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Asymptotic Properties of Maximum Likelihood Estimates
in a Class of Space-Time Regression Models

XUFENG Niu*

Florida State University

For statistical analyses of satellite ozone data, Niu and Tiao introduced a class
of space-time regression models which took into account temporal and spatial
dependence of the observations. In this paper, asymptotic properties of maximum
likelihood estimates of parameters in the models are considered. The noise terms
in the space-time regression models are in fact structural periodic vector auto-
regressive processes. Some properties of the spectral density matrix of the processes
are discussed. Under mild conditions, the strong law of large numbers and the
central limit theorem for the parameter estimates are proven. 1995 Academic

Press. Inc.

1. INTRODUCTION

Environmental data analysis is a field that today is of critical importance
in providing the basis of scientific understanding for setting wise public
policy on environmental management. With the huge amount of ozone,
temperature, aerosol, and gas data collected by satellite, sophisticated
statistical techniques need to be developed to describe the structure of these
data. Reinsel et o/ [ 14, 15] used regression-time series models to analysis
ground-based and satellite ozone data. Niu and Tiao [12] introduced a
class of space-time regression models for the statistical analyses of satellite
ozone and temperature data, in which both spatial and temporal interac-
tions of the observations were considered. Specifically, letting {y,(7)} be
the monthly average ozone or temperature observations at longitude ; on
a fixed latitude, Niu and Tiao [127 considered the regression time-series
model

]
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where the x,(7)’s were some regressors including a linear trend term and
¢;(1) was a noise component. The noise term £;(f) was further modeled in
the space—time form

q P
=3 [o&; D+ 0,8, 401+ Y 08t —D+e,(1),

1 =1

j=1L2,.,n =12, .,T, (1.2)

where the ¢;(¢)’s were assumed to be independent and normally distributed
random variables with mean zero and variance o%(t)=0%*t—12). The
model in (1.2) is called a space-time autoregressive model with order ¢ and
p (STAR(q, p)). The spatial order ¢ satisfies that g <[n/2] and #,=0 for
g =n/2, where [ n/2] is the integer part of n/2. From now on, we denote the
unknown parameters in (1.1) and (1.2) by the following notation:

B=0Bun s Bors s Bras s Bon]’s @=[ay,0,Y, 0=[0,,...0,].
0=[¢1... 0,1, o=[c%1),..0%12)], n=[a.0,¢.67.

We call B the regression coefficients, @ and 8 the spatial coeflicients, and ¢
the temporal coefficients.

The space—time model in (1.2) has several special features. In the tem-
poral direction, the value of current observation depends upon the past p
values, which is described by the well-knwon AR(p) model. Since the varia-
tions of ozone and temperature observations usually depend on month of
the year, the ¢,(#)’s are assumed to have different variances for different
months. In the spatial direction, the value of current observation depends
on its neighboring values. This spatial bilateral dependence scheme 1s
similar to the bilateral autoregression model introduced by Whittle [20]
for spatial lattice systems. In practice, the spatially bilateral dependence
makes sense physically, but the estimation of parameters in this type of
model becomes considerably difficult. In particular, for an infinite two or
higher dimensional lattice system, it is usually impossible to find a simple
formula for the likelihood function of the parameters, and standard
methods of statistical inference are very hard to apply to such models.
These difficulties motivated the introduction of unilateral lattice process
models. For example, Tjgstheim [ 16-18] studied the asymptotic theory of
causal (quadrant-type) models and half-space models for high dimensional
lattice systems. See Korezlioglu and Loubation [10] for further results in
the half space case. However, for estimation of the parameters in the space-
time model (1.2), there is no difficulty created by the bilateral dependence.
One of basic features of satellite ozone and temperature data is their
circular property, i.e., for a fixed latitude and at a fixed time ¢, the data
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{yAn),j=12, .., n} were observed along a circle. Therefore the covariance
structure of the space-time model in (1.2) i1s closely related to circular
matrices. Using properties of circular matrices, such as explicit expressions
of their eigenvalues and inverses, Niu and Tiao [12] gave an explcit
formula for the conditional likelihood function of the parameters in the
space—time regression models and discussed stationary conditions of the
noise term {&,(r)}. They showed that the space-time regression models
could be written in transformed forms which may be used to test the
uniformity of the long-term trends in different longitudinal ozone series,
and they applied the space-time regression models to the total ozone
mapping spectrometer (TOMS) ozone data for trend assessment.

