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We study the asymptotic bias of the moment estimator 7, for the extreme-value
index y € 2 under quite natural and general conditions on the underlying distribution
function. Furthermore the optimal choice for the sample franction in estimating y
is considered by minimizing the mean squared error of 7, 7. The results cover all
three limiting types of extreme-value theory. The connection between statistics and
regular variation and /J-variation is handled in a systematic way. 1993 Academic
Press, Inc.

1. INTRODUCTION

Suppose one is given a sequence X, X,,.. of iid. observations from
some unknown distribution function F. Suppose for some constants a, >0
and b, and some ye #

X, Xy X,) —b,
lim P{ma"{ o Koy o X} gx}=G.(x) (1)

n-s o a

2

for all x, where G,(x) is one of the extreme-value distributions, given by

G,(x) :=exp— (1 +yx)~ 1" 2)
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Here y is a real parameter, x such that 1 +yx > 0. Interpret (1 +yx)~'" as
e~ * for y=0. The question is how to estimate y, the extreme-value index,
from a finite sample X,, X,, .., X,,. If (1) holds, F is said to be in the
domain of attraction of the generalized extreme-value distribution G,
[notation Fe 2(G,)]. For the extreme-value distributions itself one has
G,eZ2(G,).

In the last decade much attention has been paid to the estimation of the
tail-index of a distribution. This corresponds to estimating 7 when > 0.
Most of the publications are based on the work of Pickands (1975) and
Hill (1975).

Pickands proposed the following estimator for ye # and 1 <k < [n/4]

X(n—k,n) - X(n — 2k,n)

a(P) . -1
yn =(10g2) log 3
(n—2k,n) " X(n - 4k, n)

where X, ,, <Xy, < €X,, are the ascending order statistics of
X,, X,, .., X, He proved weak consistency of the estimate.

Dekkers and de Haan (1989) gave quite natural and general conditions
under which \/k (7"’ —y) is asymptotically normal. Conditions on k = k(n)
include k = k(n) - o and k/n— 0 (n— o).

For y positive, Hill introduced the estimator

k-1

1
ML” IIE ~ lOgX(nfi,nJ_lOgX(n”k,n)

I

which involves all k+1 upper order statistics instead of only X, .,
Xiw_a2k.m and X, _ 4z, Mason (1982) proved weak consistency of M " for
any sequence k = k(n) — oo, k(n)/n — 0 (n = oc ) and Deheuvels et al. (1988)
proved also strong consistency for sequences k(n), with k/loglogn—
and k/n—0, n—co. Under certain extra conditions /k (M "—7) is
asymptotically normal with mean zero and variance y> (see Hall, 1982;
Davis and Resnick, 1984; Csorgd and Mason, 1985; Hausler and Teugels,
1985; Goldie and Smith, 1987; and Dekkers er al. 1989).
Hall (1982) considered distribution functions F which satisfy

1—F(x)=Ax""" {1+ Bx F+o(x %)}, x- o0,

for y>0, A>0, B#0, and > 0. He proved asymptotic normality for the
Hill estimator and derived an optimal choice for k, the number of upper
order statistics used in estimating 7y, by minimizing the asymptotic mean
squared error of M{". Although he considered an important class of
distribution functions, his approach is limited to only y positive.

Using Pickands’ well-known key idea [the conditional distribution
function of X —u, given X exceeds threshold u, can be approximated by
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the generalized Pareto distribution (GPD)], Smith (1987) fits the
GPD-distribution by the method of maximum likelihood. The shape-
parameter of the fitted GPD-distribution is an estimator of y. He
obtains asymptotic normality for the MLE-estimators in case y> —1/2
and under some extra conditions he obtains also the asymptotic bias of the
estimators.

Dekkers et al. (1989) considered the problem how to estimate y for
general y e #. They introduced the moment estimator given by

0 = MU+ 1= 41— (MM ®)
where M is the Hill estimator and
1 k—1
MLZ) :=E Z {log X(nfi,n) _log X(n—k,n)}za

i=0

provided that x* = x*(F)>0, which can always be achieved by a simple
shift [x*(F) :=sup{x| F(x) < 1}]. The moment estimator has some intuitive
background (cf. Dekkers et al., 1989, Sect. 6) and covers all limiting types of
extreme-value theory. Under natural and general conditions the estimator
has asymptotically a normal distribution.

All the mentioned estimators for y have one common property. When
the number of upper order statistics used in estimating y is small, the
variance of the estimator will be large. But on the other hand the use of
a large number of upper order statistics will introduce a bias in the
estimation in most cases. Balancing the variance and bias components will
lead to an optimal choice for k. Therefore we want to study the bias of the
moment estimator in a systematic way.

So the two main problems which return in all the work and where we
like to focus on in this paper are

+ how to choose the number of upper order statistics, &, involved in
estimating 7,

» are the conditions in some way natural and do they cover all
possibilities of tail behaviour?

