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Risk aggregation with empirical margins: Latin
hypercubes, empirical copulas, and convergence of sum

distributions

Georg Mainik1

RiskLab, Department of Mathematics, ETH Zurich
Raemistrasse 101, 8092 Zurich, Switzerland

Abstract

This paper studies convergence properties of multivariate distributions con-
structed by endowing empirical margins with a copula. This setting includes
Latin Hypercube Sampling with dependence, also known as the Iman–Conover
method. The primary question addressed here is the convergence of the compo-
nent sum, which is relevant to risk aggregation in insurance and finance. This
paper shows that a CLT for the aggregated risk distribution is not available, so
that the underlying mathematical problem goes beyond classic functional CLTs
for empirical copulas. This issue is relevant to Monte-Carlo based risk aggre-
gation in all multivariate models generated by plugging empirical margins into
a copula. Instead of a functional CLT, this paper establishes strong uniform
consistency of the estimated sum distribution function and provides a sufficient
criterion for the convergence rate O(n−1/2) in probability. These convergence
results hold for all copulas with bounded densities. Examples with unbounded
densities include bivariate Clayton and Gauss copulas. The convergence results
are not specific to the component sum and hold also for any other component-
wise non-decreasing aggregation function. On the other hand, convergence of
estimates for the joint distribution is much easier to prove, including CLTs. Be-
yond Iman–Conover estimates, the results of this paper apply to multivariate
distributions obtained by plugging empirical margins into an exact copula or by
plugging exact margins into an empirical copula.

Keywords: Risk aggregation, sum distribution, empirical margins, empirical
copula, functional CLT, Iman–Conover, Latin hypercube sampling

1. Introduction

In various real-world applications, multivariate stochastic models are con-
structed upon empirical marginal data and an assumption on the dependence
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structure between the margins. This dependence assumption is often formulated
in terms of copulas. The major reason for this set-up is the lack of multivari-
ate data sets, as it is often the case in insurance and finance. This approach
may appear artificial from the statistical point of view, but it arises naturally
in the context of stress testing. In addition to finance and insurance, relevant
application areas include engineering and environmental studies. Sometimes the
marginal data is not even based on observations, but is generated by a univari-
ate model that is considered reliable. Many of these models are so complex that
the resulting distributions cannot be expressed analytically. In such cases exact
marginal distributions are replaced by empirical distributions of simulated uni-
variate samples. These empirical margins are endowed with some dependence
structure to obtain a multivariate distribution. The computation of aggregated
risk or other characteristics of this multivariate model is typically based on
Monte-Carlo techniques.

Iman–Conover: dependence “injection” by sample reordering
Related methods include generation of synthetic multivariate samples from

univariate data sets. Whilst the margins of such a synthetic sample accord with
the univariate data, its dependence structure is modified to fit the application’s
needs. The most basic example is the classic Latin Hypercube Sampling method,
which mimics independent margins. It is a popular tool for removing spurious
correlations from multivariate data sets. This method is also applied to variance
reduction in the simulation of independent random variables (cf. McKay et al.,
1979; Stein, 1987; Owen, 1992; Iman, 2008). Similar applications to dependent
random variables include variance reduction in Monte-Carlo methods (Packham
and Schmidt, 2010) and in copula estimation (Genest and Segers, 2010).

An extension of Latin Hypercube Sampling that brings dependence into the
samples was proposed by Iman and Conover (1982). The original description of
the Iman–Conover method uses random reordering of marginal samples, and the
intention there was to control the rank correlations in the synthetic multivariate
sample. The reordering is performed according to the vectors of marginal ranks
in an i.i.d. sample of some multivariate distribution, say, H, with continuous
margins. Thus rank correlations of H are “injected” into the synthetic sam-
ple. This procedure is equivalent to plugging empirical margins (obtained from
asynchronous observations) into the rank based empirical copula of a sample
of H (Arbenz et al., 2012). Moreover, it turned out that the Iman–Conover
method allows to introduce not only the rank correlations of H into the syn-
thetic samples, but the entire copula of H (cf. Arbenz et al., 2012; Mildenhall,
2005). In somewhat weaker sense, these results are related to the approximation
of stochastic dependence by deterministic functions and to the pioneering result
by Kimeldorf and Sampson (1978). Further developments in that area include
measure preserving transformations (Vitale, 1990) and shuffles of min (Durante
et al., 2009). In statistical optimization, reordering techniques were also used
by Rüschendorf (1983). A very recent, related application in quantitative risk
management is a rearrangement algorithm that computes worst-case bounds for
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the aggregated loss quantiles in a portfolio with given marginal distributions (cf.
Embrechts et al., 2013, and references therein).

Using explicit reorderings of univariate marginal samples, the Iman–Conover
method has a unique algorithmic tractability. It is implemented in various soft-
ware packages, and it serves as a standard tool in dependence modelling and
uncertainty analysis. The reordering algorithm allows even to construct syn-
thetic samples with hierarchical dependence structures that meet the needs
of risk aggregation in insurance and reinsurance companies (Arbenz et al.,
2012). The distribution of the aggregated risk is estimated by the empirical
distribution of the component sums X̃(k)

1 + . . .+ X̃
(k)
d of the synthetic samples

X̃(k) = (X̃(k)
1 , . . . , X̃

(k)
d ) for k = 1, . . . , n. This Monte-Carlo approach has com-

putational advantages. The resulting convergence rate of n−1/2 (or even faster
with Quasi-Monte-Carlo using special sequences) allows to outperform explicit
calculation of sum distributions already for moderate dimensions d ≥ 4 (cf.
Arbenz et al., 2011).

Challenge and contribution: convergence proofs
Despite its popularity, some applications of the Iman–Conover method have

been justified by simulations rather than by mathematical proofs. The origi-
nal publication (Iman and Conover, 1982) derives its conclusions from promis-
ing simulation results for the distribution of the following function of a 4-
dimensional random vector: f(X1, . . . , X4) = X1+X2(X3−log |X1|)+exp(X4/4).
Yet a rigorous proof is still missing. The present paper provides a convergence
proof for Iman–Conover estimates of the component sum distribution. It also
includes a proof sketch for the much simpler case of the estimated joint distri-
bution. Both problems have been open until now.

The solutions given in this paper are derived from the empirical process
theory as presented in van der Vaart and Wellner (1996). Under appropri-
ate regularity assumptions, Iman–Conover estimates of the sum distribution
are strongly uniformly consistent with convergence rate OP(n−1/2) (see Theo-
rems 4.1 and 4.2). The convergence of Iman–Conover estimates for the joint dis-
tribution is discussed in cf. Remark 4.8. All these findings are not specific to the
component sum and extend immediately to all componentwise non-decreasing
functions (see Corollary 4.10). Moreover, Theorems 4.1 and 4.2 also cover the
convergence of aggregated risk distributions obtained by Monte-Carlo sampling
of a multivariate model constructed by plugging empirical margins into a copula
(see Remark 4.9). In fact, both sampling methods (reordering by Iman–Conover
and classic top-down sampling with empirical margins instead of the exact ones)
lead to the same mathematical problem. This is discussed in Remark 3.2(d).

The regularity assumptions used here to establish theOP(n−1/2) convergence
rate for Iman–Conover estimates of sum distributions are satisfied for all copulas
with bounded densities. This case includes the independence copula in arbitrary
dimension d ≥ 2. The assumptions are also satisfied for all bivariate Clayton
copulas and for bivariate Gauss copulas with correlation parameter ρ ≥ 0. The
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convergence rate for ρ < 0 is, if at all, only slightly weaker. The best bound
that is currently available for ρ < 0 is OP(n−1/2

√
log n).

The regularity assumptions for the marginal distributions involved in the
Iman–Conover method are absolutely natural, and they are always satisfied by
empirical distribution of i.i.d. samples: Strong uniform consistency of Iman–
Conover estimates needs strong uniform consistency of consistency of empirical
margins, whereas the uniform OP(n−1/2) convergence rate of Iman–Conover
requires the same uniform convergence rate of OP(n−1/2) in the margins.

Why a precise CLT remains elusive
The convergence results obtained here are related to standard convergence

results for empirical copulas (cf. Rüschendorf, 1976; Deheuvels, 1979; Fermanian
et al., 2004; Segers, 2012). However, the mathematical problem for the sum
distribution goes beyond the standard setting, where empirical measures are
evaluated on rectangular sets. In the case of sum distributions, the usage of
empirical margins in the construction of the multivariate model significantly
extends the class of sets on which the empirical process of the copula sample
should converge. As shown in Section 3, the canonical way to prove asymptotic
normality for the Iman–Conover estimator of the sum distribution would need a
uniform CLT for the copula sample on the collection of so-called lower layers in
[0, 1]d. However, this class is too complex for a uniform CLT (cf. Dudley, 1999,
Theorems 8.3.2, 12.4.1, and 12.4.2). For this reason the proofs of consistency and
convergence rate presented here sacrifice the precise asymptotic variance and use
approximations that allow to simplify the problem. This technical difficulty is
not specific to the Iman–Conover method. It also arises in any other application
where multivariate samples are generated from a simulated copula sample and
empirical marginal distributions. As mentioned above, this approach is very
popular in practice, especially for computational reasons. Similar problems also
arise in applications that combine exact marginal distributions with empirical
copulas.

Structure of the paper
The paper is organized as follows. Section 2 introduces the reordering

method and highlights the relations between sample reordering and empirical
copulas. The complexity issues are discussed in Section 3. The convergence
results are established in Section 4. The underlying regularity assumptions are
discussed in Section 5, including examples of copula families that satisfy them.
Conclusions are stated in Section 6.

2. Empirical copulas and sample reordering

Let X = (X1, . . . , Xd) be a random vector in Rd with joint distribution
function F , marginal distribution functions F1, . . . , Fd, and copula C. That is,

F (x) = C(F1(x1), . . . , Fd(xd)), (1)
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where C is a probability distribution function on [0, 1]d with uniform margins.
By Sklar’s Theorem, any multivariate distribution function F admits this rep-
resentation.

We assume throughout the following that Fi are unknown and that we have
some uniform approximations Fi,n, i = 1, . . . , d. The true margins Fi need not
be continuous. In this case the representation (1) is not unique, but it is not
an issue in our application, which is rather computational than statistical. As
sketched in the Introduction, we consider the case where only univariate, asyn-
chronous observations of the components Xi are available, and the copula C is
set by expert judgement to compute the resulting distribution of the component
sum. In practice, the choice of the copula C aims at dependence characteristics
that are known or assumed for the random vector X. This choice also depends
on the ability to sample C or any other multivariate distribution with continuous
margins and copula C.