In this paper, we investigate asymptotic poperties of the maximum
likelihood estimates of the parameters in the space-time regression models.
Define

e(t)y=[e (1), ...e)], yy=[y,(6), .. v,
x(t)=[x,(t), ... x,(t), X(ry=1,®x'(1)

and
0 1 0 00
I
1 0 0 - 0 0f,..

where W, is a circular and orthogonal matrix. Using the above notation,
the models in (1.1) and (1.2) can be written in the form

y(t)=X(1) B +&(1), (1.3)

r
YW, E() =Y &t —1)+elr), (14)

=1

where €(t) has periodic covariance matrix ¢(¢) I,. Thus, the noise model
in (1.2) is in fact a structural periodic vector autoregressive time series
model with few natural parameters. Therefore some available asymptotic
results and related techniques for maximum likelihood estimates of
parameters in vector time series models will be used in this study.
Consistency and convergence properties of maximum likelihood
estimators for vector time series models have been proved under various
assumption. Dunsmuir and Hannan {4] and Deistler es al. [2] presented
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consistency and central limit results for parameter estimates in general
linear time series models and in ARMA models. Hannen et al. [ 9] presented
the asymptotic results for the ARMAX case (auto-regressive-moving
average with exogenous variables). The settings of general linear models in
Dunsmuir and Hannan [4] were of the form

gn=Y CuveEt—j) Y ICGvIP<m,  CO.v)=1,  (L5)

j=0 j=1

where |C|| denotes the norm of the matrix C, for example, the square root
of the maximum eigenvalues of C*C where “*” denotes the complex con-
jugate transpose; the unknown parameter ve ©® and ® was assumed to be
compact: {€(1)} was an uncorrelated vector series with common variance
matrix K(v). The spectral density function of {&(7)} was assumed to have
the form

flo, vy =2r) " h(e™, v) ' g(e™, v) K(v) g*(e", v) " h*(e™, v}, (1.6)

i

where h(e™,v) and g(e
[—n 7] xO and

,v) were continuous functions in (w;v)e

O, v)=g(0,v)=1,.

Dunsmuir and Hannan [4] imposed some basic conditions on the
spectral density function and the parameter space and proved that
estimators of v, derived from a Gaussian likelihood and some certain
spectral approximations to this, are strongly consistent and asymptotically
normally distributed. For vector ARMA models, Dunsmuir and Hannan
[4] claimed the conditions were fulfilled under special choices of parameter
spaces. Hence the maximum likelihood estimates of parameters in a vector
ARMA model converge almost surely to the true parameters. However,
Potscher [ 13] pointed out that the proof of one of the conditions, namely
condition B6 in Dunsmuir and Hannan [4], was not conclusive and found
that if one assumes Gaussianity of the vector processes, then the con-
sistence results of the likelihood estimators are still valid without imposing
the condition B6.

For regression time-series models, some asymptotic results of parameter
estimates are indeed available in the literature. For example, Hannan [6,
Chap. 8] discussed the asymptotic theory of the least squares estimates of
parameters in vector linear processes. Hannan [7, 8] proved the strong
consistency and the asymptotic normality of maximum likelihood estimates
of parameters in univariate regression time series models. See also Whittle
[21] and Walker [19]. In practice, conditional likelihood functions are
often used as time domain approximations to the Gaussian likelihood for
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estimation purpose when the number of observations is moderately large.
However, fewer results are available for parameter estimates derived from
the exact Gaussian likelihood and its time domain approximations in
vector regression time—series models.

The asymptotic theory of the maximum (exact and conditional)
likehhood estimates of the parameters § and p in the space-time regression
models will be addressed in this study. In Section 2, we give the estimation
procedure of B and p. In Section 3, we first show that if the {&;(1)}’s are
observable, the maximum conditional likelihood estimates of p are strongly
consistent. The proof draws on results and ideas of Dunsmuir and Hannan
[4]. Then under some mild conditions on the regressors, we prove the
strong law of large numbers for the estimates of B and p. In Section 4,
the central limit theorem for the maximal likelihood estimates of the
parameters in the space—time regression model is studied.

