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In this paper it is shown how a generalized form of canonical analysis can be use-
ful to reveal which parametric functions of a MANOVA model, for instance treat-
ment contrasts or combinations of observed variables, are responsible for rejection
of a general linear hypothesis on these functions. For the decomposition in suc-
cessive canonical terms the choice of a matrix norm is crucial. It is shown that the
norm derived from the standardization of the least squares estimators of the
parametric functions involved is equal to the Lawley�Hotelling statistic for testing
the hypothesis under investigation. Thus, some useful interpretations based on
canonical variates can be given in terms of the contributions of the various
parametric functions to the overall test statistic or to statistics relevant to specific
subhypotheses. Corresponding to these possibilities for interpretation, three dif-
ferent types of biplot are proposed. As an example, an agricultural block design
experiment is thoroughly analyzed. � 2000 Academic Press
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1. INTRODUCTION

When applying multivariate analysis of variance (MANOVA) to
experimental data one is usually interested in testing some hypotheses con-
cerning various sources of variation. Such hypotheses are linear and can be
expressed in the form H0 : 0=0 where 0 is a matrix of linear functions of
the parameters of the model. If a hypothesis is rejected, then one may wish

Article ID jmva.1999.1852, available online at http:��www.idealibrary.com on

100
0047-259X�00 �35.00
Copyright � 2000 by Academic Press
All rights of reproduction in any form reserved.

1 Current address: University of Grenoble 2, Grenoble, France. E-mail: michel.lejeune�
upmf-grenoble.fr.



to find the main reasons for the rejection by investigating the data related
to the hypothesis under examination. One approach, for instance, is to use
a simultaneous test procedure by which the tested hypothesis can be
decomposed into some more detailed component hypotheses to be tested
simultaneously. In this paper we consider the analysis of the least squares
estimator 0� of 0 via canonical variate analysis (CVA) in order to get
better insight into the structure of the data responsible for the rejection
of the overall hypothesis (see Seal [23, Chap. 7], Mardia et al. [17,
Sect. 12.5], and Seber [24, Sects. 5.8 and 10.1.4]). The analysis, in fact, is
based on a singular value decomposition (SVD) with respect to an appro-
priate norm. It is shown that there is a natural norm to be derived from
the covariance structure of 0� which is quite suitable for the problem of
hypothesis testing because it yields the corresponding Lawley�Hotelling
test statistic. Thus the resulting canonical decomposition is a way to exhibit
the essential contributions to that test statistic. In particular the contributions
of rows and columns of 0� will be of special interest for the interpretation
of the data. The decomposition also allows one to produce biplots as
graphical aids to reveal the main features concerning the hypothesis.
Various uses of the biplot technique are proposed, each of which having a
different meaningful interpretation.

The paper consists of five sections. The following section recalls the test-
ing procedures in MANOVA and the relevant results to be used in our
approach. Section 3 is devoted to the main concept of the paper, i.e., CVA
applied to MANOVA as an exploratory method allowing one to measure
various contributions to the test statistic. This is then illustrated by an
example in Section 4. A concluding discussion follows in Section 5.

2. MULTIVARIATE ANALYSIS OF VARIANCE

The purpose of this section is to recall some basic properties of the
general theory of MANOVA and to introduce the notations which will be
used subsequently. In most cases the justification of the results presented
here may be found in or deduced from Anderson [1], Rao [22], and Seber
[24]. In other cases specific references are given.

2.1. The Multivariate Linear Hypothesis and Related Tests

The p-variate MANOVA model may be written as

Y=X5+U, (2.1)

where Y=(y1 , y2 , ..., yn)$ denotes the n_p matrix of observations, X=
(x1 , x2 , ..., xn)$ denotes the n_q design matrix of rank r�q, 5=(!1 , !2 , ..., !p)
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denotes the q_p matrix of parameters, and U=(e1 , e2 , ..., en)$ denotes the
matrix of errors. Under the usual assumptions, including normality, the
p-dimensional observations y1 , y2 , ..., yn are independent and ei tNp(0, 7)
for all i.

