers of Ts , Tf , and Tm under Model 1 in the scenario of normal distribution. The significance level is α = 0.05.

a distribution derived from F c,H by replacing c and H with cn and Hp, respectively. Then the kth moments of F cn,Hp and F c,H

are given by

βk =


tkdF cn,Hp(t) and β̃k =


tkdF c,H(t),

k = 1, 2, . . . . Obviously, βk → β̃k as (n, p) → ∞. On the other hand, from [14], the relationship between αk and
βk, k = 1, 2, 3, 4, are

α1 = β1, α2 = β2 − cnβ2
1 , α3 = β3 − 3cnβ2β1 + 2c2nβ

3
1 ,

α4 = β4 − 4cnβ3β1 − 2cnβ2
2 + 10c2nβ2β

2
1 − 5c3nβ

4
1 .

When the support ofH is bounded, the support of F c,H is also bounded. FromLebesgue’s dominated convergence theorem,
for sufficient large (n, p),

β̂k =


xkdFn(x) = −

1
2π i


C
zksn(z)dz

a.s.
−→ −

1
2π i


C
zks(z)dz = β̃k,
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Fig. 2. Empirical powers of Ts , Tf , and Tm under Model 1 in the scenario of Gamma distribution. The significance level is α = 0.05.

where the contour C is simple, closed, taken in the positive direction in the complex plane, and enclosing the support of
F c,H . Therefore, we get

α̂k − αk
a.s.
−→ 0, k = 1, 2, 3, 4,

as (n, p) → ∞, which is the first conclusion of this lemma.
For the second conclusion, we first derive the limiting distribution of (β̂1, β̂2, β̂3, β̂4)

′. Applying the central limit theorem
in [2] to functions f (x) = xk, k = 1, 2, 3, 4, yields

n(β̂1 − β1, β̂2 − β2, β̂3 − β3, β̂4 − β4)
′ D
−→ N4(m, Γ ),

where the mean vectorm = (mj) with

mj = −
1

2π i


C1

z js3(z)

t2(1 + ts(z))−3dH(t)

(1 − c

s2(z)t2(1 + ts(z))−2dH(t))2

dz, (5)

and the covariance Γ = (γij) with its entries

γij = −
1

2π2c2


C2


C1

z i1z
j
2

(s(z1) − s(z2))2
s′(z1)s′(z2)dz1dz2, (6)
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Fig. 3. Empirical powers of Ts , Tf , and Tm under Model 2 in the scenario of normal distribution. The significance level is α = 0.05.

where s(z) = −(1 − c)/z + cs(z) and the contours C1 and C2 in (5) and (6) are simple, closed, non-overlapping, taken in
the positive direction in the complex plane, and each enclosing the support of F c,H . The contour integrals in (5) and (6) have
been figured out in [13], from which we can get

m1 = 0, m2 = α̃2, m3 = 3(cα̃1α̃2 + α̃3),

m4 = 6c2α̃2
1 α̃2 + 5cα̃2

2 + 12cα̃1α̃3 + 6α̃4,

and

γij =
2
c2

i−1
l=0

(i − l)ui,luj,i+j−l,

where us,t is the coefficient of zt in the Taylor expansion of (−1 − c


∞

l=1 α̃l(−z)l)s.
Next, we use the Delta method and Slutsky’s theorem to get the final result. Let u = (x, y, z, w)′ and define a vector

function Gn,

Gn(u) =


x, τ2(y − cnx2), τ3(z − 3cnxy + 2c2nx

3), τ4


w − 4cnxz −

2n2
+ 3n − 6

n2 + n + 2
cny2

+
10n2

+ 12n
n2 + n + 2

c2nx
2y −

5n2
+ 6n

n2 + n + 2
c3nx

4
′

.
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Fig. 4. Empirical powers of Ts , Tf , and Tm under Model 2 in the scenario of Gamma distribution. The significance level is α = 0.05.

It is clear that Gn has continuous partial derivative at b := (β1, β2, β3, β4)
′ and the Jacobian matrix Jn(b) = ∂Gn/∂u|u=b

converges to a limit J(b), as (n, p) → ∞,

J(b) =


1 0 0 0

−2cα̃1 1 0 0
3c2α̃2

1 − 3cα̃2 −3cα̃1 1 0
−4c3α̃3

1 + 8c2α̃1α̃2 − 4cα̃3 6c2α̃2
1 − 4cα̃2 −4cα̃1 1

 .

Therefore we get, as (n, p) → ∞,

n

α̂1 − α1, α̂2 − α2, α̂3 − α3, α̂4 − α4

′
+ n


(α1, α2, α3, α4)

′
− Gn(b)

 D
−→ N4(J(b)m, J(b)Γ J ′(b)).