2. THE MaxiMUM LIKELIHOOD ESTIMATES

In this section, we give the estimation procedure of the parameters in the
space—time regression model. Niu and Tiao [12] derived the exact
likelihood function and the conditional likelihood function for the
parameters. The notation and terminology of that paper will be used here.
Define

Sx=[&p), .. 8(1V],  &=[&p+1), . &T)]
g=lep+1), . .&T)],

0 0 0 0 0
1 0O 0 .. 00
UT7[; . L bl
0 0 0 10 (T pr=<(T—p)
¢l[n ¢2]n ¢/7 Iln ¢p[n
c={ ¢4, 0 . 0 0 |,
o o 0 0 m T - pixnp
and
P
A=I; ,Q@y(W,), D=3 Ui Q¢ (2.1)

k=1



SPACE-TIME REGRESSION MODELS 87

From now on, we will assume that the matrix y( W) is invertible. Hence
the model in (1.4) can also be written in the “reduced” form

DB E() =y (W,) &(1), (22)

where B is the backward shift operator such that BE(¢) =§(r— 1) and
P
o(z)=1,— ) ($y " (W,))z"
I=1

When the determinantal polynomial |®(z)| have zeros outside the unit
circle, it is easy to show that the process &() can be expressed as a causal
function of {&(r)} (see Brockwell and Davis [1]) which has the form

&)=Y Y[y (W) elz—j)]. (2.3)
j=0
Therefore §(1) is independent of {&(f+ 1), &(t +2), ..}, which implies that
&, and ¢ are independent.

Denote the covariance matrix of §, by I' and the log exact likelihood
function of the parameters in (1.2) by {p | &, &,). Then by Niu and Tiao
[12], maximizing /(p | &, &,) is equivalent to maximizing the function

T n—1

! 2 T— 27 )
lr(ulé,é*>=—;l<>g(!ﬂ)—% > log(a~(t))+—T—p Y log |y
s=0

t=p+1

(T G 1 S(E )] 24

where

T 1 n q
SEE)= Y { 5 <é,(t)— S Lo, 4l0)
=1 k=1

t=p+1 02“)1
P 2
+60:&; 4 k()] — Z ¢I§j(t—l)> }
=1

In practice, for moderately large T, (T>>p), we may approximate the
likelihood function in (2.4) by a conditional likelihood function which
ignores —(1/T) log(|I'}) and —(1/T) &, I 'E, in (2.4), ie.,

_ B E T 3 ]x_p
Ir(n]& &)= —T,Eﬂ log(a7(1) +—~
n—1 ]

x Y log (e P~ S5 &) (29)
s=0
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Furthermore, define

Zr_,=Diaglc®(p+1),...,a%(T)),  Y=[y(1), .. WT)].
X(1)
X=| |
X(T)
F=[-Ci4~-D)) (27!, ®L)[~Ci(4-D)],
and

S(Y — XB) = (Y — XB)' F(Y — XB).

Then by Niu and Tiao [12], an equivalent form of the log likelihood
function for the parameters p and p is

{ (B (Y’_ _110 (er—ﬁ i lo 2(()+_7:_p'1211 |lll lZn.\e‘n)l2
Pal =77 g T, %>, g0 r % og |yle
1
~ 7 [BT 8, + S(Y - YB)]. (2.6)

Similarly, an equivalent form of the log conditional likelihood function for
the parameters p and p is
T
2 T—
Y loga’(s) +—T>p

r=p+1

BowlY)=—2

n—1

Yy 3 ]
x 3. log [Y(e")]* = = S(Y — XB). (2.7)
y=0

Setting o7,(B, p | Y)/0p =0, we have

fr=(XFX) ' X'FY (2.8)

and
n T n—1

7 B 2 T— idms )
IT“‘IlBTsY):—?, Z 10g0'(l)+——T—- Z log!lp(el_mn”h
s=0

t=p+1

1 "
— 2 S(Y — XB). (2.9)

To find the maximum conditional likelihood estimates of p and B, we first
obtain fi; by maximizing /(. ¢ | B7, Y). Then the estimate of  is of the
form

B,=(XEFXx) 'XFY. (2.10)
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3. STRONG CONSISTENCY

In this section, we discuss the consistency properties of the parameter
estimates. The process {&(¢)} in (1.4) is usually not statlonary since the
variances {62(¢)} depend upon t. However, since the variances are periodic
with ¢2(f)=0%(t—12), instead of the monthly series {&(¢)}, we may
consider a yearly vector process which is stationary. Specifically, define
() =y (W,) &(r) and

(Fy=[n(12F + 1), .. n(127 + 12)'7,

fi(
E(r)=T[&(127+ 1Y, ... E(127+12)']".