In the analysis of multivariate experimental data, the interest may be in
estimating not only some linear parametric functions of the type c$5, but
also in estimating functions of the type

c$(m1!1+m2!2 + } } } +mp!p)=c$5m,

where m=(m1 , m2 , ..., mp)$ is an arbitrary p_1 vector. This, in particular,
may be the case when the characteristics (variables) observed on the
experimental units are not interesting as such but rather as one or more
linear compounds or comparisons among them. More generally, the
experimenter may be interested in testing some hypotheses of the type

H0 : C5M=0, (2.2)

where the g_q matrix C is usually of rank g and the p_u matrix M is
usually of rank u. Oftentimes the rows of C represent a set of contrasts
between the q rows of 5 and, therefore, the term ``contrast'' will be used
when referring to a row of C. As for the columns of M, they usually define
some combinations of the columns of 5 which correspond to the observed
variables. Therefore the term ``combination of variables'' will be used when
referring to a column of M. A necessary and sufficient condition for (2.2)
to be testable is C(X$X)& X$X=C, where A& stands for a generalized
inverse of A. Then the best linear unbiased estimator for 0=C5M, obtainable
by the least squares method, is 0� =C5� M, where 5� =(X$X)& X$Y.

The hypothesis H0 may be tested by applying one of several known mul-
tivariate tests. Any of them involves the computation of the two matrices

E=M$Y$QEYM=(n&r) M$SM, (2.3)

the error (or residual) sum of squares of products (SSP) matrix, and

H=M$Y$QHYM=0� $[C(X$X)& C$]&1 0� ,

the SSP matrix due to the deviation from hypothesis, where QE=In&
X(X$X)& X$, QH=X(X$X)& C$[C(X$X)& C$]&1 C(XX)& X$, and

S=(n&r)&1 Y$QEY, (2.4)

which is an unbiased estimator of 7. (See Morrison [19, Chap. 5] and
Seber [24, Chap. 8 and 9]).
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To test H0 in (2.2), it will be convenient for the present approach to use
the Lawley�Hotelling trace statistic defined as

T 2
0=(n&r) trace(E&1H)

=trace[(M$SM)&1 0� $[C(X$X)& C$]&1 0� ]= :
u

k=1

+k , (2.5)

where +1�+2� } } } �+u�0 are the eigenvalues of (M$SM)&1 H. Under
the adopted assumptions the rank of H is equal to s=min(g, u) and
the s positive eigenvalues are distinct, with probability 1 (see Seber [24,
Sects. 2.5.2 and A2.8]). The distribution of T 2

0 depends only on u, mH= g
and mE=n&r, hence the critical value at level : may be denoted by
T 2

0, :; u, mH , mE
. Corresponding tables are given by Seber [24, Appendix D].

Also, McKeon [18] has given the following approximation via an
F-distribution with a and b degrees of freedom,

trace(E&1H)
c

tFa, b (approximately), (2.6)

where a=umH , b=4+(a+2)�(B&1), c=a(b&2)�[b(mE&u&1)], mH= g
and mE=n&r, with B=(mE+mH&u&1)(mE&1)�[(mE&u&3)(mE&u)].
As noticed by Seber [24, p. 39], this approximation is surprisingly
accurate. The F-distribution is exact when s=1. In the special case of
M=Ip in (2.2), the number u above is equal to p.

2.2. Tests for Component Hypotheses

If H0 is rejected, one may be interested in finding which parametric func-
tions are responsible for that rejection. A natural way to proceed is to test
some component hypotheses implied by H0 , particularly those obtained
when the matrix M is replaced by its j th column mj or�and the matrix C
is replaced by its i th row c$i . Tests of the hypotheses H0, i . : c$i 5M=0$ for
i=1, 2, ..., g will allow one to find which rows of the matrix C5M might
be responsible for rejecting H0 , tests of H0, . j : C5mj=0 for j=1, 2, ..., u
will allow one to find responsible columns of that matrix, and tests of
H0, ij : c$i 5mj=0 for all i and j will allow one to identify responsible
individual elements of C5M.

The appropriate Lawley�Hotelling statistics for testing these component
hypotheses are as follows. For testing H0, i . one can use

T 2
0, i .=(n&r)[c$i (X$X)& ci]

&1 c$i 5� ME&1M$5� $c i

=(n&r)[c$i (X$X)& ci]
&1 0� i E

&10� $i , (2.7)
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where 0� i=c$i 5� M is the i th row of the matrix 0� =C5� M. For testing H0, . j

one can use

T 2
0, . j=(n&r) m$jY$QHYmj �m$jY$QE Ymj=(n&r) m$jY$QHYmj �Ejj ,

(2.8)

where Ejj is the j th diagonal element of the matrix E defined in (2.3). For
testing H0, ij one can use

T 2
0, ij=(n&r)[c$i (X$X)& ci]

&1 (c$i 5� mj)
2�Ejj

=(n&r)[c$i (X$X)& ci]
&1 0� 2

ij �Ejj , (2.9)

where 0� ij is the (i, j)th element of the matrix 0� . Note that T 2
0, i .