To keep the presentation simple, we assume that Fi,n are empirical distribu-
tion functions of some univariate samples X(1)

i , . . . , X
(n)
i for i = 1, . . . , d:

Fi,n(t) :=
1
n

n∑

k=1

1
{
X

(k)
i ≤ t

}
, t ∈ R. (2)

These samples need not be i.i.d. We will only assume that ‖Fi,n − Fi‖∞ → 0,
either P-a.s. or in probability. Extensions to the general case will be given later
on.

Let X(1:n)
i ≤ . . . ≤ X

(n:n)
i denote the order statistics of the i-th component

Xi for i = 1, . . . , d, and let PH denote the probability measure with distribution
function H. The Iman–Conover method approximates PF by the empirical
measure of the following synthetic multivariate sample:

X̃(j) :=

(
X

(
R

(j)
1 :n

)

1 , . . . , X

(
R

(j)
d :n

)

d

)
, j = 1, . . . , n, (3)

where R(1)
i , . . . , R

(n)
i for i = 1, . . . , d are the marginal ranks of a simulated i.i.d.

sample U (1), . . . , U (n) ∼ C:

R
(j)
i =

n∑

k=1

1
{
U

(j)
i ≥ U (k)

i

}
, i = 1, . . . , d, j = 1, . . . , n.

It is easy to verify (cf. Arbenz et al., 2012, Theorem 3.2) that the empirical
distribution function of the synthetic sample (3) is equal to

F ∗n(x) := C∗n(F1,n(x1), . . . , Fd,n(xd)), (4)

where C∗n is the rank based empirical copula of U (1), . . . , U (n):

C∗n(u) :=
1
n

n∑

k=1

1
{

1
n
R

(k)
1 ≤ u1, . . . ,

1
n
R

(k)
d ≤ ud

}
. (5)
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This links the convergence of the Iman–Conover method to the convergence of
PF∗n to PF , and hence to the convergence of PC∗n to PC .

Remark 2.1. (a) The central application of the Iman–Conover method discussed
in the present paper is the computation of the aggregated risk distribution.
The most common risk aggregation function is the sum. In this case one
must compute the probability distribution of the random variable

∑d
i=1Xi

for (X1, . . . , Xd) ∼ F with F defined in (1). Iman–Conover involves two
approximations: replacing the unknown margins Fi by their empirical ver-
sions Fi,n, and replacing the known (or treated as known) copula C by its
empirical version C∗n.

(b) Using C∗n may appear unnecessary because one can also compute the sum
distribution for a random vector with margins Fi,n and exact copula C.
However, computation of sum distributions from margins and copulas is
quite difficult in practice. It involves numeric integration on non-rectangular
sets, which cannot be reduced to taking the value of C (F1,n(x1), . . . , Fd,n(xn))
for a few points x = (x1, . . . , xd). Implementations of this kind are exposed
to the curse of dimensions. Monte-Carlo methods, which Iman–Conover
belongs to, have the convergence rate of 1/

√
n, and Quasi-Monte-Carlo

methods using special sequences may even allow to achieve the rate 1/n.
According to Arbenz et al. (2011), explicit computation of sum distributions
is outperformed by Monte-Carlo already for d = 4.

(c) Another motivation of the Iman–Conover method is its flexibility and al-
gorithmic tractability. It only includes reordering of samples and works in
the same way for any dimension. Moreover, sample reordering is compati-
ble with hierarchical dependence structures that can be described as trees
with univariate distributions in leaves and copulas in branching nodes (cf.
Arbenz et al., 2012). In each branching node, the marginal distributions
are aggregated according to the node’s copula and the resulting aggregated
(typically, sum) distribution is propagated to the next aggregation level. As
shown in Arbenz et al. (2012), sample reordering can be implemented for
a whole tree. The setting with one copula and margins discussed in the
present paper is the basic element of such aggregation trees. The results
presented here allow to prove the convergence of the aggregated (say, sum)
distribution in every tree node, including the total sum.

Now let us return to the technical details of the Iman–Conover estimator for
the aggregated sum distribution. As the random variables U (k)

i are continuously
distributed, they have no ties P-a.s. Thus PC∗n consists P-a.s. of n atoms of size
1/n. Moreover, these n atoms build a Latin hypercube on the d-variate grid
{ 1
n ,

2
n , . . . , 1}d, i.e., each section {x ∈ { 1

n ,
2
n , . . . , 1}d : xi = j

n} for i = 1, . . . , d
and j = 1, . . . , n contains precisely one atom. Therefore the Iman–Conover
method is also called Latin Hypercube Sampling with dependence.

For X ∼ F , let G denote the distribution function of the component sum:
G(t) := P(X1 + . . . + Xd ≤ t), t ∈ R. The relation between G and PC can be
expressed as follows.
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Lemma 2.2.

∀t ∈ R G(t) = PC(〈T (At)〉) (6)

where At := {x ∈ Rd :
∑d
i=1 xi ≤ t}, T (x) := (F1(x1), . . . , Fd(xd)), and

〈B〉 := ∪u∈B [0, u] for B ⊂ [0, 1]d.

The notation [0, u] refers to the closed d-dimensional interval between 0 and
u: [0, u] := [0, u1]× · · · × [0, ud].

Proof. Let U ∼ C and denote

T←(u) := (F←1 (u1), . . . , F←d (ud))

for u ∈ [0, 1]d, where F←i (y) := inf{t ∈ R : Fi(t) ≥ y} is the quantile function of
Fi. It is well known that T←(U) ∼ F . Hence

G(t) = PF (At) = P (T←(U) ∈ At) = PC
({
u ∈ [0, 1]d : T←(u) ∈ At

})
,

and it suffices to show that v ∈ 〈T (At)〉 is equivalent to T←(v) ∈ At.
If T←(v) ∈ At, then T ◦ T←(v) ∈ 〈T (At)〉. Due to Fi ◦ F←i (vi) ≥ vi for all i

this implies that v ∈ [0, T ◦ T←(v)] ⊂ 〈T (At)〉.
If v ∈ 〈T (At)〉, then v ≤ T (x) (componentwise) for some x ∈ At. Since

F←i ◦ F (xi) ≤ xi for all i, this yields T←(v) ≤ x. As the function x 7→∑d
i=1 xi

is componentwise non-decreasing, we obtain that T←(v) ∈ At.

Remark 2.3. (a) The measurability of 〈T (At)〉 follows from the equivalence of
v ∈ 〈T (At)〉 and T←(v) ∈ At.

(b) The purpose of the operator 〈·〉 is to guarantee that for u ∈ 〈B〉 and v ∈
[0, 1]d the componentwise ordering v ≤ u implies v ∈ 〈B〉. This immediately
yields 〈〈B〉〉 = 〈B〉. Consistently with Dudley (1999), we will call 〈B〉
the lower layer of B. This set class is also mentioned in the context of
nonparametric regression (cf. Wright, 1981, and references therein).

(c) The sets 〈T (At)〉 are closed if the marginal distributions Fi have bounded
domains, but not necessarily in the general case. If, for instance, F1 = F2 are
standard normal distributions, then 〈T (A0)〉 = {u ∈ [0, 1]2 : u1 + u2 ≤ 1} \
{(0, 1), (1, 0)}. This example with punctured corners is quite prototypical.
It is easy to show that if a sequence u(n) in 〈T (At)〉 converges to u /∈ 〈T (At)〉,
then u is on the boundary of [0, 1]d. Indeed, if u ∈ (0, 1)d, then u(n) ∈ (0, 1)d

for sufficiently large n. This allows to construct a sequence v(n) → u such
that v(n) ≤ u(n) and v(n) ≤ u for all n. For any u(n) ∈ 〈T (At)〉 there
exists x(n) ∈ At such that T (x(n)) ≥ u(n). As T← is non-decreasing and
F←i ◦ F (xi) ≤ xi for all i, we have x(n) ≥ T←(u(n)) ≥ T←(v(n)) and hence
T←(v(n)) ∈ At for all n. Since all F←i are left continuous on (0, 1), we
obtain T←(v(n))→ T←(u) and T←(u) ∈ At. As Fi ◦ F←i (ui) ≥ ui for all i,
we obtain u ∈ 〈T (At)〉. Thus u /∈ 〈T (At)〉 is only possible for u ∈ ∂[0, 1]d.
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By construction, 〈T (At)〉 includes all points u ∈ ∂[0, 1]d such that u+ εei ∈
〈T (At)〉 for some unit vector ei, i = 1, . . . , d, and ε > 0. Thus the area
where the set 〈T (At)〉 does not include its boundary points is very small.

Let us now return to the estimation of the sum distribution G(t) = PF (At).
The empirical distribution of the component sum in the synthetic sample (3) is
nothing else than the empirical multivariate distribution of this sample evaluated
at the sets At:

G∗n(t) :=
1
n

n∑

k=1

1
{
X

(R
(k)
1 :n)

1 + . . .+X
(R

(k)
d :n)

d ≤ t
}

(7)

=
1
n

n∑

k=1

1
{(

X
(R

(k)
1 :n)

1 , . . . , X
(R

(k)
d :n)

d

)
∈ At

}
.

Analogously to (6), G∗n(t) = PF∗n (At) can be written in terms of the empirical
copula C∗n defined in (5) and, as next step, in terms of the empirical distribution
Cn of the i.i.d. copula sample U (1), . . . , U (n):

Cn(u) :=
1
n

n∑

k=1

1{U (k) ∈ [0, u]}, u ∈ [0, 1]d.

Let Ci,n denote the margins of Cn, and let C←i,n denote the corresponding quan-
tile functions. To avoid technicalities, we consider C←i,n as mappings from [0, 1]
to [0, 1]:

C←i,n(u) := inf{v ∈ [0, 1] : Ci,n(v) ≥ u}, u ∈ [0, 1].

Denote τn(x) := (F1,n(x1), . . . , Fd,n(xd)) and Tn := ρ←n ◦ τn, where ρ←n :=
(C←1,n(x1), . . . , C←d,n(xd)). Then we can state the following result.

Corollary 2.4.