Then {#(7)} and {&(7)} are yearly vector series. The covariance matrix of
(1) is

K@y =Z@[yWw,)] ' [y(W,)]1 ", (3.1)

where X = Diag(e?(1), 6%(2), ..., d*(12)). Furthermore, the model in (2.2)
can be written in the form

&(B, p) &(7) =i(7), (3.2)

where &(z,p)=1,,® ®(z) and note that B operates on =127+ m for
m=1,2.,12 ie, BE(12F+m) =§(127+m —1). If the roots of |D(z)| =0
lie outside the unit circle, the yearly series {&(7)} is strictly stationary and
ergodic since we assume that {&(¢), t=1,.., T} are independent and
normally distributed. Define @,=¢,[y(W,)] ' and

G:{(p‘ &, - @p].
I(pfl)n 0

Then the fact that the roots of @{(z)=0 lie outside the unit circle is
equivalent to the fact that the eigenvalues of G lie inside the unit circle.

Let 4 be an n xn matrix and 4, .., 4, be its eigenvalues. Define 4,(A4) =
min, ., ., [4x| and A*(4)=max, ., ., |4]- For the parameters p defined
in Section 1, we assume, throughout the rest of this paper, that pe @ such
that

(El) l*(lﬁ( w.)) :minosvsnfl ll//(efzmmﬂ Z14>0,
(E2) A¥(G)<l—9,<1,

(E3) O0<c<o¥s)<e, <o 5=1,2,..,12,

(E4) © is compact,
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where the constants 7, and J, in the conditions El and E2 can be chosen
as small as we like. We refer to the above conditions as conditions E.
Condition El simply ensures that the matrix Y(W,) is invertible, and
condition E2 guarantees that the yearly series {E(7)} is strictly stationary
and ergodic. Finally, condition E4 requires that the coefficients in model
{1.2) are bounded. Conditions E may be weakened such that some non-
stationary models could be included, but we do not intend to go further
in that direction. From now on, we denote the true parameters in the
space-time regression model as B, and p, € @.

The spectral density of the yearly vector process {&(7)} is of the
following form:

flo,p)=2r) ' Sl p) = Kp) B*e, p) " (3.3)
The eigenvalues of K(p) are
=0 (I[w(e™ ) e "], j=1,2,.,12; s=0,1,..n—1

By conditions El and E3, we have

K <Z <o (3.4)

'ﬂl'\
o

[~X)

Since Y{e™™") (") are continuous functions of @ and 0, there exists a
constant N such that

sup (e ") Yle TS N<ow, s=0,1,.,n—1
a,0e®

Hence

.
Al K() = 5> 0. (3.5)

Furthermore, the eigenvalues of the matrix B(e™, p) are

14
v, p)=1=73 ¢’y (e, s=0,1,..n—1

=1

Under condition E2, we have |®(z,p)#0 for |z| <1/(1—6,), which
implies that |v(w, p)| >0 for (w,p)e[ —7, 7] x@. Since {v(w,p)} are
continuous functions of (w, p)e[ —n, n] x ®, there exist constants 7, >0
and 7,> 0 such that

0 <1, <A (Ble™, p) P*(e™, p))
<X B, p) D™ p)) < 1o < oC. (36)
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Hence we have

x Ao p)a a’K(p)a

PR = T = S S @ie, w) B4, ) a
< AHKp) S
T (B p) B ) Ty

< o (3.7)

and

. A flopa a’K(p) a
Al flow) = :2{) a'a - 312{) a' (e, p) P*(e™, n)) a
i*(K(ll)) Cy

> — AL >—>0. 38
A¥((D(e, p) D* (e, n))~ Nt, (3.8)

Letting {&(7)} be the vector process in (1.5) with true parameters v, and
Es(s) €'(t) =6,,K(v), Dunsmuir and Hannan [4, Corollary 1] showed that
the maximum likelihood estimates of the parameters are strongly consistent
under some basic conditions. One of their conditions is 0 <7 <A, (K(v,)).
But Deistler ef al. [ 2] found that the their conditions were not enough. For
the result of Corollary 1 of Dunsmuir and Hannan [4] to be valid, two
extra conditions on the spectral density are required:

AJK(V)Z1>0 for all ve®, (3.9)
|det(h(e™, v))| = >0. (3.10)

For the space-time model in (1.4), the condition in (3.10) is equivalent
to condition E2. From (3.5), the matrix K(p) satisfies the condition in (3.9)
too. Since we assume that the vector AR(p) process {E(7)} is Gaussian, the
maximum likelihood estimate of p, is strongly consistent if the process
{&(r)} is observable.

To show that the maximum conditional likelihood estimates of p, is
strongly consistent, we first state the following general result. The proof of
this result is essentially the same as that of Corollary 1 of Dunsmuir and
Hannan [4] and theorefore omitted.