In Section 2 we give more in detail some conditions and we claim that
these conditions are quite natural and general (see de Haan and
Stadtmiiller, 1992). In Section 3 we study the moment-estimator for the
cases y >0, y<0, and y equals zero. Finally, we give some examples in
Section 4.
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2. REGULAR VARIATION, [7-VARIATION, AND EXTREME-VALUE THEORY

In this section we want to give some details how the tail behaviour of
distribution function F can be translated into terms of the inverse function
of 1/(1 — F). Next we will formulate our “second order” conditions on F.
Finally we will give a lemma which we need for minimizing the asymptotic
mean squared error of §,.

Define the function U: #* — # by

0 0<x<]

i) o= (‘“*I_IF)h(x) 1<x

where the arrow indicates the inverse function, i.e., for x>1 U is defined
by U(x):=inf{y]1/(1 — F(y)) 2 x}. Now the domain of attraction
condition (1) can be stated in the following way in terms of U.

Lemma 2.1.  For a distribution function F holds Fe 2(G.,) if and only if
there exists a positive function a, such that

U(rx)—Uls r—1
i LU0 X2l g )
f ay(1) Y
where the right hand side of (4) has to be interpreted as log x for y=0.

Proof. Cf. de Haan (1984, Lemma 1).

LEmMMA 2.2, For y>0, (4) is equivalent to

U
Hm T )

Sfor all x>0, ie., U is regularly varying with index y [notation U(t)e RV ],
and hence a,(t) ~yU(t), t - o0, ie., lim,_, , a,(2)/(yU(1))=1.

For y<0, F has a finite right endpoint, so U(w)=x* <0, and (4) is
equivalent to

U(wo)—U(t)e RV,. (6)
In this case a,(t)~ —y{U()— U(1)}, t = .
Proof. Cf. de Haan (1984, Coro. 3).

We call (5) and (6) the first order regular variation conditions on U and
for y =0 property (4) the first order /7-variation condition on U [notation
UeIl(a,)]
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In the following two lemmas the second order conditions are formulated
and equivalent conditions are given. See also de Haan and Stadmiiller
(1992) for a complete theory of extended regular variation of second order.

LEMMA 2.3 (Second Order Regular Variation). Suppose p >0 and ¢ >0.

1. For y <0 the following conditions are equivalent [ with either choice
of sign]:

(a) +{x Y[1=FU(0)—x"")]—c”}eRV_
(b) F{7[U(o)—U(t)]—c}eRV,,.

P

For U(0) >0 these conditions imply the following equivalent conditions:

() +{x""[1-FU(wo)e "*)]—(c/U(0))""}eRV_
(d) F {t "[log U(w)—1log U(t)] —c/U(xx)} € RV,,.

p

2. For y> 0 the following conditions are equivalent [with either choice
of sign]:

(e) +{x""(1-F(x))—c""}eRV_,
() +{t""U(t)—c}eRV _,
(g) +{log U(t)—ylogt—logc}eRV_,,.

Proof. See Appendix A.

Remark 2.4. Note that the conditions (d) and (g) are different, (g) is
equivalent to (f), but (d) is not equivalent to (b). A counter example is the
uniform distribution with U(¢)=1—1/7, which does not satisfy (b)
although it satisfies (d) with y=1, p=1, and ¢c=U(0)=1.

LemMma 2.5 (Second Order I1-Variation). Suppose the functions b, b,,
bs, bs, f, and o are positive.

1. For y <0 the following conditions are equivalent [ with either choice
of sign]:

(a) £{x""[1 - FU(0)-x""]1}ell
(b) F{t7'[U(0)— U(1)1} e (D).
For U(oc) > 0 these conditions imply the following equivalent conditions:
(c) +{x "[1-FU(w)e "™)]}ell
(d) F{t "[log U(eo)—log U(t)1} € (b, /U(0)).
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2. For y=0 the following conditions are equivaleni with a(t)— 0,
t— x* and b,(t) = 0, t — oo [with either choice of sign]:

(I=Flexp(t+xf(1) .\ = x
(e) 3??-( I—Fexplt) ¢ )/“(”‘ 2°¢
0) fim log U(1x) —log U(1) —by(r) log x _  (log x)?

tos bs(1) 2

3. For y>0 the following conditions are equivalent [with either choice
of sign]:

(g) +{x""(1-Fx)}ell
(h) +177U(t) e H(by)
(1) + {log U(t) —ylog t} e H(b,/(t"U(1))).

Proof. For the proof we refer to the Appendix of Dekkers and de Haan
(1989) and to Theorem 3.3 of Dekkers ez al. (1989).

Remark 2.6. Note that all conditions imply Fe 2(G,) for appropriate y.

Remark 2.7. In the case of second order /7-variation with y =0 we have
in (e) only plus sign and in (f) only the minus sign, instead of both choices
as for y#0. The reason is the following. Let V(z):=log U(¢), then
condition (f) implies for x> 1 and y>1,

V(txy) — V(1) = by(1) log xy  V(txy) — V(1x) = b*(1x) logy bs(tx)

by(1) bs(tx) by(1)
V(tx)— V(1) —b,(t)log x
b4(1)
by(1x) — by(1)
T log y. (7)

Now suppose that the left-hand side of (7) tends to + (log xy)?/2 and thus
the right hand side converges also. So (b,{rx)— b,(2))/b;(¢) converges to
+log x and hence +b,e I1(b;). Note that 5,(¢)>0 and b,(1) >0, 1 > o0,
which is not compatible with b, e [1(b;). This implies —b, e I7(h;) and
therefore only the minus sign is possible in condition (f).