∀t ∈ R G∗n(t) = PC∗n(〈τn(At)〉) (8)

and, with probability 1,

∀t ∈ R G∗n(t) = PCn(〈Tn(At)〉). (9)

Proof. It is easy to see that the synthetic sample (3) can be written as

X̃(k) = τ←n ◦ ρn
(
U (k)

)
, k = 1, . . . , n,

where τ←n (x) := (F←1,n(x1), . . . , F←d,n(xd)) and ρn(x) := (C1,n(x1), . . . , Cd,n(xd)).
This yields

G∗n(t) =
1
n

n∑

k=1

1
{
τ←n ◦ ρn

(
U (k)

)
∈ At

}
. (10)
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According to the proof of Lemma 2.2, τ←n (x) ∈ At is equivalent to x ∈ 〈τn(At)〉.
Hence (10) implies

G∗n(t) =
1
n

n∑

k=1

1
{
ρn

(
U (k)

)
∈ 〈τnAt〉

}
,

which is the same as (8) because C∗n is the empirical distribution function of
ρn(U (1)), . . . , ρn(U (n)).

Being continuously distributed, U (1)
i , . . . , U

(n)
i have different values P-a.s. for

each i. Hence the mapping ρ←n is componentwise P-a.s. strictly increasing on
{ 1
n , . . . , 1}d with probability 1, and therefore

1
{
ρn

(
U (k)

)
∈ 〈τn(At)〉

}
= 1

{
ρ←n ◦ ρn

(
U (k)

)
∈ 〈ρ←n (〈τn(At)〉)〉

}
P-a.s.

Thus (9) follows from ρ←n ◦ρn(U (k)) = U (k) and 〈ρ←n (〈τn(At)〉)〉 = 〈ρ←n ◦τn(At)〉.

Remark 2.5. Uniform consistency of Fi,n and C←i,n implies Tn → T in l∞(Rd).

3. Complexity of the problem

The representation (9) translates the asymptotic normality of G∗n into a CLT
for Cn uniformly on the random set sequence (〈Tn(At)〉 : n ∈ N). The canonical
way to prove results of this kind is to establish a uniform CLT on the set class
Td of all possible 〈Tn(At)〉 and 〈T (At)〉. This is the natural set class to work
with if Fi are unknown and estimated empirically. The index d in the notation
Td highlights the dimension. Since Fi need not be continuous, the set of all
T includes all Tn, so that Td is simply the collection of all possible 〈T (At)〉.
Furthermore, if each unknown margin Fi has a positive density on entire R,
then the resulting empirical distributions Fi,n can take any value in the class
of all possible stair functions on R with steps of size 1/n going from 0 to 1.
In this case the class of all possible 〈Tn(At)〉 is dense (w.r.t. Hausdorff metric)
in the class of all possible T (At). Thus, even though there is only one limit
transformation T that really matters to us, considering the class of all possible
〈T (At)〉 does not add more complexity to the problem.

It is also easy to see that even pointwise asymptotic normality of G∗n(t) in
some t = t0 would require a uniform CLT on Td. Shifting the unknown margins
Fi, one can easily generate all possible sets T (At) from a single At0 . Thus the
complexity of the problem is the same for the uniform and for the pointwise
asymptotic normality of G∗n.

There are various functional CLTs for empirical copulas (cf. Rüschendorf,
1976; Deheuvels, 1979; Fermanian et al., 2004; Segers, 2012, and references
therein). However, empirical copula estimates are empirical measures evalu-
ated on the set class Rd of rectangle cells (−∞, a] := (−∞, a1]× . . .× (−∞, ad]
for a ∈ Rd. This set class is simple enough to be universally Donsker. A set
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class C is called P-Donsker if the empirical measure Pn(B) := 1
n

∑n
k=1 1B(Y (k))

of an i.i.d. sample Y (1), . . . , Y (n) ∼ P satisfies
√
n (Pn(B)− P(B)) w→ GP(B) (11)

as a mapping in l∞(C), where GP is the so-called Brownian bridge “with time”
P . That is, GP is a centred Gaussian process with index B ∈ C and covariance
structure

cov(GP(A),GP(B)) = P(A ∩B)− P(A)P(B).

The Donsker property of C is called universal if it holds for any probability
measure P on the sample space.

The symbol w→ in (11) refers to the extended notion of weak convergence
for non-measurable mappings in l∞(C) as used in van der Vaart and Wellner
(1996). See Remark 4.5 for further details.

Sufficient conditions for a set class to be Donsker can be obtained from the
entropy of this set class. Entropy conditions can be formulated in terms of
covering numbers or bracketing numbers (cf. van der Vaart and Wellner, 1996,
Sections 2.1 and 2.2). Entropy bounds that do not depend on the underlying
probability measure are called uniform. The most common sufficient criterion
for uniform entropy bounds guaranteeing that a set class is universally Donsker is
the Vapnik–C̆ervonenkis (VC) property. A set class C is VC if it does not shatter
any n-point set {x(1), . . . , x(n)} for sufficiently large n. The set {x(1), . . . , x(n)}
is shattered by C if every subset A ⊂ {x(1), . . . , x(n)} can be obtained as A =
B ∩ {x(1), . . . , x(n)} with some B ∈ C. The smallest n such that no n-point set
is shattered by C is called VC-index of C.

It is well known that the set class Rd is VC with index d + 1 (cf. van der
Vaart and Wellner, 1996, Example 2.6.1). This yields asymptotic normality of
Cn(u) uniformly in u ∈ [0, 1]d. The asymptotic normality of empirical copulas
follows then by functional Delta method. These functional CLTs allow to prove
asymptotic normality for the estimators of the multivariate distribution function
F (x) that are derived from Cn or C∗n.

Unfortunately, the problem for G∗n is much more difficult. As shown above, a
functional CLT for G∗n is closely related to a uniform CLT for Cn on the set class
Td. The complexity of Td is much higher than that of Rd. Lemma 3.1 stated
below implies that Td is not VC, and Remark 3.2(c) shows that the complexity
of this set class is even so high that a uniform CLT on Td does not hold.

Let Hd denote the collection of all lower layers in [0, 1]d:

Hd :=
{
B ⊂ [0, 1]d : 〈B〉 = B

}
,

and denote Hd := {B : B ∈ Hd}. Analogously, denote Td := {B : B ∈ Td}.
According to Remark 2.3(c), B ∈ Td implies that B \ B ⊂ ∂[0, 1]d, which is a
PC-null set for any copula C. Thus, for empirical processes constructed from
copula samples, uniform convergence on Td is equivalent to uniform convergence
on Td.

It is obvious that Td ⊂ Hd. The following result shows that for d = 2 these
set classes are almost identical.
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Lemma 3.1. If B ∈ H2, then B∪Λ2 ∈ T2, where Λ2 := {u ∈ [0, 1]2 : u1u2 = 0}
is the union of lower faces of [0, 1]2.

Proof. Denote B′ := B∪Λ2. It suffices to find probability distribution functions
F1, F2 such that 〈T (A0)〉 = B′ with T (x) = (F1(x1), F2(x2)). Denote

F1(t) := t1[0,1)(t) + 1[1,∞)(t)

and

F2(t) :=





0 if t < −1
sup{s ∈ [0, 1] : (−t, s) ∈ B′} if t ∈ [−1, 0)
1 if t ≥ 0

.

Since B′ ∈ H2, the function F2 is non-decreasing in t. Indeed, if (−t, s) ∈ B′,
then (−t − δ, s) ∈ B′ for any δ ∈ (0, t], and hence F2(t + δ) ≥ F2(t). The
maximal value of F2 is 1, and F2 is right continuous because B′ is closed. Thus
F2 is a probability distribution function.

As F1 and F2 are non-decreasing, we have

〈T (A0)〉 = 〈T (∂A0)〉

where ∂A0 := {(−t, t) : t ∈ R} is the boundary of A0. Now observe that

T (∂A0) = {(F1(t), F2(−t)) : t ∈ R} = {(t, F2(−t)) : t ∈ [0, 1]} .

Hence 〈T (A0)〉 is the area enclosed between the zero line and the graph of F2(−t)
for t ∈ [0, 1]. This is precisely B′.

Remark 3.2. (a) Since Λ2 is a PC-null set for any copula C, the modification
of B into B∪Λ2 in Lemma 3.1 has no influence on the uniform convergence
of empirical processes obtained from copula samples.

(b) The set classes Hd and Hd are not VC. For instance, they shatter all sets
{u ∈ {0, 1

n , . . . , 1}d : u1 + . . .+ ud = 1} for n ∈ N. Any subset B of this
hyperplane in {0, 1

n , . . . , 1}d can be picked out by 〈B〉 ∈ Hd ⊂ Hd. Sim-
ilar arguments apply to the modified set class {B ∪ Λd : B ∈ Hd}. Hence
Lemma 3.1 implies that T2 is not VC. This rules out the canonical usage of
VC criteria in convergence proofs for G∗n.

(c) The problem is even more difficult, and also more remarkable. In fact,
the set classes Hd and Hd for d ≥ 2 are not Donsker with respect to the
Lebesgue measure on [0, 1]d (cf. Dudley, 1999, Theorems 8.3.2, 12.4.1, and
12.4.2). Thus Lemma 3.1 implies that a uniform CLT on T2 does not hold
in the most basic case, when C is the independence copula. Therefore
one cannot prove asymptotic normality of G∗n via uniform CLT on T2, and
precise asymptotic variance of G∗n also seems out of reach.
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(d) The complexity issues are not specific to the estimator G∗n obtained by plug-
ging empirical margins Fi,n into the rank based empirical copula C∗n. They
also affect models generated by plugging Fi,n directly into the “exact” cop-
ula C. Top-down simulation of such models means marginal transformation
of copula samples U (1), . . . , U (n) ∼ C by F←i,n. The resulting estimate of the
component sum distribution G(t) can be written as PCn(〈τn(At)〉) where
τn(x) := (F1,n(x1), . . . , Fd,n(x1)). The sets 〈τn(At)〉 feature the same stair
shape as the sets 〈Tn(At)〉. Asymptotic normality of PCn(〈τn(At)〉) leads
us again to a uniform CLT on Td.

(e) It is not yet clear whether Lemma 3.1 can be extended to B ∈ Hd for d > 2.
However, the complexity of Hd can only increase for greater d. It is easy to
embed H2 in Hd for d > 2 by identifying H2 with the following subclass:

Hd|1,2
{
B ∈ Hd : B = B′ × [0, 1]d−2, B′ ∈ H2

}
.

Setting Fi(t) := 1[0,∞)(t) for i = 3, . . . , d in the proof of Lemma 3.1, the
result obtained there can be extended to B ∪ Λd ∈ Td for B ∈ Hd|1,2. This
allows to extend the conclusions in (b,c,d) to all dimensions d > 2.