LEMMA 3.1. Suppose that the vector process &(t) in model (1.4) is
observable and that the parameters n satisfy conditions E. Let I$(p &, &)
be an approximation to Ip(pn| &, §&,) defined in (2.4) and let w5 be the
estimate of W, obtained by maximizing I$(n | &, &,). If

m (Fp 8.8, —Ir(n]&8))=0  as

T o

683/55/1-8
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uniformly in pe ®, then

im p¥=p,. a.s.

T x:

Based on Lemma 3.1, we have the following result for the maximum
conditional likelihood estimate of p,.

THEOREM 3.1.  Suppose that the vector process &(t) in nzoglel (1.4) is
observable and i is the estimate of n, obtained by maximizing [(n | §, &)
defined in (2.5), then

lhm fgr=p,, as.

T— x

Proof. By Lemma 3.1, it suffices to prove that

_ _ 1 1,
lim (Ir(r]88) = lr(n ]88, )) =log I =&, T '£,=0 as
(3.11)

uniformly in p e ®, where the elements of I" are functions of p.
Let I'(t, t+k)=Cov(&(t), &t + k)). Then by (2.3), we have

th+k=Zaf Ly WOy WY
=0
and
ra,ny - r,p)
r:
Lp,Y)y - I(p,p)

By condition E3, {&()} is a periodic process with 0 <c¢, <o (1)<, < 7.
Let {&(s)} be independent random vectors with mean zero and

Cov(&(?))=(aX(t)—c,/2) I,,
and suppose that {E(¢)} is a vector process which satisfies the equation
P(B)E(N) =y (W) &)
Then the covariance matrices of {&(¢)} are
[ t+k)= Z i)V T WY T W WL,

F(r t+k)y—T(k),
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where

I'(k)= 7’-[!#"( YT WD e

nMg

“
2,

It is clearly that I'(k) is the covariance matrix function of a certain
stationary vector process. Define

flo,my= (207" @) [y (W, (W,)] @¥e™)

Then f(w. p) is a spectral density matrix function and

Fa __(;l " ks F
I'k)= 2 J e (w, 1) dow.

-7

Let

ri,n - Id,p) ) . Fp-1

~
Il
~
1

r(p,1y - T(p,p) r'p-1 - IO
Under condition E3, there exists a constant 7, independent of p such that

0 <73 <A, (f(®, p)), which implies that ¢, 77, < 4,(F). Since F'=r—T'is
a non-negative definite matrix, we have

AN Z2A (N2 mt3>0.

Similarly, we can show that there exists a constant 7, independent of p
such that

A¥(IMY < e,y <o
Now we have
0<(c,mt) 2" <M < (eymy)' P < oo

and

O0<ELT TG, <AMT 8,8, < Zé &)

T3, 21

Hence (3.11) holds. |
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We now discuss the strong consistency of p,and fi. For this purpose, we
need to impose some conditions on the regressors. Define

T

dr(j)="Y x}(0).

t=1
The conditions imposed on the regressors are

{C1l) There exists a constant 0 < p < 1,2 such that lim sup,_., T*/d.(J)
<Ny<w, forj=1,2, .., m

(C2) lim,_ ,, ,\‘_f(T)/‘dT(j):O, for j=1,2, .. m;

(C3) For all integers hand j,k=1,2,..,m,

i Slix) x 1+ h)

=r,(h).
T drj)do k) *

(C4) Let R(h) be the matrix with entries r,(#). Then R(0) is positive
definite.

We will refer to the above conditions as conditions C.

The conditions C are essentially the same as the well-known Grenander’s
conditions, except condition C1 is replaced by hm,_ , d/{j)== in
Grenander’s setting. For polynomial and trigonometric regressions, it is
easy to show that condition C1 is satisfied. Grenander and Rosenblatt
[5, Chap. 7] proved that for these regression variables, conditions C2-C4
are satisfied too. Furthermore, if a is a vector of complex numbers,
{a*R(h)a} forms a non-negative definite sequence. Therefore R(/) can be
expressed as

R(h) = J”r e M(dw), (3.12)

e

where M(w) is a function of @ taking as values m xm matrices and
AM(w)= M(w,)— M(w,) 1s a non-negative definite matrix for every
interval (w,, ©,). M(w) 1s called the spectral distribution function of the
regression variables.