In the last part of this section we describe in a general way how to
minimize the mean squared error

a*(y) | (n
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where o°(y) denotes the asymptotic variance of the estimator, n the sample
size, k the number of used upper order statistics and f the bias squared,
hence f is positive. When the bias is not equal to zero, the mean squared
error can be minimized. Let £, be the value for £ for which the minimum
is attained. If f is differentiable then k, =s"(¢%(7)/n), where s is defined as
minus the first derivative of f, i.e, —f".

In general fe RV _,, with a =20 and moreover for a =0, /(1) =0, t - cc.
The following lemma about the inverse complementary function of f, shows
that these conditions are already sufficient for obtaining the asymptotic
value of k,. For more information concerning the inverse complementary
function of a regularly varying function, we refer to Geluk and de Haan
(1987, Sect. IL1).

LEMMA 2.8. Suppose =0 and fe RV _,. Moreover for a=0 suppose
f(t) =0, t = oo and f is asymptotic to a non-increasing function. There exists
a positive decreasing function se RV _, , |, such that

f(t)~jxs(u)du, t = oo. (8)

4

Let f_ denote the inverse complementary function of f defined as

fix)i=inf (f() +x} x>0, ©)
then f.(x) exists for sufficiently small x and

fo~[ smwde, x>0,
0
where s* is the generalized inverse function of s and s~ € RV® |, . ,,, ie,
Hm, o5 (xy)/s~(x)=p~ Y=+ for y>0.

The value y,(x) for which the infimum in (9) is attained, is determined
asymptotically by y (x)~s"(x), x = 0.

Proof. For a=0 the conditions imply —f is asymptotic to an element
of IT (see Theorem B.1 of Appendix B, due to A. A. Balkema). For (8), see
Proposition 1.7.3 [« >0] or Proposition 1.19.3 [a=0] of Geluk and de
Haan (1987). Let f,(¢) := [ s(u) du, c>1 and

0<s<mi \/ ay 1+¢ %) 1+c®c—c®
Femm e 2 2 "Ti+c )

then there exists 7,(c) such that for > ¢ (c)

(I—e) fi(n) < f(D)<(1+e) £,(1)




180 DEKKERS AND DE HAAN

and
(c™*=e) f()<Sflet)< (e 7 +e) f(1),

hence f(ct) < (¢ 7 +¢€) f(1) < (¢4 &)1 +¢) f1(1) < cfy (1), since (¢~ * + &) x
(1+¢)—c<O.

In a similar way, fi(ct) <f(ct)/(1 —g)<(c *+¢&) f(1)/ (1 —e)<c(f(2))
and hence

1o =
;f’ sw)du<f(t)<e f s(u) du

I3 e

which implies

inf {lj.x s(u) du+xy} < f{x)< inf {

»=0 (€ Yy >0

¢ J‘OO s(u) du+ xy},

and thus for all ¢> 1

x

lj s (u)du sﬁ(x)SCJX s (u) du, x 0.
cJo 0

We have also proved y,(x)~s"{(x), x =0, since s~ (x)/c <y, (x)<cs™(x)
for all ¢> 1.

3. OpTIMAL CHOICE OF SAMPLE FRACTION FOR THE MOMENT ESTIMATOR

In this section we will state our main results for the optimal choice of &
and the corresponding bias for the moment estimator.

Let X, X;,.., X, be n iid. random variables of an unknown dis-
tribution function F, with Fe2(G,), and let Y,,Y,,.., Y, be n iid.
random variables of distribution function 1—x"', (x>1). Note that
Xooim=" U _.m) for 0<i<n The next lemma gives important
properties of Y, Y,,.., ¥, in relation to the moment estimator 7, as
defined in (3).

Then we give the main results for distributions with a second order
regularly varying tail [Theorem 3.2 for y <0 and theorem 3.4 for y >0]. In
Theorem 3.6 we will consider distribution functions with a second order
IT-varying tail.

LEmMMA 3.1. Let Y <Yy, < oo <Y, be the order statistics of
Y..Y,,.. Y, Let 0<k(n)<n and k(n) > o0, n— o0, then
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1. forn— o, Y, _n/(n/k)—1 in probability.
2. for n— oo,

kiny—1
Poi=|— log Y i =108 Y _ kimm— 1
n (k(n) EO O f(n—im — 108 ¥ (n_ik(n)n) )
and

1 k(n)—1

Q;)::(m Z {log Yi_in—108 Y(n—k(n),n)}2_2>3
i=0

\/E (P°, Q°) is asymptotically normal with means zero, variances 1 and 20,
respectively, and covariance 4.