Remark 3.3. (a) The results of this section can be summarized as follows: The
true target set class HT := {〈T (At)〉 : t ∈ R} is simple (it will be shown in
Remark 4.12 that HT is VC with index 2), but unknown. Replacing these
unknown margins by the empirical ones, we obtain random elements of the
set class Td, which is too complex for a uniform CLT. This is the reason
why the convergence proofs presented below sacrifice precise asymptotic
variance. The resulting loss of precision can be considered as the price one
is forced to be pay for using empirical margins Fi,n instead of the true ones.

(b) Similar issues can also arise when the margins are known, but the copula is
not. The implicit use of transformations ρn in C∗n (cf. proof of Corollary 2.4)
entails deformations of target sets B ∈ HT that are very similar to the ones
caused by Tn or τn. Thus, depending on the application, loss of precision
may also be caused by the use of an empirical copula. In particular, a
uniform CLT for C∗n on the set class HT is still an open problem, and the
foregoing results suggest a plausible explanation why this problem is so
hard.

(c) A deeper reason behind these complexity issues is the typical shape of the
target sets B ∈ HT . If the margins or the copula are estimated empirically,
corresponding random transformations of B (τn and ρ←n in Corollary 2.4)
significantly increase the complexity of the problem. Depending on the
application, the resulting loss of precision can be attributed to empirical
margins, empirical copulas, or both.

4. Convergence results

The major problem studied in this paper is the uniform convergence of the
Iman–Conover estimator G∗n introduced in (7). Strong consistency in l∞(R) is
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established in Theorem 4.1. A sufficient condition for the convergence rate to
be n−1/2 is given in Theorem 4.2. These results are stated below and followed
by some corollaries, remarks, and auxiliary results needed in the proofs. The
technical proofs of the auxiliary results are provided in Section 4.1.

Theorem 4.1. Let G(t) := P(X1 + . . .+Xd ≤ t) for X ∼ F as defined in (1),
and let G∗n be the Iman–Conover estimator of G introduced in (7). Assume that
the functions Fi,n defined in (2) satisfy

‖Fi,n − Fi‖∞ → 0 P-a.s., i = 1, . . . , d. (12)

If the copula C of F is Lebesgue absolutely continuous, then ‖G∗n − G‖∞ → 0
P-a.s.

As discussed in Remark 3.2(c), a CLT for G∗n seems out of reach, so that
the convergence rate is established as an OP(n−1/2) bound. This notation is
related to tightness: Zn = OP(1) means that Zn is tight, and Zn = OP(an) is
equivalent to a−1

n Zn = OP(1). In particular, if |Zn| ≤ |Yn| and Yn
w→ Y , then

Zn = OP(1).
The regularity assumptions also need some additional notation. In the fol-

lowing, let Bt denote the “upper” boundary of 〈T (At)〉:

Bt :=
{
x ∈ 〈T (At)〉 : ∀ε > 0 x+ (ε, . . . , ε) /∈ 〈T (At)〉

}
t ∈ R,

and let Uδ(Bt) denote the closed δ-neighbourhood of Bt in Euclidean distance:

Uδ(Bt) :=
{
u ∈ [0, 1]d : |u− v| ≤ δ for some v ∈ Bt

}
. (13)

One of the regularity assumptions in Theorem 4.2 specifies the probability mass
that the copula C assigns to Uδ(Bt). The other one involves the Lebesgue
density c of C. For ε ∈ (0, 1/2), we denote

K(ε) := ess sup
{
c(u) : u ∈ [ε, 1− ε]d

}
.

The growth of K(ε) for ε→ 0 specifies the behaviour of c near the boundary of
[0, 1]d.

Theorem 4.2. Let G(t) := P(X1 + . . .+Xd ≤ t) for X ∼ F as defined in (1),
and let G∗n be the Iman–Conover estimator of G introduced in (7). Assume that
the functions Fi,n defined in (2) satisfy

‖Fi,n − Fi‖∞ = OP(n−1/2), i = 1, . . . , d, (14)

and that the copula C of F is absolutely continuous and satisfies

sup
t∈R

PC(Uδ(Bt)) = O(δ) (15)

for δ → 0 and Uδ(Bt) defined in (13). Further, assume that
∫ 1/2

0

√
logK (ε2)dε <∞. (16)

Then ‖G∗n −G‖∞ = OP(n−1/2).
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Figure 1: Set families {Bt : t ∈ R}. Left hand side: X1 ∼ N (0, 1) and X2 ∼ N (0, 1/4). Right
hand side: X1 ∼ Exp(1) and X2 ∼ Exp(0.7).

Remark 4.3. The shapes of the sets Bt strongly depend on the marginal dis-
tributions Fi. Two examples of set families {Bt : t ∈ R} are given in Figure 1.
The verification of (15) for some copula families is discussed in Section 5. The
examples presented there suggest that this condition is non-trivial, and that it
depends on the interplay between the copula C and the true, unknown margins
Fi.

We proceed with an auxiliary result that gives us an upper bound for the
volume of Uδ(Bt). It follows from the componentwise monotonicity of the trans-
formation T . The general idea behind this result is that the “surface area” of
Bt is bounded by the sum of its d projections on the lower faces of the unit
square [0, 1]d, and the “thickness” of Uδ(Bt) is roughly 2δ. The proof is given
in Section 4.1.

Lemma 4.4. Let λ denote the Lebesgue measure on [0, 1]d. Then λ(Uδ(Bt)) ≤
2dδ.

The next lemma provides the Glivenko–Cantelli and Donsker properties for
two set classes involved in the proofs of Theorems 4.1 and 4.2. The Donsker
property is defined in (11). A set class C is called P-Glivenko–Cantelli if the em-
pirical measure Pn(B) := 1

n

∑n
k=1 1B(Y (k)) of an i.i.d. sample Y (1), . . . , Y (n) ∼

P satisfies

‖Pn − P‖C := sup
B∈C
|Pn(B)− P(B)| a.s.→ 0 (17)

This notation emphasizes that the convergence also depends on the true distri-
bution that is sampled to construct Pn.
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Remark 4.5. One technical aspect of (17) and (11) needs an additional comment.
These statements regard Pn and P as mappings from the probability space
(Ω,A,P) to l∞(C). However, Pn need not be measurable with respect to the
Borel σ-field on l∞(C) (cf. Billingsley, 1968, Chapter 18). This issue can be
solved by extended versions of almost sure and weak convergence as presented
in van der Vaart and Wellner (1996). In the following, a.s.→ and w→ are understood
according to that monograph. In case of measurability these extended notions
coincide with the standard ones.

Lemma 4.6. (a) The set class

HT := {〈T (At)〉 : t ∈ R}

for a fixed T (x) = (F1(x1), . . . , Fd(xd)) is universally Glivenko–Cantelli and
Donsker.

(b) If C is Lebesgue absolutely continuous, then the set class

Dδ0 := {Uδ(Bt) : δ ∈ [0, δ0], t ∈ R}

is PC-Glivenko–Cantelli for any δ0 > 0.

(c) If C is Lebesgue absolutely continuous and satisfies (16), then Dδ0 is PC-
Donsker for any δ0 > 0.

The proof of this auxiliary result is given in Section 4.1. Now we proceed
with the proofs of Theorems 4.1 and 4.2.

Proof of Theorem 4.1. For the sake of simplicity, we will write µ〈B〉 instead of
µ(〈B〉) for any measure µ on [0, 1]d. According to (9), we have to show that
PCn〈Tn(At)〉 → PC〈T (At)〉 uniformly in t ∈ R. It is easy to see that

|PCn〈Tn(At)〉 − PC〈T (At)〉|
≤ PCn (〈Tn(At)〉 4 〈T (At)〉) + |PCn〈T (At)〉 − PC〈T (At)〉| , (18)

where4 denotes the symmetric difference: A4B := (A\B)∪(B\A). According
to Lemma 4.6(a), the set class HT is PC-Glivenko–Cantelli. Hence the second
term in (18) converges to 0 P-a.s. uniformly in t ∈ R.

Now consider the first term in (18) and denote

Yn := ‖Tn(x)− T (x)‖∞. (19)

As the transformations Tn and T are componentwise non-decreasing, Yn is a
measurable random variable. Furthermore, symmetry arguments give us ‖C←i,n−
id[0,1]‖∞ = ‖Ci,n− id[0,1]‖∞, where id[0,1](u) := u for u ∈ [0, 1]. Hence (12) and
the classic Glivenko-Cantelli theorem for Ci,n yield Tn

a.s.→ T in l∞(Rd). This
implies that Yn

a.s.→ 0.
It is also easy to see that

〈Tn(At)〉 4 〈T (At)〉 ⊂ UYn(Bt), (20)
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where Uδ(Bt) is the set introduced in (13). Moreover, for any δ > 0 we have

PCn (Uδ(Bt)) ≤ PC (Uδ(Bt)) + |PCn(Uδ(Bt))− PC(Uδ(Bt))| . (21)

As Yn
a.s.→ 0, it suffices to show that for δ → 0 both terms on the right hand side

of (21) vanish with probability 1 uniformly in t. In particular, for the second
term it suffices to show that for some δ0 > 0

lim
n→∞

sup
t∈R,δ∈[0,δ0]

|PCn(Uδ(Bt))− PC(Uδ(Bt))| = 0 P-a.s.

This follows from Lemma 4.6(b).
The first term on the right hand side of (21) vanishes due to the abso-

lute continuity of the copula C. Indeed, let ε > 0. Since the density c
of C is non-negative and

∫
c(u) dλ(u) = 1, there exists M > 0 such that∫

{c>M} c(u) dλ(u) < ε/2. Then, for δ ≤ ε/(4dM), Lemma 4.4 yields

PC (Uδ(Bt)) ≤ PCn (Uδ(Bt) ∩ {c ≤M}) +
ε

2
≤Mλ(Uδ(Bt)) +

ε

2
≤M2dδ +

ε

2
= ε.