THEOREM 3.2.  Suppose that the regression variables satisfy conditions C.
Then for B defined in (2.8), we have

lim B,=8, as (3.13)

T— >

uniformly in pe @.
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Proof. Define

Dy=1,®dy,

= Diag (

)
Va0 drm))

Vr=D;X'FXD,, (=T "D, X'FE
Then we have
Br—Bo=(X'FX) ' X'FE=(T"?D) V%

By condition C1, {A*(T”D3.)} are bounded and independent of p. It can
be shown that for a certain large number 7,>0, {A*(V;'), T> T,} are
bounded uniformly in pe® and that lim;_, , {;=0, as. uniformly in
pe® (see Niu [11]). Hence (3.13) follows. |

For the consistency properties of f, and fi,, we have the following
result,

THEOREM 3.3. Suppose that the regression variables satisfy conditions C.
Then we have

lim fA,=p, as. (3.14)
T— o

and
lim f,=8, a.s. (3.15)
T— o

Proof. Note that
(Br—B)Y XFXBr—B)=Br—B) XF(Y—XB).
Hence
S(Y —XBr)=(Y—XBr) FY—-XBr)
=(Y—XB) AY—~XB)—(Br—B) X'FX(B—B)
=S, &,)— (Br—B) XFX(Br—B). (3.16)

By Lemma 3.1, in order to show lim,_, , iz = B, it suffices to prove
that

.y = ~ 1 = =
Tlgnx (1 Br, V) —1r(n 1§ 8)) =?(Br—ﬂo)' XFXPBr—Bo)=0  as
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uniformly in pe®. This follows from B, 2> B, uniformly in pe ® and
A*(D+X'FXD ) uniformly bounded in pe®.

Since B is a continuous function of p, f, - B, uniformly in pe ® and
2= pg, by (2.8), (2.10), and the continuous mapping theorem, we have

im Br=By as |

T— x

COROLLARY 3.1. Suppose that the regression variables satisfy conditions
C. Let $% and p% be the estimates obtained by maximizing the log-likelihvod
Sfunction defined in (2.6). Then we have

Iim p%=p,. as. (3.17)
T— x

and
lim B¥=8,. as. (3.18)
T— x

Proof. It can be shown that p%—p, converges to zero almost surely.
Therefore (3.18) follows from (3.15). The proof of (3.17) is essentially the
same as that of (3.14), hence it is omitted. |

4. THE CENTRAL LIMIT THEOREM

When &(¢) is a general linear process with the spectral density defined in
(1.6), where the matrix functions # 'g and K are specified by different sets
of parameters, Dunsmuir and Hannan [4] established the central limit
theorem for the maximum likelihood type estimates of the parameters in
model (1.5). In a followup paper, Dunsmuir [3] established the central
limit theorem for parameter estimates obtained by maximizing two specific
frequency domain approximations to the Gaussian likelihood, in which the
innovation covariance matrix and the linear transfer function need not be
separately parametrized. In this section, we study the central limit theorem
for the estimates of the parameters in the space-time regression models.
The maximum likelihood estimates and the maximum conditional
likelihood estimates have exactly the same limit distributions. Since the
proof of the central limit theorems for the two types of estimator are essen-
tially the same, we only present the results for the maximum conditional
likelihood estimates. First, we state the following two lemmas which proofs
were given in Niu [11].
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LeMMA 4.1.  Suppose that the regression variables satisfy conditions C.
Then we have

o . N
lim —T(BT—ﬂO)X'FX(ﬁT—BO)=O as. (4.1

uniformly in pe® and

1 0
lim —=—2— (Fr—Bo) X' FX(Br—Bo) =0  as. (4.2
T—*‘xﬁaﬂkaﬂ[(ﬂT ﬁO '}T ﬁO )
uniformly in pe @.

Lemma 4.2. Suppose that the yearly vector process {E(t)} has the
spectral density matrix f(w, p,) defined in (3.3). Then we have

1 el .l )
#ﬁ}ﬂéa)=ﬁﬂmwgnﬂﬂ@u)VM&MM) (4.3)

.10 as. | ~ 1 3f(w,p)"" >
-~ 2 S AL 2 4
Jim Gz S(68,) % rxtrace <L2n f (@) do ). (44)
and
. 0* as. | =~ 1 3 flo,n)"!
Tll_{r}x?aﬂkaﬂlS(é,é*) _ExtraceO‘nzn EE f(w,uo)dw>.