3. fory<0,n— w,

1 k(n)—1 Y ) Y y
P, :=(—— 1-( {nr) ) + )
k(n) ,'g() Y(n—k[n).n) 1— Y

1 k(ny—1 Yn—in ¥y 2 2,})2
oo~ - -
k(n) = Y konm (1=7)(1-2y)
\/I;(P,,,Q,,) is asymptotically normal with means zero and covariance
matrix

and

—4y
1 7
v 1-3y
2(1 -2
(1-y)(1-2) —dy 4y (5—11y)

1-3y (=201 -3)(1-4y)

Proof. Cf. Lemma 3.4 Dekkers et al. (1989).

THEOREM 3.2. Suppose y <0, U(o0) >0, and condition (d) of Lemma 2.3
holds for p # 1. Define for t >0,

b1y == =L g U(o) _y(1—y)(1—2y) p(1+p)
" U(wo)l—y ¢ {1—y(1+p)}{1—y2+p)}

x[rr{log U(oo)—log U(t)}—ﬁ}. (10)
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Determine k,=k,(n) such that the asymptotic second moment of j,—7v is
minimal and let §, , be the corresponding estimator, then

Skon) (s = 1) = N, 52(7)),
where the asymptotic bias b and variance c*(y) are given by

o°(7)

b =sign(b(t)) 2y min(1, p)’

for t sufficiently large, and

1—2y (5—11y)(1-2y)

o) i=(1 =32 (1 =2y (4—8 d .1

=t A N wi T T

MOI‘eOU@r kn(n) = n/s._(l/n)(l + 0(1)) € RV(Z}'minll.p))‘r“(Z"/min(l,p)—1)1 n— 20,
where s is the inverse function of s, with s given by

=j7“ s(u) du(l + o(1)), 1 o0,

The existence of such function s is guaranteed by the fact that b*(t) is
regularly varying with index 2y min(1, p).

Proof. Assume y <0 and (d) of Lemma 2.3 holds. Define ¢, :=¢/U(x)
and let a(r):=t "{log U(ov)—log U(r)} —c, then, since |a(t)| € RV, for
x>0

log U(tx)—log U(t)
=log U(w) —log U(r) — {log U(ac) —log U(tx)}
=1"[1"7"{log U(oc)—log U(t)} — x7(tx) "7 {log U(oc) —log U(tx)}]
— (1 —x7) + falr) {1 v %‘)’}
=, (1= x")+ fa(){ 1 — x'x™") + o(Pa(t)),  t— .

Also

( Y(n - k,n))y a( Y(nf—k,n)) —-
(n/k)" a(n/k)
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in probability by Lemma 3.1 [we will use the notation (Y, _x )" @( Y _s.my=
(n/k)" a(n/k)x (1 +0,(1))]. Now one obtains by straightforward calculations
using Lemma 3.1

kA]

M(l)__ Z logX(n in) ]OgX(nA—k.nj

- Ynfin
i; Z log U( ) Y(nk,n)>_1°g VY (o im)

(n-—-k.n)
1 k-t Yoiim
. 1 (LXozim
( (n— kn)) ; [Cl{ (Y(nk.nl>}
Yo in 21+ p) <n ¥ n )
Y(n k,n) { (Y(n kn)) +op k> ’ k

; c P,
(Y(n kn)) [Tz—;+cl \/z_*_dla( Y(nk,ni):l

n(2)02)

o dx —y(1+p)
= ) YA - I S A
d, fl( o) S s

where

and hence

{Mm}zi(y' L ))27,[ yicl 2yet P, 2yc,

7 - 'd'aYn— n):l
(= 1oy gk 1=y @ @okn

o (3)2)

Similarly one gets

2 2
M(Z'—(Y[,. kn))2[ (T"‘“;(ll—_—ij“)‘i'cf\g/l;'*'dza(ym knl):l

n(3)°(2)

* dx
d2:=2ClJ‘ (]_x"/_x','(l+p)+x~,-(2+p))_2
! x

with

2¢, 71+ p)2=7(2+p))
T {1+ p) (1 =32+ p)}
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Combining finally (12), (13) and (14):

1M‘”—2{M'”}24 R n n
o Iy _n_ "7 a 4 4, “ - T
,’"——M" +2 Mi,z)—{M',,”}z _}+\/E+b<k>+0p<h(k)>9

with b(r) as defined in (10) and

— )2 (1 = 27)? 2 (1 =2
11—y (1-2y) Qn+2(1 H)'(l 2y)

R, = 3 -
¥ 4

P,

(5}

which is asymptotically normal with mean zero and variance o3(y) as
defined in (11). Hence the asymptotic mean squared error of 7, equals

0, {(2)+(v <%>)}2

Write r :=n/k. We are interested in the optimization problem

2 2
inr{f+w+o({b(r)}2)}~inf{£+ﬂ’ﬂ}—}. (15)

n 6(y) a’(y)