That is, PC(Uδ(Bt))→ 0 for δ → 0

Proof of Theorem 4.2. According to (18) and (20), we have that
√
n |G∗n(t)−G(t)|
≤ √nPCn (UYn(Bt)) +

√
n |PCn〈T (At)〉 − PC〈T (At)〉| . (22)

The second term in (22) is OP(1) uniformly in t ∈ R due to Lemma 4.6(a).
Now consider the first term in (22) and observe that
√
nPCn (UYn(Bt))

=
√
n (PCn(UYn(Bt))− PC(UYn(Bt))) +

√
nPC (UYn(Bt)) . (23)

Applying the classic Donsker Theorem (cf. van der Vaart and Wellner, 1996,
Theorem 2.5.7) to Ci,n, we obtain that ‖C←i,n − id[0,1]‖∞ = ‖Ci,n − id[0,1]‖∞ is
OP(n−1/2). Hence assumption (14) yields Yn = OP(n−1/2), and assumption (15)
implies that the second term in (23) is OP(1).

Let Zn denote the the first term in (23). As Yn = oP(1), we have

Zn = 1{Yn ≤ δ0}
√
n (PCn(UYn(Bt))− PC(UYn(Bt))) + oP(1).

for any δ0 > 0. Now assumption (16) and Lemma 4.6(c) imply that Zn is weakly
convergent, and hence OP(1).
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The following corollary allows to replace the empirical marginal distributions
Fi,n in Theorems 4.1 and 4.2 by any other consistent approximations of the true,
unknown margins Fi.

Corollary 4.7. Let Fi,n, i = 1, . . . , d, n ∈ N, be arbitrary distribution functions
on R, and let G∗n(t) := PF∗n (At) with F ∗n(x) := C∗n(F1,n(x1), . . . , Fd,n(xd)).

(a) If Fi,n satisfy (12) and C is absolutely continuous, then ‖G∗n − G‖∞ → 0
P-a.s.

(b) If Fi,n satisfy (14) and C satisfies (15) and (16), then ‖G∗n − G‖∞ =
OP(n−1/2).

Proof. Part (a). For each Fi,n there is an approximation F̃i,n : R→ {0, 1
n , . . . , 1}

that minimizes ‖Fi,n − F̃i,n‖∞. It is obvious that ‖Fi,n − F̃i,n‖∞ ≤ 1/n. Hence
the estimator G̃n(t) := C∗n(〈T̃n(At)〉) with T̃n(A) := (C←1,n◦F̃1,n(x1), . . . , C←d,nF̃d,n(xd))
satisfies the assumptions of Theorem 4.1, and therefore ‖G̃n−G‖∞ a.s.→ 0. More-
over,

|G∗n(t)− G̃n(t)| ≤ PCn(〈T̃n(At)〉 4 〈Tn(At)〉)
≤ PCn(U‖T̃n−Tn‖∞+‖Tn−T‖∞(Bt)). (24)

As ‖T̃n−Tn‖∞ a.s.→ 0 and ‖Tn−T‖∞ a.s.→ 0, the term (24) vanishes with probability
1 uniformly in t ∈ R analogously to the first term in (21). This yields ‖G∗n −
G‖∞ a.s.→ 0.

Part (b). If Fi,n satisfy (14), then so do F̃i,n. Hence Theorem 4.2 yields
‖G̃n −G‖∞ = OP(n−1/2). Furthermore, (24) implies that

|G̃n(t)−G∗n(t)| ≤ |PCn(UỸn(Bt))− PC(UỸn(Bt))|+ PC(UỸn(Bt)) (25)

for Ỹn := ‖T̃n−T‖∞+‖Tn−T‖∞. As Ỹn = OP(n−1/2), assumption (15) implies
that supt∈R PC(UỸn(Bt)) = OP(n−1/2). The first term on the right hand side
of (25) is OP(n−1/2) uniformly in t ∈ R due to Lemma 4.6(c).

Remark 4.8. (a) Compared to G∗n, the multivariate distribution function F ∗n(x)
obtained by plugging Fi,n into C∗n is much easier to handle. The deeper
reason here is that F ∗n(x) can be written as the empirical measure PCn
indexed with random elements of the rectangle set class Rd. In particular,
if Fi,n are defined according to (2), then, analogously to (9), we have

F ∗n(x) = C∗n(F1,n(x1), . . . , Fd,n(xd))
= Cn(C←1,n ◦ F1,n(x1), . . . , C←d,n ◦ Fd,n(xd)) = PCn(〈Tn(x)〉). (26)

As mentioned above,Rd is VC, and hence universally Donsker and Glivenko–
Cantelli. Thus, due to 〈Tn(x)〉 ∈ Rd, we can apply standard results to F ∗n .
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(b) To prove strong consistency of F ∗n , recall that any copula is a Lipschitz func-
tion with Lipschitz constant 1 (cf. Nelsen, 2006, Theorem 2.2.4). Therefore
(26) yields

‖F ∗n − F‖∞ ≤ ‖Cn − C‖∞ + Yn. (27)

As mentioned below (19), assumption (12) implies that Yn
a.s.→ 0. Hence

‖F ∗n − F‖∞ → 0 P-a.s. due to the classic Glivenko–Cantelli Theorem for
empirical distribution functions. The extension to general Fi,n is analogous
to Corollary 4.7(a).

(c) In the proof of Theorem 4.2 it is shown that assumption (14) entails Yn =
OP(n−1/2). Hence the OP(n−1/2) convergence rate for F ∗n follows from (27)
and the classic Donsker Theorem for empirical distribution functions. The
extension to general Fi,n is analogous to Corollary 4.7(b).

(d) If Fi,n satisfy a functional CLT, then the functional Delta method yields
a functional CLT for F ∗n , with precise asymptotic variance – see van der
Vaart and Wellner (1996, Lemma 3.9.28) and Segers (2012) for further de-
tails. Unfortunately, this does not imply a functional CLT for G∗n, as G∗n is
obtained by indexing PCn with a totally different set class.

Remark 4.9. Theorems 4.1 and 4.2, along with all their extensions and corollar-
ies, also apply to multivariate models generated by plugging empirical margins
Fi,n directly into the copula C. According to Remark 3.2(d), the resulting esti-
mator ofG(t) can be written as PCn(〈τn(At)〉) with τn(x) = (F1,n(x1), . . . , Fd,n(xd)).
Since G∗n = PCn(〈Tn(At)〉), extension of convergence results to PCn(〈τn(At)〉) is
straightforward. A closer look at the proof of Corollary 2.4 suggests that same
is true for the convergence of PCn(〈ρ←n ◦ T (At)〉) uniformly in t ∈ R, where
T (x) = (F1(x1), . . . , Fd(xd)) and ρn(x) = (C1,n(x1), . . . , Cd,n(xd)). This setting
corresponds to the combination of exact margins with the empirical copula C∗n.

The final result in this section generalizes all foregoing results to a broader
class of aggregation functions. Revising the proofs above, it is easy to see that
the only property of the component sum used there is that it is componentwise
non-decreasing. This immediately yields the following extension.

Corollary 4.10. Let a function Ψ : Rd → R satisfy

Ψ(x) ≤ Ψ(y) if xi ≤ yi for i = 1, . . . , d.

Then all results stated above for the sum distribution G also hold for the distribu-
tion function GΨ of the aggregated random variable Ψ(X). In particular, the es-
timator G∗Ψ,n(t) := PF∗n ({x ∈ Rd : Ψ(x) ≤ t}) converges P-a.s. to GΨ in l∞(R)
under the assumptions of Theorem 4.1 and has convergence rate OP(n−1/2) un-
der the assumptions of Theorem 4.2.

Remark 4.11. (a) It depends on the aggregation function Ψ whether the gener-
alization stated above is advantageous. In some special cases even stronger
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results are possible. If, for instance, Ψ(x) = max{x1, . . . , xd}, then the con-
vergence of G∗Ψ,n in l∞ is related to the uniform convergence of the empirical
measure PCn on the rectangle set class Rd∩ [0, 1]d. As the latter set class is
VC, one can derive a Donsker Theorem for G∗Ψ,n with a precise asymptotic
variance.

(b) Another remarkable example is the Kendall process, which is obtained by
taking the joint distribution function F as aggregating function Ψ. The
resulting aggregated distribution function is H(t) := P(F (X) ≤ t). Using
the notation from above, this means H := GΨ for Ψ = F . The aggregated
distribution function H(t) can be estimated by the empirical distribution
Hn := n−1

∑n
j=1 1{F ∗n(X̃(j)) ≤ t}, where X̃(j) are the Iman–Conover syn-

thetic variables defined in (3) and F ∗n is their empirical distribution function
(cf. (4)). If the margins Fi are continuous, then F (X) has the same dis-
tribution as C(U) for U ∼ C. Moreover, F ∗n(X̃) can always be written as
C∗n(U) for U ∼ C. Thus the distribution of the process

√
n(Hn(t) −H(t))

does not depend on the margins Fi. In this case asymptotic normality is
also available (cf. van der Vaart and Wellner, 2007; Ghoudi and Rémillard,
1998; Barbe et al., 1996).

(c) In the general case, however, extensions of Theorems 4.1 and 4.2 indeed go
beyond available convergence results for empirical multivariate distribution
functions.

4.1. Proofs of auxiliary results
Proof of Lemma 4.4. Denote

W
(0)
δ,t := 〈〈T (At)〉+ δ(1, . . . , 1)〉 ∩ [0, 1]d

and, subsequently,

W
(i)
δ,t :=

(
W

(i−1)
δ,t − 2δei

)
∩ [0, 1]d, i = 1, . . . , d.

The notation A+ x for A ⊂ Rd and x ∈ Rd represents a shift of the set A, i.e.,
A+ x := {a+ x : a ∈ A}. Further, denote

V
(i)
δ,t := W

(i−1)
δ,t \W (i)

δ,t , i = 1, . . . , d.

The boundaries of V (i)
δ,t are Lebesgue null sets, because any 〈A〉 for A ⊂ [0, 1]d

is Lebesgue-boundary-less. Indeed, the construction of 〈A〉 guarantees that
if u ∈ 〈A〉 and v ∈ [0, 1]d, then v ≤ u (componentwise) implies v ∈ 〈A〉.
Analogously, if u ∈ [0, 1]d \ 〈A〉 and v ∈ [0, 1]d with v ≥ u, then v ∈ [0, 1]d \ A.
This monotonicity property allows to cover the boundary ∂〈A〉 by O(ε1−d) d-
dimensional cubes with edge length ε for any ε > 0. The total volume of this
coverage is O(ε), so that sending ε → 0 we obtain λ(∂〈A〉) = 0. This implies
that all sets W (j)

δ,t and V
(i)
δ,t are Lebesgue-boundary-less.
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It is obvious that Uδ(Bt) ⊂W (0)
δ,t \W

(d)
δ,t . Moreover, the construction of V (i)

δ,t

entails that

W
(0)
δ,t \W

(d)
δ,t =

d⋃

i=1

V
(i)
δ,t

and λ(V (i)
δ,t ) ≤ 2δ for all i. This yields λUδ(Bt) ≤ 2dδ.