Elementary calculations reveal that

n((α1, α2, α3, α4)
′
− Gn(b)) → J(b)m = (0, α̃2, 3α̃3, 6α̃4 + cα̃2

2)
′,

and J(b)Γ J ′(b) := A = (aij) with its entries

a11 = 2α̃2/c, a12 = 4α̃3/c, a13 = 6α̃4/c, a14 = 8α̃5/c,

a22 = 4(2α̃4/c + α̃2
2), a23 = 12(α̃5/c + α̃3α̃2),

a24 = 8(2α̃6/c + 2α̃4α̃2 + α̃2
3), a33 = 6(3α̃6/c + 3α̃4α̃2 + 3α̃2

3 + cα̃3
2),
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a34 = 24(α̃7/c + α̃5α̃2 + 2α̃4α̃3 + cα̃3α̃
2
2),

a44 = 8(4α̃8/c + 6α̃2
4 + 4α̃6α̃2 + 8α̃5α̃3 + 4cα̃4α̃

2
2 + 8cα̃2

3 α̃2 + c2α̃4
2),

which complete the proof.

A.2. Proof of Lemma 2

Under the assumptions of this lemma, the conditions of Theorem 1.4 in [16] are all satisfied, which implies

n(β̂1 − β1, β̂2 − β2, β̂3 − β3, β̂4 − β4)
′ D
−→ N4(m̄, Γ̄ ),

where the mean vector m̄ = (m̄j) with

m̄j = mj −
E(w4

11) − 3
2π i


C1

z js3(z)

t2(1 + ts(z))−3dH(t)

1 − c

s2(z)t2(1 + ts(z))−2dH(t)

dz

:= mj + 1Ij, (7)

and the covariance Γ̄ = (γ̄ij) with its entries

γ̄ij = γij −
E(w4

11) − 3
4π2c


C2


C1

z i1z
j
2

d2

dz1dz2


t2s(z1)s(z2)dH(t)

(1 + ts(z1))(1 + ts(z2))
dz1dz2

:= γij + 1Jij, (8)

where ∆ = E(w4
11) − 3, mj and γij are defined in (5) and (6), respectively.

Without loss of generality, let the contour C2 enclose C1 and both of them be away from the support SF of F c,H . Denote
the image of Ci under s(z) be

s(Ci) = {s(z) : z ∈ Ci}, i = 1, 2.

Then, following similar arguments in [13], the two contours s(C1) and s(C2) are also simple, closed, and non-overlapping,
and are taken in the negative direction. Moreover, s(C2) encloses s(C1) and both of them enclose zero. Let

P(s) = −1 + c


ts
1 + ts

dH(t) and Q (s) =


t2

(1 + ts)3
dH(t),

the integral Ij in (7) becomes

Ij = −
1

2π i


C1

z js(z)s′(z)


t2(1 + ts(z))−3dH(t)dz

= −
1

2π i


s(C1)

P j(s)Q (s)
sj−1

ds

=

0, j = 1,
1

(j − 2)!


P j(z)Q (z)

(j−2) 
z=0, j ≥ 2,

while the integral Jij in (8) is

Jij = −
1

4π2c


C2


C1

z i1z
j
2


t2s′(z1)s′(z2)dH(t)

(1 + ts(z1))2(1 + ts(z2))2
dz1dz2

= −
1

4π2c


s(C2)


s(C1)

P(s1)
iP(s2)

j

si1s
j
2


t2dH(t)

(1 + ts1)2(1 + ts2)2
ds1ds2

=
1
c


t2

(i − 1)!(j − 1)!


P i(z)

(1 + tz)2

(i−1) 
z=0


P j(z)

(1 + tz)2

(j−1) 
z=0

dH(t),

where the contour integrals are calculated from the Cauchy integral theorem. Following similar arguments in the proof of
Lemma 1, we may get

n(α̂1 − α1, α̂2 − α2, α̂3 − α3, α̂4 − α4)
′ D
−→ N4(J(b)(m̄ − m), J(b)Γ̄ J ′(b)).

Elementary calculations reveal that

J(b)(m̄ − m) = ∆ · (0, α̃2, 3α̃3, 6α̃4)
′
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and

J(b)(Γ̄ − Γ )J ′(b) =
∆

c
·

 α̃2 2α̃3 3α̃4 4α̃5
2α̃3 4α̃4 6α̃5 8α̃6
3α̃4 6α̃5 9α̃6 12α̃7
4α̃5 8α̃6 12α̃7 16α̃8

 .

The proof is then completed.

A.3. Proof of Theorems 1

This theorem follows from Lemmas 1 and 2 by a standard application of the Delta method, we thus only calculate the
limiting mean vector µ and covariance matrix Ω . Let u = (x, y, z, w)′ and define a vector function G,

G(u) =


y
x2

,
w

y2

′

.

It is clear that G has continuous partial derivative at a = (α1, α2, α3, α4)
′ and thus the Jacobian matrix Kn(a) =

∂G/∂u|u=a → K(a),

K(a) =

−
2α̃2

α̃3
1

1
α̃2
1

0 0

0 −
2α̃4

α̃3
2

0
1
α̃2
2

 .

If Σp is diagonal for all p large then, from Lemma 2, the liming mean vector µ is

µ = ∆ · K(a)(0, α̃2, 3α̃3, 6α̃4)
′
= ∆ · (α̃2/α̃

2
1, 4α̃4/α̃

2
2)

′

and the covariance matrix is Ω = K(a)BK ′(a) where the matrix B is defined in (2). If E(w3
11) = 3 then, from Lemma 1, we

get µ = 0 and Ω = K(a)AK ′(a) where the matrix A is defined in (1).
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