The asymptotic equality in (15) follows from Lemma 2.8. Define f(t) :=
{b(1)}?/c*(7) then fe RV,,, with p, :=min(1, p), since |b(1)| ERV it o1

and so by Lemma 2.8 there exists a positive function se RV,,, , such
that

{b—E”—}ér s(w) du(1+0(1)), (- oo, (16)
o (y) Y

Let r, denote the optimal value for r in (15), then [again by Lemma 2.8]
ro(n)=s"(1/n)(1 +o(1)), n— o, where s~ (1/n)e RV, _ 2, and hence
k,(n)y=n/s"(1/n)x (1 +o(1))€ RV 5,, «2spy 1,- Note that r,— oc (n— x)
and substitution of ¢ =n/k (n) in (16) gives [all the o-terms are regularly
varying with index 2yp,]

E
_{_ﬂ%}(":))_l‘:f s(u) du-(1+0(1))

I

1
k—o ru S(ro)

“(1+0(1))

1
k, —2yp,

(140(1)), n-ox,
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since s€ RV,.,, _ (cf. Theorem 1.4 in Geluk and de Haan (1987)) and hence

n\ _sign(b(1)) a2 (y) .
b(k_,)_ Jk, 'm'(lﬂ(l)), n-» .

This completes the proof.

Remark 3.3. The above theorem holds also for p=1 under the extra
condition |6()} € RV . This condition is not necessarily satisfied because in
spite of the fact that both terms of 4(¢) in (10) are regularly varying with
index y, they may not have the same sign. In this case the theorem holds
also but now with bias b equal to b =sign(b(r)) /a>(7)/(—2yp), where p is
the index of b(z). The uniform distribution is an example, for which p=1
and b(¢) is regularly varying but with index 2.

THEOREM 3.4. Suppose >0, condition (g) of Lemma?2.3 holds for
(1 —y)p #1 and define for t >0

(1—y)p—1
b(1) :=%p)2——]- {log U(t)—vylogt—logc}.

Determine k, =k (n) such that the asymptotic second moment of 7,—7 is
minimal and let 7, , be the corresponding estimator, then

Ko Gro—7) =2 N(b, 1+77),

where b denotes the bias given by

T2
1 A<
b=sign(b(t))\/ iy
Zyp

Jor t sufficiently large.
Moreover k (n)=n/s"(1/n)(1 +0(1)), n— cc, where s~ is the inverse
Sfunction of s, with s given by

2 x
i{’%%ﬂj sydu-(1+0(1)), 1o

and furthermore k,(n)€ RV 3,,)/2,p + 1)-

Proof. Suppose y>0 and suppose that condition (g) of Lemma 2.3
holds. Define a(z) :=log U(t) — ylogt — logc. Since |a(t)| € RV for
x>0,

—7p?

log U(tx)—log U(r)
=log U(tx)—7ylogtx—logc— {log U(t)—ylogt—loge} +ylog x
=vlogx+ (x 7 —1)a()1+o(1)), t— .
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One obtains in a similar way as before

1/(71 Y .

d n—in

M‘J’:E Y log U("——“Y‘ ’ Y(n—k.n))-l()g UY k)
i=0 (n—k.n)

1/‘“1[ Y. _.
=7+ y(log-‘"—“’—"—’—l)
k igl Y(n'—k.ni

+au%mﬂ{(§ﬂ4ﬂg”_1}}+%(a(g»
(n--k,n)

P; n
7+7’ﬁ+d1a(Ym )+ 0, (a (g)) (17)

by Lemma 3.1, with

& - dx
di=[ (=D 5= i +p)

(cf. Proof of Lemma 3.4 in Dekkers e al. (1989)] and hence

. P
(ML”)2=72+2«/~\/’/':+2'}|d‘a(Y(nk,n))-}.op(a(%)), (18)

Furthermore
{log U(tx) —log U(1)}? = {y log x?} 2+ 29(x " — 1 )(log x) a(t) + o(a(t)),

t — oo and hence
142! Yoo iml? Yo im)
Mill) é_ [”z {log (nl,n)} + 2'}) {( (n-—- I.H)) _ 1}
k 1;0 ! Y(nf—k,nb Yln—k.n)
Y(,,,, i) h
) log Y(n k,n) a( Y(" i k~"))] * 0” (a <E>>

izyz-‘_“l’z Q/"—+d2 a(Y(n k,ni)+0p<a (ﬁ>>s (19)
JK

k

where

- - d- 2 )
dyi=2 [ (x 7=1)logx 3= ~27p(2+ 7)1 +7p) 2
1 p
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and where (P2, Q¢) are asymptotically normal distributed as in Lemma 3.1.
By combining (18), (19), and (20) one obtains

0

Fa=7+7 \I;;_( +dya(Y, _im)to, (a (%))
+ {272+ 90K + daa(Y i) — 27
—4y3(Po/ k) — 4y dya(Y ) 2P [2+(Q2/6)
+(day?) a(Y o am) — 1= 2P/l — Q2dy fy) alY ()]}

NaativalCaeral) («(3))
=y+—T=t(y—2)—F+|5+——d |a(Y,_rnto,|al
EW/ K JrE O\ oy Fonmim+opl @i

B (2o (o(2)

with R asymptotically normal with mean zero and variance 1+ 7% and
where |b| e RV __, for (1 —7)p # 1. The rest of the proof is omitted since it
follows the same line as the previous one.