Proof of Lemma 4.6. According to van der Vaart and Wellner (1996, Theorem
2.4.1), a set class C is P-Glivenko–Cantelli if the bracketing number N[ ](ε, C, L1(P))
is finite for any ε > 0. The number N[ ](ε,HT , L1(P)) is the minimal amount of
so-called ε-brackets [V,W ] needed to cover C. An ε-bracket [V,W ] with respect
to L1(P) is a pair of sets satisfying V ⊂W and P(W \ V ) ≤ ε. A set class C is
covered by brackets [Vi,Wi], i = 1, . . . , N , if each A ∈ C satisfies Vi ⊂ A ⊂ Wi

for some i. The criterion cited above is stated in terms of function classes, but
it easily applies to set classes by identifying sets with their indicator functions.

A sufficient condition for C to be P-Donsker is
∫ ∞

0

√
logN[ ] (ε, C, L2(P))dε <∞ (28)

(cf. van der Vaart and Wellner, 1996, Section 2.5.2). The distance of two sets
A and B in L2(P) is related to their distance in L1(P) via

dL2(P)(A,B) = ‖1A − 1B‖L2(P) = d
1/2
L1(P)(A,B).

Hence the L2(P) bracketing entropy condition (28) is equivalent to
∫ ∞

0

√
logN[ ] (ε2, C, L1(P))dε <∞. (29)

Part (a). The set class HT is the collection of all 〈T (At)〉 for t ∈ R with
a fixed T . Since the sets At are increasing in t, and T is componentwise non-
decreasing, we have 〈T (At)〉 ⊂ 〈T (As)〉 for t ≤ s. Consequently, HT can be
covered by O(1/ε) brackets of size ε with respect to L1(P′) for any probability
measure P′ on [0, 1]d. The brackets [Vi,Wi] can be chosen as Vi = 〈T (Ati)〉,
Wi = ∪t<ti+1〈T (At)〉 with an appropriate finite sequence t1 < . . . < tN . If
P′〈T (At)〉 has jumps, then it may be difficult to choose ti such that P′(Wi\Vi) =
ε for all i. In this case we may have P′(Wi \ Vi) < ε for some i, but the total
number of brackets is still O(1/ε). Thus we have

N[ ](ε,HT , L1(P′)) = O(1/ε),

and HT is universally Glivenko–Cantelli. If the maximal bracket size is ε2, then
one needs O(1/ε2) brackets to cover HT . This is sufficient for (29), and hence
HT is universally Donsker.
Remark 4.12. It is also easy to show that the set class HT is VC with index 2.
As the sets 〈T (At)〉 are increasing in t, they cannot shatter any two-point set.
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Let u(1), u(2) ∈ [0, 1]d, and let t1, t2 ∈ R be such that for k = 1, 2 x(k) ∈ 〈T (At)〉
is equivalent to t ≥ tk. Without loss of generality let t1 ≤ t2. Then HT
cannot pick out {u(2)}, and hence HT is VC. From here, universal Glivenko–
Cantelli and Donsker properties follow if we verify P′-measurability of HT for
any probability measure P′ on [0, 1]d (cf. van der Vaart and Wellner, 1996,
Definition 2.3.3). This can also be done.

However, since the VC property ofDδ0 remains elusive, the proofs of Parts (b)
and (c) are based on bracketing entropy. This is the reason why the proof of
Part (a) presented above is also based on bracketing. It gives a short preview
of the ideas used below.

Part (c). Fix ε > 0. As [∅, [0, 1]d] is a bracket of size 1 in L1(PC) covering
any subset of [0, 1]d, we can assume that ε < 1. For this ε we define

γ :=
ε

8dK(ε/8d)

and
δ1 := (δ0 − γ)+.

Given an arbitrary t0 ∈ R and t1 ≥ t0, consider the following sets:

Wt0,t1 :=
⋃

t∈[t0,t1)

Uδ0(Bt),

W ′t0,t1 :=
⋃

t∈[t0,t1)

Uδ1(Bt),

Vt0,t1 :=
⋂

t∈[t0,t1)

Uδ1(Bt).

The bracket [Vt0,t1 ,Wt0,t1 ] covers all Uδ(Bt) for δ ∈ [δ0, δ1] and t ∈ [t0, t1). The
size of this bracket in L1(PC) equals

PC(Wt0,t1 \W ′t0,t1) + PC(W ′t0,t1 \ Vt0,t1).

Denote Jη := [η, 1− η]d for η ∈ [0, 1/2), and let λ be the Lebesgue measure on
J0 = [0, 1]d. Then

PC(Wt0,t1 \W ′t0,t1) ≤ PC
(
J0 \ Jε/8d

)
+ λ(Wt0,t1 \W ′t0,t1)K(ε/8d). (30)

As C is a copula and has uniform marginal distributions, the first term on the
right hand side satisfies

PC
(
J0 \ Jε/8d

)
≤

d∑

i=1

PC
({
u ∈ [0, 1]d : ui /∈ [ε/8d, 1− ε/8d]

})
= ε/4.

To obtain an upper bound for λ(Wt0,t1 \W ′t0,t1), observe that

Wt0,t1 \W ′t0,t1 ⊂ (〈Uδ0(Bt1)〉 \ 〈Uδ1(Bt1)〉) ∪ (〈Uδ0(Bt0)〉up \ 〈Uδ1(Bt0)〉up)
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where 〈B〉up := ∪u∈B [u, (1, . . . , 1)] is the upper layer of B in [0, 1]d. Moreover,
analogously to Lemma 4.4, one can obtain that

λ(〈Uδ0(Bt1)〉 \ 〈Uδ1(Bt1)〉) ≤ d(δ0 − δ1) ≤ dγ =
ε

8K(ε/8d)
.

Same bound holds for λ(〈Uδ0(Bt0)〉up \ 〈Uδ1(Bt0)〉up). Thus (30) yields

PC(Wt0,t1 \W ′t0,t1) ≤ ε

2
. (31)

Consequently, as PC is absolutely continuous, we can choose t1 > t0 such that
either t1 <∞ and PC(Wt0,t1 \Vt0,t1) = ε or PC(Wt0,t1 \Vt0,t1) < ε and t1 =∞.
If t1 <∞, then (31) implies that

PC(W ′t0,t1 \ Vt0,t1) ≥ ε

2
. (32)

Proceeding in the same way as above, we obtain an increasing sequence t0 <
t1 < t2 < . . . that eventually terminates at ∞. Technical difficulties related
to possible jumps of PC(W ′ti,t \ Vti,t) for t > ti can be handled analogously
to the proof of Part (a). A similar construction yields a decreasing sequence
t0 > t−1 > . . . that eventually terminates at −∞.

We still have to show that the sequence tk is always finite, i.e., that tk
indeed assumes ±∞ for some k. Consider the sets Sk := W ′tk,tk+1

\ Uδ1(Btk+1)
and S′k := W ′tk,tk+1

\ Uδ1(Btk). As Sk are disjoint for different k, we have∑
k PC(Sk) ≤ 1 and, analogously,

∑
k PC(S′k) ≤ 1. It is obvious that

Sk ∪ S′k = W ′tk,tk+1
\ (Uδ1(Btk) ∩ Uδ1(Btk+1)).

Furthermore, monotonicity of T implies that

Uδ1(Btk) ∩ Uδ1(Btk+1) =
⋂

t∈[tk,tk+1]

Uδ1(Bt) ⊂ Vtk,tk+1 .

This immediately yields W ′tk,tk+1
\Vtk,tk+1 ⊂ Sk ∪S′k. Applying (32), we obtain

that PC(Sk)+PC(S′k) ≥ ε/2 if tk and tk+1 are finite. As the sum
∑
k(PC(Sk)+

PC(S′k)) is bounded by 2, the length of the sequence (tk) is bounded by 4d1/εe+
4. Possible discontinuities of PC(W ′tk,t \Vtk,t) may increase this number at most
d2/εe additional steps (cf. proof of Part (a)).

Thus we have shown that the set class {Uδ(Bt) : t ∈ R, δ ∈ [δ1, δ0]} can be
covered by 6d1/εe+ 4 brackets of size ε in L1(PC). Defining δk := (δk−1 − γ)+

for k = 2, 3, . . ., we reach 0 after dδ0/γe = d8δ0dK(ε/8d)/εe steps. As the
arguments above apply to any interval [δk, δk−1], we obtain a coverage for the
set class Dδ0 and hence an upper bound for the bracketing number:

N[ ](ε,Dδ0 , L1(PC)) = O(ε−2K(ε/8d)).

According to (29), we need to verify that
∫ 1

0

√
log(K(ε2/4d)ε−4)dε <∞. (33)
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Changing the upper integral bound from∞ to 1 is justified by the fact that any
set class can be covered by a single bracket of size 1.

As
∫ 1

0

√
log(1/ε)dε <∞ and
√

log(K(ε2/4d))ε−4 ≤
√

logK(ε2/4d) + 2
√

log(1/ε),

the integrability condition (33) follows from the assumption (16).
Part (b). According to proof of part (c), N[ ](ε,Dδ0 , L1(PC)) <∞ for any ε.

Assumption (16) is needed only to verify (29).

5. Examples

In this section we discuss the regularity assumptions of Theorems 4.1 and 4.2.
The main results are stated in Propositions 5.2 and 5.3, verifying all regularity
assumptions for bivariate Clayton copulas and bivariate Gauss copulas with
correlation parameter ρ ≥ 0. The case ρ < 0 is treated in Proposition 5.3(c),
which guarantees the convergence rate OP(n−1/2

√
log n). This is almost as good

as OP(n−1/2).
We start the discussion with a remark covering the mild integrability condi-

tion (16) and copulas with bounded densities.
Remark 5.1. (a) It is easy to see that K(ε) = O(exp(ε−1+η)) for ε → 0 with

some η > 0 implies (16). In particular, any polynomial bound K(ε) =
O(ε−k) for k > 0 is sufficient.