(4.5)

Furt_hermore, the convergences in (4.3), (4.4), and (4.5) are uniformly in
pe®,

From now on, we suppose that 7712 is an integer. Define

k.= Y logly(e™™)|>—nlog a*(1),

s=1

I

&='(wmmm—é@w—ﬂ(wmmm—;@m—ﬂ,

o?(t) =

T

k(p)=(T—p) ) log (™ )|*~n ) logo(1).
s=1

t=p+1
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Then

T T
SE &)=Y S. kim= Y k.
r=p+1 r=p+1
and

12

1 I " o i
Tlgnx?,k(u)=ﬁlog [K(p)| = ) log |y (e™™™)|>—n Y loga*(s).

s=1 s=1

Furthermore, define

d
u,(k)=5—g—(—(k,+s,)|,,u= E (W) e(r)
k

aglt)

N a 2sminy| 2
+y a—ak(log (e ™)) e

s=1

2 2
ul(q+k)—gg;(k/+5r)luu_o_%(t)g(’) Wnﬁ(()
+ 3 o (log (e
= ap, OB ho*
2 2
u,(2q+k):@(k,+5,)|uu=%§(t—k)s(t),
2q+p+k)= 9 (k, + 5| —{—l— "(¢) (t)} _
U\eq+p -aalz( ! e = O'g(t)e € o 1o a’ﬁ(k)

for 1<k<12,

and

d 1 1
Z3th) =5 (; K(n) — 7. S(E, &n)

"o

It is easy to see that Z(k) =(1/T)X7_, ., ulk).

Let # be the o-field generated by {&(s), s<t}. It can be shown that
Eu,(1)=0 and {u,(1)} is a sequence of martingale differences with respect
to {%) and satisfies the conditional Lindeberg condition, i.e.,

1 as

T
7 L Bl L= 70| 0} 250 forall £>0. (46)

1=p+1
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Furthermore, we have

E{lug()uy(s) | #_,} =0 for s#1,
Elu)ult)| #_} =0 for k+#1l, k1z2g+1,

and for each pair (k, /), the limit of (I/T)X7_, .\ E{u(t) ut) | % _\}
exists as T — oo. The exact expression of the limits was given in Niu [11].
Define

.1 X
Vo= (im & % Elutuiol 7))

t=p+1

2,=(Z,(1).Z,2), .. Z;(2g+p+12)).

By the martingale central limit theorem, we have the following result.

LemMA 4.3, Suppose that the vector process {&(1)} is generated by model
(1.4) with the true parameter poe ®. Then /T L is asymptotically normal
with zero mean and covariance matrix V,. Furthermore, the random
variables {ﬁ Z(k); k=2q+ 1} are asymptotically independent.

Based on Lemmas 4.1, 4.2, and 4.3, we now obtain the central limit
theorem for the maximum conditional likelihood estimates fi. Let

er 1 " of (o, af (o,
Uk def Etrace <J‘ ﬂf(w’ p)! _f_(ajz)_u—)f(w’ p)-! f(g; mda)
, . ) ——1

(4.7)

and V be the matrix with v,, as its typical elements. Then we have the
following result.

THEOREM 4.1.  Suppose that the vector process {§(1)} is generated by
model (1.4) with true parameter p,€ O and the regression variables satisfy
conditions C. Then \/‘Tp (R — o) is asymptotically normal with zero mean and
covariance matrix V'V, V.

_ Proof. Since fi maximizes the conditional likelihood function
T(n|Br Y) defined in (2.9), we have
llu>

0 ~ ~ 0 ~ ~
0=/T( 2T B V) ‘,,)z\ﬁ(f?ﬂ, Tk 1B Y)

e/ T o) (48)
i

07 - =
" To(n | B Y)
(aﬂkaﬂl T ulBr
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where [[fi —p,o| <t —p, . Noting that by (2.9) and (3.16), we have

0 ~ ~
(LTt 1 B V) )
\/—<aul r(nlBr "

2
=JTZ,+ ( (Br—Bo) XFX(Br—Bo) ) (4.9)
f Op By
and
”? . 1 1 &
g T B V0= (57 w7 s )

1 @
- ) X' FX( (4.10)
(3 Br= B XEX G~ B0))
By Lemma 4.1, the second terms in the right sides of (4.9) and (4.10)
converge almost surely to zero uniformly in pe @. By Lemma 4.2 and the
proof of Theorem 2.1 in Dunsmuir [3], it can be shown that

) 1 & 1 92
711-{11; <—7"@,uk6,u,k(p)+T@,u,‘@y, S8, 84) )

=
i

Hence we can write (4.8) as

ST Zr+o(1)y=(V+o(1))x /T (fi—p,),

where “o(1)” denotes a term which converges to zero almost surely. The
result of this theorem then follows from Lemmas 43. 1§

To obtain the central limit theorem for B,, we need modify conditions
C. Define

T .2
ar)= 3 4
d =D1ag( ! >
\/d \/d (m)
Droy=1,xd;"

We modify conditions C as follows:

(C1l’) There exists a constant 0 < p < ! such that lim sup_, . T7/d(j)
< No<w, forj=1,2,.,m;

(C2) limr. ., xHT)dr(j)=0, forj=1,2, ., m
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(C3') For all integers A and j, k=1, 2, .., m,

lim >r xj(t)x,((r+h)/az(t)= ()

e V) drk)

uniformly for {a?(7)} such that 0 <c¢, <o’(1)<c,< 0.
(C4) R(0,0)={r,(0,6)} is positive definite.