Remark 3.5. In order to calculate the asymptotic bias for (1 —y)p=1,
one has to impose further conditions.

In the next theorem the case of second order I7-variation is considered.
The conditions and the proofs are slightly different for all the three cases
y<0,y=0and y>0.

THEOREM 3.6. Suppose one of the following second order II-variation
conditions of Lemma2.5 holds: (d)[y<0], (f) [y=0], or (i)[y>0].
Define for t >0, the function b as follows

b(1)/[t "{log U(oc)—log U(1)}],  7<0

b(1) := < by(1) — by(1)/by(1), =0

ba(1)/{log U(t) -y log t}, >0,
and assume that b* is asymptotic to a non-increasing function and b, and
b,/b, are not of the same order. Determine k,=k,(n) such that the

asymptotic second moment of },—y is minimal and let 7, , be the corre-
sponding estimator. Then for ye #

ko Gro—7) = by—2 N(O, 62(3)), (20)

683:47:2-2
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with variance

1492 720

1-2y (5—11y)(1 —2y)>
1—=3y  (1-=3y)(1—4y)

o¥(y) =

(=92 (-2 (4-8

(21)
and where b, denotes the bias which is a slowly varying sequence and tends
to infinity for n — co. Moreover k, is a slowly varying sequence.

Remark 3.7. Note that (21) implies /&, (},,—7)/b,— 1, n— o0 in
probability. Hence the optimal rate of convergence of 7, —» 7y is given by
NP

Remark 3.8. In case b;(t)=[b,(1)]*(1+0(1)), t— oo, we are in a
similar situation as in Theorem 3.2 with p=1. In this case one has to
consider the asymptotic expansion of b(¢) and the proof of the theorem
to obtain an expression for the bias. An example is the exponential
distribution and the Gumbel distribution [cf. Section 4].

Proof. For y<0 we give the proof for the plus sign in (d} of
Lemma 2.5. The condition implies for

log U(1x)—log U(t) = {log U(cc)—log U(1)}
x [1 —x"—(x"log x) b(1)(1 + 0(1))], t— oo,

where |b| € RV, and b(1) —» 0, 1t » c0. Now one obtains

R, -

v”,,=7+\/§
+b(Y i sm) 0, (b (9)
(i) olo(3)

where R, is asymptotically normal with mean zero and variance o”(y). The
last approximation is valid since log U(c) — log U(Y, ,,) is of lower
order than b, |b|e RV, and Y, 4 ,/(n/k)—1 in probability. The mean
squared error of §,—y equals

EZ—IE)‘L)*F{b (g)}z (1+0(1)), n—oo.
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Write r :=n/k. We are interested in the optimization problem

by )
int Lo (et {7 0L, (22)

with 4%(r) >0, t — cc. Hence the asymptotic equality in (23) follows from
Lemma 2.8 and by the same lemma there exists a positive function
se RV _,, such that

{b(n)}? _
a?(y)

Let r, denote the optimal value for r in (23), then [again by Lemma 2.8]
r,(n)=s"(1/n}(1+o0(1)), n—> oo, where s“ e RV_,. Note that r,—
(n— o) and k, (n)=n/s"(1/n)(1 + o(1)) € RV,. Substitution of t=n/k, in
(23) gives

rs(u)d(u)-(uo(n)), 1= . (23)

b(nfk,))> =
Ll (0"2/(;))} =] stwde-(1+01)
1 f d
=k—-%l-(1+o(1)), n— . (24)

The fraction in (24) tends to infinity [cf. Geluk and de Haan, 1987, Rmk 1
following Coro. 1.18]. Hence the asymptotic bias of ,/k, (¥, ,—y) equals

az(y)j';“i(l ny S(u) du
s (1/n)/n

where |b,] is slowly varying and tends to infinity for n — co.
For 7 =0 condition (f) of Lemma 2.5 implies for x > 1

172
b,,=sign(b(t))( ) (1+o0(1)), n— oo,

log U(tx)—log U(t)
= b,(1)[log x — 3(log x)* [b5(1)/b(1)J(1 + 0(1))], t—> o
and hence
Sum (¥ m) 2222

NN/
= b3(Y (k)62 Y (n—km)) + 0, (a (%))

Sga(en )
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where R, is asymptotically standard normal and b4(z) ~ [6,(1)]% t — oo, is
excluded. The rest of the proof is as before and is therefore omitted.

For >0 we give the proof with a plus sign in condition (i) of
Lemma 2.5 and hence

log U(tx) —log U(t) =y log x + b(1) log x(1 + o(1)), [— oC.

Similar calculations as before give

. _ . R n
}n_}+\/z+b<k>(1+op(1))s

where R, is asymptotically normal with mean zero and variance g*(y) as
defined in (22). The rest of the proof is omitted since it follows the same
line as the part for y <0.