(b) An immediate consequence of Lemma 4.4 is that all copulas with bounded
densities satisfy all regularity conditions of Theorems 4.1 and 4.2. A particu-
larly important copula example with a bounded density is the independence
copula C(u) =

∏d
i=1 ui. The Iman–Conover method with independence cop-

ula is a standard tool in applications with empirically margins based on real
data. It is applied to generate multivariate samples with margins that are
close to independent or to remove spurious correlations from multivariate
data sets.

Unfortunately, many popular copulas, such as Gauss, Clayton, Gumbel, or
t copulas, have unbounded densities. In particular, a bounded copula density
implies that all tail dependence coefficients are zero. Thus applications related
to dependence of rare events demand a deeper study of copulas with unbounded
densities. The present paper provides two bivariate examples: the Clayton and
the Gauss copula.

The bivariate Clayton copula with parameter θ ∈ (0,∞) is defined as

Cθ(u1, u2) =
(
u−θ1 + u−θ2 − 1

)−1/θ

The density cθ can be obtained by differentiation:

cθ(u1, u2) = ∂u2∂u1Cθ(u1, u2)

=
(
u−θ1 + u−θ2 − 1

)−2−1/θ
(θ + 1)(u1u2)−θ−1. (34)
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The next result states that this copula family satisfies all regularity assumptions
of Theorem 4.2.

Proposition 5.2. Any bivariate Clayton copula Cθ with θ ∈ (0,∞) satis-
fies (15) and (16).

Proof. To verify (16), it suffices to show that K(ε) is polynomial (cf. Re-
mark 5.1(a)). The density is given in (34). It is easy to see that (u−θ1 +
u−θ2 − 1)−2−1/θ ≤ 1 for u ∈ (0, 1)2. Hence the order of magnitude of K(ε)
is determined by supu∈(ε,1−ε)2(u1u2)−θ−1, which is clearly polynomial.

To verify (15), recall that the proof of Lemma 4.4 used the following coverage
of the set Uδ(Bt):

Uδ(Bt) ⊂
d⋃

i=1

V
(i)
δ,t .

Hence, for d = 2, we have

PCθ (Uδ(Bt)) ≤ PCθ (V
(1)
δ,t ) + PCθ (V

(2)
δ,t ). (35)

The arguments that yield O(δ) bounds for PCθ (V
(i)
δ,t ) are symmetric in i = 1, 2,

so that it suffices to consider V (1)
δ,t . For u2 ∈ (0, 1), denote

u1 = u1(u2) := sup
{
u1 : (u1, u2) ∈ V (1)

δ,t

}

and
u1 = u1(u2) := inf

{
u1 : (u1, u2) ∈ V (1)

δ,t

}
.

It is easy to see that

PCθ
(
V

(1)
δ,t

)
=
∫ 1

0

∫ u1

u1

cθ(u1, u2)du1du2.

Moreover, the construction of V (1)
δ,t implies that

∀u2 ∈ (0, 1) u1(u2)− u1(u2) ≤ 2δ λ-a.s.

Partial differentiation of log cθ yields

∂ui log cθ(u1, u2) =
(2θ + 1)u−θ−1

i

u−θ1 + u−θ2 − 1
− θ + 1

ui
, i = 1, 2.

Hence ∂u1 log cθ(u1, u2) = 0 is equivalent to

(2θ + 1)u−θ1

u−θ1 + u−θ2 − 1
= θ + 1,
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Figure 2: Bivariate Clayton copula: the curve u2 7→ (u∗1(u2), u2) subdividing the unit square
(left) and the resulting slicing and shifting argument (right).

and for fixed u2 ∈ (0, 1) the copula density cθ(u1, u2) attains its maximum at

u∗1 = u∗1(u2) := min

{(
θ + 1
θ

(
u−θ2 − 1

))−1/θ

, 1

}
.

Furthermore, cθ(u1, u2) is increasing in u1 for u1 < u∗1 and decreasing in u1 for
u1 > u∗1. Let D(1)

+ and D
(1)
− denote the corresponding sub-domains of (0, 1)2:

D
(1)
+ :=

{
u ∈ (0, 1)2 : u1 < u∗1

}
, D

(1)
− :=

{
u ∈ (0, 1)2 : u1 > u∗1

}
.

An exemplary plot of the function u∗i with resulting sets D(1)
+ , D(1)

− is given in
Figure 2. Note that the function u2 7→ u∗1(u2) is non-decreasing for any θ > 0.

We will show that PCθ (V
(1)
δ,t ∩ D

(1)
+ ) and PCθ (V

(1)
δ,t ∩ D

(1)
− ) are bounded by

2δ. Denote

I
(1)
+ := π2

(
V

(1)
δ,t ∩D

(1)
+

)
and I

(1)
− := π2

(
V

(1)
δ,t ∩D

(1)
−
)
,

where π2 is the projection on the second coordinate: π2((u1, u2)) := u2. Further
denote S(1)

∗ := {u ∈ V (1)
δ,t : u1 = u∗1(u2)} and I∗ := π2(S(1)

∗ ). It is easy to see

that I(1)
∗ = I

(1)
+ ∩ I(1)

− . Hence we can write

PCθ
(
V

(1)
δ,t ∩D

(1)
+

)
=
∫

I
(1)
+ \I

(1)
∗

∫ u1

u1

cθ(u) du1du2 +
∫

I
(1)
∗

∫ u∗1

u1

cθ(u) du1du2

(36)
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Denote v∗1 := sup{u1 : (u1, u2) ∈ V (1)
δ,t ∩D

(1)
+ }. This definition implies that

u1(u2) ≤ v∗1 for all u2 ∈ I
(1)
+ \ I(1)

∗ . Moreover, it is easy to see that v∗1 =
sup{u∗1(u2) : u2 ∈ I(1)

∗ }. As u∗1(u2) is non-decreasing, this yields v∗1 ≤ u∗1(u2) for
u2 ∈ I(1)

+ \ I(1)
∗ . This gives us

∀u2 ∈ I(1)
+ \ I(1)

∗ u1(u2) ≤ v∗1 ≤ u∗1(u2)

and, as a consequence, V (1)
δ,t ∩ D

(1)
+ ⊂ [0, v∗1] × (0, 1). If v∗1 ≤ 2δ, then the

uniform margins of the copula Cθ immediately yield PCθ (V
(1)
δ,t ∩ D

(1)
+ ) ≤ 2δ.

Hence, without loss of generality, we assume that v∗1 > 2δ.
As cθ is increasing in u1 on D

(1)
+ and u1 − u1 ≤ 2δ λ-a.s., we obtain that

∀u2 ∈ I(1)
+ \ I(1)

∗

∫ u1

u1

cθ(u) du1 ≤
∫ v∗1

v∗1−2δ

cθ(u) du1 λ-a.s. (37)

Moreover, it is easy to see that if u2 ∈ I(1)
∗ and u1 ∈ [u1, u

∗
1], then u1 ≥ v∗1− 2δ.

This yields

∀u2 ∈ I(1)
∗

∫ u∗1

u1

cθ(u) du1 ≤
∫ v∗1

v∗1−2δ

cθ(u) du1. (38)

Combining (37), (38), and (36), we obtain that

PCθ
(
V

(1)
δ,t ∩D

(1)
+

)
≤ PCθ ([v∗1 − 2δ, v∗1]× [0, 1]) = 2δ. (39)

The latter equality is due to the uniform margins of the copula C.
The proof of (37) formalizes the idea of slicing the set V (1)

δ,t along u1 for every

u2 ∈ I(1)
+ \ I(1)

∗ and shifting each slice [u1, u1]×{u2} upwards along u1 until this
slice touches the point (v∗1, u2) as illustrated in Figure 2. Since cθ is increasing
in u1 on D

(1)
+ , the transformed set has a larger probability under PCθ .

Using the fact that cθ is decreasing in u1 on D
(1)
− , one easily obtains the

following analogue to (37):

∀u2 ∈ I(1)
− \ I(1)

∗

∫ u1

u1

cθ(u) du1 ≤
∫ v∗1+2δ

v∗1

cθ(u) du1 λ-a.s.,

where v∗1 := inf{u1 : (u1, u2) ∈ V (1)
δ,t ∩D

(1)
− }. This result is obtained by slicing

V
(1)
δ,t along u1 for all u2 ∈ I

(1)
− \ I(1)

∗ and shifting each slice [u1, u1] × {u2}
downwards along u1 until it touches the point (v∗1, u2), cf. Figure 2.

Similarly to (38), we have that

∀u2 ∈ I(1)
∗

∫ u1

u∗1

cθ(u) du1 ≤
∫ v∗1+2δ

v∗1

cθ(u) du1.
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Hence, analogously to (39), we obtain that

PCθ
(
V

(1)
δ,t ∩D

(1)
−
)
≤ 2δ,

and, consequently, PCθ (V
(1)
δ,t ) ≤ 4δ.

As the Clayton copula is symmetric in u1 and u2, we also have PCθ (V
(2)
δ,t ) ≤

4δ. Thus (35) yields PCθ (Uδ(Bt)) ≤ 8δ, and condition (15) is satisfied.

The next example is the bivariate Gauss copula Cρ, defined as the copula
of a bivariate normal distribution with correlation parameter ρ ∈ (−1, 1). The
parameter value ρ = 0 yields the independence copula, which is the uniform
distribution on the unit square (0, 1)2. In this case all regularity conditions are
satisfied (cf. Remark 5.1(b)).

Let Φ denote the distribution function of the univariate standard normal
distribution, and for u1, u2 ∈ (0, 1) let qi = qi(ui) := Φ−1(ui) denote the cor-

responding standard normal quantiles. Further, let Σ =
(

1 ρ
ρ 1

)
denote the

2 × 2 correlation matrix corresponding to ρ. Then the bivariate Gauss copula
Cρ for ρ 6= 0 can be written as

Cρ(u1, u2) =
∫ q1

−∞

∫ q2

−∞
det(Σ)−1/2 exp

(
−1

2
x>Σ−1x

)
dx1dx2,

where x is considered as a bivariate column vector and x> is the transposed of
x. The copula density cρ can be obtained by differentiation:

cρ(u1, u2) = ∂u2∂u1Cρ(u1, u2)

= det(Σ)−1/2 exp
(

1
2
q>
(
I − Σ−1

)
q

)
,

where q = (q1, q2)> and I is the identity matrix.

Proposition 5.3. (a) The bivariate Gauss copula Cρ always satisfies (16).

(b) If ρ ≥ 0, then Cρ satisfies (15).