We will refer to the above conditions as conditions C’.

Remark 1. It is easy to see that conditions C1’' and C2' are equivalent
to conditions C1 and C2. When the regression variables are non-negative
or when ¢}(t) =gy, condition C3’ is equivalent to condition C3.

Remark 2. Condition C4' is equivalent to condition C4. In fact, it is
obvious that condition C4' implies condition C4. On other hand, let

R (0)=D; X' XDy, R4(0,6)= DT(O') X,(Z;l ®1,) Xﬁr(“),
where Z ;= Diag(c”(1), ..., 6 T)). Then
| G ~
Ry (0, G)ZC—(DT(G) D7'YR(0)D(o)D}').
1
Furthermore, noting that A*(D%(¢) D;%) <c,, we have

1 'R
7, (R0, 6)) > — inf —= r(c)a

1
crazoa(D3(e) D ya” ¢ +(R7(0))

Hence

. 1 . 1
i*(R(O,c))=Tllm i*(Rr(O,c))B;Thm i*(Rr(O))=§l*(R(0)).
o 2

i
Therefore if R(0) 1s positive definite, so is R(0, o).

Remark 3. Let R(h, 6) be the matrix with entries r;(h, 6). Then R(h, o)
can be expressed as

R(h o) = J” e M(dw, ).

-

THEOREM 4.2.  Suppose that the vector process {&(t)} is generated by the
model (1.4) with the true parameter W,€ @ and the regression variables
satisfy conditions C'. Then D (8)(P,—Bo) is asymptotically normal with
zero mean and covariance matrix Q~ '(p,), where
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Q) :F 2nfi(w, p) ® M(dw, o),

S, p)=(27m) " h(e", w) h*(e™, p),

and

4
h( - ll n Z /"lIn

Furthermore, D, (8)(Br—Bo) and ﬁ (A —po) are asymptotically inde-
pendent.

Proof. Similar to Theorem 3.2, define
Vi'(w=(Dr(6) X'FXDr(6)) "', {r(n)=Dyp)=Dr(e) X'FE.
Then we have
Dr(8r)Br—Bo)=V7'(hr) Srlfir).

By condmon C3', we can show that ¥V ;' 2> O~ '(n) uniformly in pe ®.
Hence V(i) 2 0 ().

Now it suffices to prove that {,{fi;) is asymptotically normally dis-
tributed with covariance matrix Q(p,). Note that

T’T TV T TAT—()~
(Gr(fr) —Grlne)) = ﬁ< §(u>f(u o)

where |[fi —p, || <I/fiy — Mo ll. Similar to the proof of Theorem 3.2, it can be
shown that

1 /0 as.
*ﬁ<a—ﬂ§r(u))~——» 0

uniformly in p € @. Therefore,

1 5} . as
TT<5—/1CT(M>——’ 0

It then follows from Theorem 4.1 that {,(fi;) —§,(n,) — 0. Hence,
asymptotically (fi;;) and {(p,) have the same distribution.

Since the random vector & is normally distributed, so is {(p,)
Following the argument of Grenander and Rosenblatt [5, Chap. 77, we
can show that the covariance matrix of {,(p,) converges to Q(p,).
Therefore the limit distribution of {,(fi;) 1s normal with mean zero and
covariance matrix Q(p,).
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Furthermore, the asymptotic independence of D (é,)f,—B,) and
T(fi; —p,) is equivalent to the asymptotic independence of {,(p,) and
T Z . Note that

T 1 r
Cr(po) = Dr(oy) Z 3 (X’(f)'ﬁo( W'y — Z ¢0(1)X'(f—1)> (1)

i—pe1 Tolt) =1

= Do) Y L)

r=p+1

where {(¢) is a vector with nm elements. Then the asymptotic independence
of {+(py) and ﬁZ follows from the fact that {{(7)} is a sequence of

martingale differences with respect to {#} and that

lim Z E{{(yult)| #_,} =0  as.

T_"ﬁd r7p+1

which is easy to establish by using condition C1’. |
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