4. EXAMPLES

In this section we discuss the above results applied to some distribution
functions.
4.1. Uniform Distribution

The uniform distribution does not satisfy condition (b) of Lemma 2.3
since U(t)=1—1/t, t - oc. But the uniform distribution function satisfies
condition (d) of Lemma 2.3 with y=—1, p=1, U(ec)=c=1 and hence
t~7{log U(oc) —log U(1)} — ¢/U(o0) = t{ —log(1 — 1/t)} — 1, which leads to
by(t) = 1/(2t) — [1/(2t) + 1/(3%)(1 + o(1))] € RV _,. So b(t)= —1/(3t?)
(1 +0(1)), t - oc. The asymptotic bias of 7, ,— 7 is equal to —\/6/_5 and
moreover k(n) =(27/10)}°-n*(1 4+ o(1)), n — .

4.2. Cauchy Distribution

Define
1 1
F(x):=<+4—arctan x, XER,
2 =
the Cauchy distribution function. Then

non t n? S
U(t)—tan<§—7>~—{1———3-,—2+o(t )}, t— 0.
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The Cauchy distribution satisfies the condition of Theorem 3.4 with y=1,
c=1/m and p=2. The bias b of /k,(},,—7) equals (1/2)\/5 and
k,(n)e RV,., or more precisely

2

b(r)=——9—%log(m*‘U(t))=27I 724 0(172), t -0

27
and hence s(1)=2>.3"%.2%.1 %+ 0(¢1 %), t > 0. One obtains s~ (1)=2%°
23785 .15 115 (14 0(1)), t - oo and finally k,(n)=2"%5.35%. (n/m)*>
Al +o0(1)), n—> .
4.3. Exponential Distribution

The exponential distribution satisfies condition (f) of Lemma 2.5 with
U(t)=log t. Note that for x>0

log U(tx)—log U(t)

_logx 1<logx)2+l log x
T log: 2\logt 3\log¢

3
) (1+0(1)), t—oc, (25)

and hence b,(1) = 1/(log t) and b;(1) = 1/(log t). Therefore b, equals b, /b,
and Theorem 3.6 cannot be used directly.

4.4. Generalized Extreme-Value Distribution

Let G denote the GEV-distribution as defined in (2), then U(r)=
(I/7){[=log(1—¢"")] "—1}.

For y<0 holds U(x) = 1/—y > 0 and ¢ *[log U(xc) — log U(1)] —
c/U(c) = (1/2)[ =yt~ " + 7](1 + o(l)), t = oo, hence U satisfies the
condition of Theorem 3.2 with ¢ =1/(—7) and p = min(1, 1/(—y)). The bias
b of Jk,(J..,—7) equals — /a*(y)/2 for y< —1, and /a?(y)/(—2y) for
— 1 <y <0. The optimal value k,(n) is for n - oc,

[ (1_}')2(1_27)2 -1 23 .
(v | e <o
[26%(— 1)1 n?*(1 + o(1)) y=—1
T
[(1 —7)? (1—=3y)? az(v)]
\ xn =21 +o(1)) —-1<y<0.

For =0 holds U(r)= —log(—log(1—1/t))y=logt—1/(2t)+ o(1/t),
t— oc, hence log U(zx)—log U(t) equals asymptotically the right hand
side of (26). So we are in the same situation as in the example of the
exponential distribution.
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For y>0, log(: "U(t)/c)= —yt "2—t +o(t >+t %), t - cc, which
satisfies the condition of Theorem 3.4 with ¢ =1/y and p = min(1, 1/y). The
bias b of \/k, (7, ,—y) equals \/ 14+92)/(2y) for 0<y <1 and /(1 +%%)/2

for y> 1. Fmally, one obtains for the optimal value k,(n), n— oc,

1 41 2\ 1L+ 2y)
[Li_v_u_::y_)] R 40(1) 0<y<

ko) = z
o) = [64/91"° n?3(1 + o(1)) y=1
[8(1+7)(2y = 1) 7?17 n**(1 + 0(1)) y>1
APPENDIX A

In this Appendix we give the proof of Lemma 2.3 (Second Order Regular
Variation).

(b)=(a): Suppose y<0 and ¢ "{U(o0)— t)}—c— (1) for ¢ suf-
ficiently large, with He RV . Replacing now ¢ by {1 — F(U(cc)—x 1)} !
one obtains {1 —F(U(oo)—x*‘)}y)c*l —c=H({1 —F(U(oo)—x*‘)}*‘)
for x sufficiently large, and H({l —F(U(cc)—x"')} ')eRV_, since
U(o)—U(tye RV, and U(wc)— U({1 — F(U(o0)~x"")}"'eRV _,.

Now one obtains for ¢ sufficiently large

— {1 = FU() — 17 )] — ¢ V)
_ _[CW{I‘[I ~ FU(w) =t )] —c 1}‘“’_61/.,]

c

e 11 |
- -7 H(l—F(U(oo)—-r-l)>“+0(1)), t— 0,

where the latter term is positive and eRV _

o
(a) = (b): This part of the proof follows the same line.
{(b)=>(d): Note that (b) is equivalent with

F {71 = U(0)/U(0)] ~ c/U(x0)} € RV,

and use log x=(x—1){1 +0(1)), x> 1.