(c) If ρ < 0, then the estimate G∗n of the sum distribution G satisfies

‖G∗n −G‖∞ = OP

(
n−1/2

√
log n

)
. (40)

Proof. As mentioned above, the case ρ = 0 is trivial. Hence we assume ρ 6= 0.
Part (a) It is easy to verify that 1

2q
>(I − Σ−1)q ≤ Mq>q for any fixed

ρ ∈ (−1, 0) ∪ (0, 1) with some constant M = M(ρ) > 0. Hence, for ε→ 0,

K(ε) = O
(

exp
(
M
∣∣Φ−1(ε)

∣∣2
))

.
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Let φ denote the standard normal density: φ(t) := (2π)−1/2 exp(− 1
2 t

2). It is
obvious that Φ(t) =

∫ t
−∞ φ(s) ds <

∫ t
−∞−sφ(s) ds = φ(t) for t < −1. This

yields

∣∣Φ−1(ε)
∣∣ <

∣∣φ−1(ε)
∣∣ =

√
−2 log(

√
2πε) (41)

for sufficiently small ε > 0. Hence we obtain that

K(ε) = O
(

exp
(
−2M log

(√
2πε
)))

= O
(
ε−2M

)
, ε→ 0.

Thus condition (16) follows from Remark 5.1(a).
Part (b). The verification of (15) for ρ > 0 is analogous to Proposition 5.2.

Due to

I − Σ−1 =
1

1− ρ2

(
−ρ2 ρ
ρ −ρ2

)
, (42)

partial differentiation of log cρ in u1 yields

∂u1 log cρ(u1, u2) =
1

(1− ρ2)φ(q1)
(−ρ2q1 + ρq2).

Hence cρ(u) = 0 is equivalent to

u1 = u∗1(u2) := Φ
(
Φ−1(u2)/ρ

)
. (43)

Moreover, it is easy to see that cρ(u) with ρ > 0 is increasing in u1 if u1 < u∗1
and decreasing in u1 if u1 > u∗1. This is illustrated in Figure 3. As u∗1(u2) is
increasing, the slicing and shifting argument used in the proof of Proposition 5.2
applies here, and we obtain that PCρ(V

(1)
δ,t ) ≤ 4δ. Due to the symmetry of cρ(u)

in u1 and u2, partial differentiation in u2 and the slicing and shifting method
yield PCρ(V

(2)
δ,t ) ≤ 4δ. Hence (35) gives us PCρ(Uδ(Bt)) ≤ 8δ.

Part (c). The situation for ρ < 0 is different. The copula density cρ(u) is still
increasing in u1 for u1 ≤ u∗1 and decreasing in u1 for u1 > u∗1, but the function
u∗1(u2) is decreasing (cf. Figure 3). Thus (37) does not hold here. Instead of
shifting each slice [u1, u1]×{u2} as in the proof of Proposition 5.2, one can shift
it until it touches the point (u∗1, u2). If u∗1 ∈ [u1, u1], no shift is needed. That
is, we replace the interval [u1, u1] by the interval [u1, u1] + ∆, where

∆ = ∆(u2) :=





u∗1 − u1 if u1 < u∗1,

u∗1 − u1 if u1 > u∗1,

0 else.

It is easy to see that

∀u2 ∈ (0, 1)
∫ u1

u1

cρ(u) du1 ≤
∫ u1+∆

u1+∆

cρ(u) du1.
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Figure 3: The curves u2 7→ (u∗1(u2), u2) for the bivariate Gauss copula with correlation
ρ = ±0.5.

Integrating over u2, we obtain that

PCρ
(
V

(1)
δ,t

)
≤ PCρ (U∗) ,

where U∗ := {u ∈ (0, 1)2 : |u1 − u∗1(u2)| < 2δ}. It is easy to see that

{u ∈ U∗ : u∗1(u2) /∈ (2δ, 1− 2δ)} ⊂ ([0, 4δ] ∪ [1− 4δ, 1])× [0, 1].

Hence, as Cρ is a copula and has uniform margins, we obtain that

PCρ ({u ∈ U∗ : u∗1(u2) /∈ (2δ, 1− 2δ)}) ≤ 8δ.

Denote the remaining part of U∗ by U∗0 :

U∗0 := {u ∈ U∗ : u∗1(u2) ∈ (2δ, 1− 2δ)}.
As u∗1(u2) maximizes cρ for fixed u2, we have that

PCρ (U∗0 ) ≤ 4δ
∫ u∗1

−1(2δ)

u∗1
−1(1−2δ)

cρ(u∗1(u2), u2) du2.

Applying (42) and (43) we obtain that

cρ(u∗1(u2), u2) =
√

1− ρ2 exp
(

1
2
(
Φ−1(u2)

)2
)
.

Thus we need an upper bound for the integral

I(δ) :=
∫ u∗1

−1(2δ)

u∗1
−1(1−2δ)

exp
(

1
2
(
Φ−1(u2)

)2
)

du2.
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The substitution u2 = Φ(t) yields

I(δ) =
∫ 1

ρΦ−1(2δ)

1
ρΦ−1(1−2δ)

1√
2π

dt =
√

2
ρ
√
π
|Φ−1(2δ)|.

Finally, applying (41), we obtain that

I(δ) ≤
√

2
ρ
√
π

√
−2 log(2δ

√
2π) = O

(√
| log δ|

)

for δ → 0. This implies that

PCρ
(
V

(1)
δ,t

)
= O

(
δ
√
| log δ|

)
. (44)

Symmetry arguments yield the same order of magnitude for V (2)
δ,t and, as a

consequence, for PCρ(Uδ(Bt)).
Obviously, (44) is slightly weaker than O(δ) in assumption (15). Revising

the proof of Theorem 4.2, we see that (15) is used to guarantee that the second
term in (23) is OP(1). Hence, replacing (15) by (44) in Theorem 4.2, one
obtains (40).

Remark 5.4. (a) It is currently an open question whether the weaker result of
Proposition 5.3(c) reflects the reality or simply arises from the approxima-
tions used in the proof. However, it should be noted that the case ρ < 0
is indeed more difficult than ρ > 0. For ρ < 0 the curve (u∗1(u2), u2) may
be much closer to the set Bt, and hence PCρ(Uδ(Bt)) may be substantially
larger than for ρ > 0. In particular, if X1 ∼ N (0, 1) and X2 ∼ N (0, 1/ρ2),
then

{(u∗1(u2), u2) : u2 ∈ (0, 1)} = T
({
x ∈ R2 : x1 + x2 = 0

})

= B0 ∩ (0, 1)2.

That is, for ρ < 0 one can be confronted with the worst case when some
Bt entirely falls into the area where the copula density is at its largest. A
graphic example to this issue is given on the left hand side of Figure 1. The
set B0 in that plot coincides with the set {(u∗1(u2), u2) : u2 ∈ (0, 1)} from
the right hand side of Figure 3 (ρ = −0.5). Such coincidence is not possible
for ρ > 0 or for the Clayton copula.

(b) Intuitively speaking, this problem originates from the negative dependence
for ρ < 0, where large values of X1 tend to be associated with small values
of X2 and vice versa. As a consequence, the probability P(X1 +X2 ≤ 0) is
influenced by tail events. This effect is much weaker for Gauss copulas with
ρ > 0 and, analogously, for many other copulas with positive dependence.

(c) The margins Fi may also influence the convergence of the estimated sum
distribution function G∗n. In insurance and reinsurance applications the
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components Xi ∼ Fi are often non-negative. In this case X1 + X2 ≤ t
implies that Xi ≤ t for i = 1, 2, so that the tail events have no influence on
G(t) = P(X1 + X2 ≤ t) for moderately large t. The resulting sets Bt for
t < ∞ do not contain any internal points of the unit square that are close
to the upper left or to the lower right vertex. That is, u ∈ Bt and u1 > 1−ε
with a small ε implies u2 = 0, and u2 > 1 − ε implies u1 = 0. These Bt
avoid the areas where the density of the Gauss copula with ρ < 0 is at its
highest. Thus non-negative margins simplify the estimation of the function
G for the Gauss copula with ρ < 0 and, analogously, for many other copulas
with negative dependence. An illustration to the different types of sets Bt
is given in Figure 1.

6. Conclusions

This paper proves that Iman–Conover based estimates for the distribution
function of the component sum are strongly uniformly consistent, and it provides
sufficient conditions for the convergence rate OP(n−1/2). Besides the component
sum, these results hold for any other componentwise non-decreasing function.
The underlying mathematical problem goes beyond the classic uniform conver-
gence results for empirical copulas. In the context of the Iman–Conover method,
the primary cause for this technical difficulty is the implicit usage of empirical
marginal distributions. Similar issues also arise in all multivariate models gen-
erated by plugging empirical margins into an exact copula or by plugging exact
marginal distributions into an empirical copula. The marginal transformations
involved in these applications complicate the resulting estimation problem in a
way that does not allow to establish asymptotic normality of the estimated sum
distribution. Therefore the weaker OP(n−1/2) statement is quite the best result
one can achieve.

The results proved here for the Iman–Conover method extend to all models
generated by plugging empirical margins into an exact copula or by plugging
exact margins into an empirical copula. The regularity conditions needed for
the convergence rate OP(n−1/2) are satisfied for all copulas with bounded densi-
ties, all bivariate Clayton copulas, and bivariate Gauss copulas with correlation
parameter ρ > 0. The best convergence rate that could be established for the
bivariate Gauss copulas with ρ < 0 is OP(n−1/2

√
log n). This result suggests

that negative dependence may slow down the convergence of estimates. On the
other hand, non-negative components Xi, as typical in insurance applications,
may simplify the problem. The proof technique used for the bivariate Clayton
copula applies to bivariate Gauss copulas with ρ > 0 and may also work for other
bivariate copulas with positive dependence. A straightforward generalization of
this method to higher dimensions is, however, not feasible. Thus the question
for the convergence rate in the d-variate case with d > 2 and an unbounded
copula density is currently open.
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Embrechts, P., Puccetti, G., Rüschendorf, L., 2013. Model uncertainty and var aggre-
gation. Journal of Banking & Finance 37, 2750 – 2764. doi:10.1016/j.jbankfin.
2013.03.014.
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Highlights

• Asynchronously sampled data can be endowed with any copula by a
reordering technique.

• Popular since 1982, this method gets a rigorous convergence proof in
the present paper.

• Related estimates of sum distribution functions converge uniformly
with rate OP(1/

√
n).

• The underlying problem is not covered by classic empirical process
results.

• CLT fails in this case. This issue affects many real-world applications.
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