{c) <> (d): Use the equivalence of (a) and (b).

(f)=(e): Suppose y>0 and ¢ ?U(r)—c=: H(t), t— o, H positive
and HeRV_ ,. Since UeRV,, 1/{1—-F}eRV,, and, replacing ¢ by
1/{1 - F(x)},

1
{1—F(x)} x—C=H<m>ERV~p.
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Since x"" {1 — F(x)} — " =[x{l - F(x)}" —c+c]¥"—c""=

Cl/v[1+.)c{_l_r_i){_cwi;€(l+0(x—~/)):|_cl/y’ X = 00,

one obtains for 7 sufficiently large

-1+

1
iy — — l/v=c 1 —p
L= R} = et = ”(1_m)>( +0(t7))
with ¢ 7' * 1y~ H(1/{1 = F(1)})e RV _,.

(e}=>(f): This part of the proof is omitted since it follows the same
line as the previous part.

(fy=(g): Suppose 7 'U(t)—ce RV _,,, then also t7'U(t)/c— 1€
RV _,, and hence t7'U(t)/c — 1, t - co. Now log(t~"U(t)/c)= (¢t "U(t)/
c=1)1+o(1)=c Yt ?U(t)—c)(1 +0(1)) which is regularly varying
with index —yp.

(g)=(f): Follows the same line as ()= (g).

APPENDIX B
The following theorem has been communicated to us by A. A. Balkema.

THEOREM B.1. Let U>0 vary slowly and be asymptotic to a non-
decreasing function. Then U is asymptotic to an element of I1.

Proof. Write g(r)= U(e*). Slow variation of U means that g(t+ x)/
g(t) — 1 uniformly on bounded x-intervals for t —» co. We shall construct a
function f~g such that log /' is continuous and piecewise linear, and
(log f'Y — 0. This implies that V(1) :=f(log t) lies in {7. We may assume
that g(r) - oo for 1 — oo, since else g is asymptotic to a function f(r)=
C —1/t, C >0, which satisfies the condition (log /') (t) =2/t - 0. We may
also assume that g is strictly increasing and continuous.

For te#® and c>1 define ¢,>1¢ by g(t.) = cg(t). Obviously 1, —t — 0.
This implies that there exists a sequence y,=g(x,) such that y,, , ~
ya— o0 and y,.—y.=: v,~v,_, and such that x,,,—x,=: u,— .
Indeed choose x, ., so that g(x,,,)=c,g(x,) with ¢,>1 and ¢,— 1 so
slowly that x,, ; — x, = c0. We may assume ¢, to be weakly decreasing. In
addition we may choose ¢, of the form 1+ 1/m with m=m, a positive
integer and m, ,  —m, € {0, 1}. Increase the value of ¢, if necessary. Then

Un—l=(cn—l_l)yn—1~cn—l—'1=mn—l__>1
Uy, (C,.—I)Yn C"—l m, )
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Let # be piecewise linear such that h(x,)=y,. The derivative h'(x)=a,=
v,/u, is constant on the interval J,=(x,, x,,, ), and a,/v,,=1/u,— 0. The
asymptotic relation v, ., ~ v, implies a,, ,,/v, — 0 for any integer m. Hence
b,/v,— 0 where b,=a,_,+a, is the sum of the left and right derivative of
h in the point x,. Similarly b4, , /v, —0.

We now give an explicit construction of the function f.

Set f(x,)=y, so that f agrees with g in the points x,. Since f will be
strictly increasing and y, , , ~ y, this ensures that f~ g. We divide the inter-
val J,=(x,, x,,. ) into two parts by a point £, to be determined later and
define

u

wn(xn+u)=yn+bnf e Mt dt X, +u<é,
(4]

fx+u)=

u
—int v
w(xn+]_u)=yr1+l_bn+lj e 'di Xpp1—U>C,.
0

We shall choose ¢, and 4, >0 so that f'is C' on the interval J,,.

It is best to look at the derivatives. The function ¢, is decreasing with
initial value b,,>a, in the point x,; the function ¥, is increasing with
boundary value b, ., >a, in the point x,,,. For A =0 the two derivatives
are constant and as 4 increases, the slopes of the two derivatives increase.
Let £(4) be the point where they intersect. The function [’ agrees with
max(¢,, ¥,) on the interval J,, and we have to choose 4, >0 so that the
average slope over the interval J, is a,, since this is the derivative
of the linear function # on J,. Hence &, =¢(4,)eJ, and f'(&,) <a,. Now
observe that ¢,>, on J, if A=0 since the slopes exceed a,, and that
v,—@,>v,—(b,+b,.,)/A20 for A=(b,+b,,,)/v,—0. This implies
A, —0, and since |(log f')| =4, on J, we obtain the desired limit relation
(log /') (x) =0 for x — oC.
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