(mE&u+1)�(mEu) has an exact Fu, mE&u+1 -distribution, T 2
0, . j �mH has an

exact FmH , mE
-distribution and T 2

0, ij has an exact F1, mE
-distribution.

For this last statistic it will be convenient to define T0, ij=(n&r)1�2

[c$i (X$X)& ci]
&1�2 0� ij �E 1�2

jj which has a Student distribution with mE

degrees of freedom. Any of these distributions is central if the tested
hypothesis is true.

Now, to obtain a simultaneous test procedure (STP) at level : for this
family of tests one should use the critical value T 2

0, :; u, mH, mE
for each test

implied by H0 (see Gabriel [9]). However, a disadvantage of this STP
approach is that even if the overall hypothesis is rejected, it may happen
that none of these implied component hypotheses is rejected by the STP,
as the responsibility for rejecting H0 may be related not only to the
individual parametric functions considered in the component hypotheses
but also to certain mutual relationships among them. An alternative or
auxiliary method giving more thorough insight into the structure of the
data responsible for rejecting the overall hypothesis (2.2) is the one based
on CVA considered in the next section.

3. CANONICAL ANALYSIS FOR MANOVA

3.1. Definition of an Appropriate Canonical Variate Analysis

Whenever H0 : 0=0 is rejected on the basis of the Lawley�Hotelling
statistic one would like to investigate the matrix 0� in order to discover
which parametric functions are mostly responsible for the rejection. Sup-
pose one would simply like to look at the elements of 0� . Then these
elements have to be standardized to become comparable among them-
selves. To do so, consider their joint distribution by introducing the gu_1
vector (0� $)v obtained by transposing the rows of 0� and then piling them
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up on top of one another. From the earlier normality assumptions it can
be easily established that

(0� $)v
tNgu[(0$)v, R�T],

where � is the Kronecker product symbol, R=C(X$X)& C$ and
T=M$7M. Then (R�T)&1�2 (0� $)v

tNgu[(R�T)&1�2 (0$)v, Igu] so that
the matrix (R�T)&1�2 provides a natural standardization for the elements
of (0� $)v. Since (R�T)&1�2 (0� $)v is equal to (T&1�20� $R&1�2)v (see Mardia
et al. [17, p. 460]), the elements of R&1�20� T&1�2 are i.i.d. according to
N(0, 1) under H0 . Hence, the sum of squares of these elements has a chi-
square distribution with gu degrees of freedom, which is central if H0 is
true. However, 7 is unknown and has to be replaced by its unbiased
estimator S given in (2.4). Finally, the natural standardized form of 0� is
thus

0� std=[C(X$X)& C$]&1�2 0� (M$SM)&1�2,

and the total variation of the deviations from H0 can be expressed by

trace(0� std 0� $std)=trace[(M$SM)&1 0� $[C(X$X)& C$]&1 0� ]

=(n&r) trace(E&1H), (3.1)

which is the Lawley�Hotelling statistic for testing H0 , given in (2.5).
This result is particularly important in order to get deeper insight into

the contrasts and combinations of variables responsible for the rejection of
H0 . Namely, it provides a justification for the squared norm on 0� as in
(3.1) to be used for a CVA of the type proposed by Rao [21] and Seal
[23] in the special case of one-way MANOVA, alias discriminant coor-
dinate analysis (see also Seber [24, p. 270]), and later suggested by various
authors for extension to general MANOVA (see for instance Chatfield and
Collins [7, p. 153]). This CVA has been applied to a two-way MANOVA,
e.g., by Calin� ski et al. [2, 3] in the context of agricultural crop variety
research and by Camussi et al. [5] in connection with a study of genetic
distances. The use of the appropriate norm for CVA demonstrates a direct
link between the canonical decomposition of 0� and the Lawley�Hotelling
statistic, thus revealing new interpretative features.

Following Lejeune [16], canonical representation can be seen as the
approximation of 0� by a sequence of matrices of rank one, each of which
can yield two sets of coordinates in one dimension: one for rows
(contrasts) and one for columns (combinations of variables). The
approximation should operate with respect to the norm defined by

&A&2

*
=trace[(M$SM)&1 A$[C(X$X)& C$]&1 A],
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as in (3.1) for 0� , so as to recover most of the test statistic in a few dimen-
sions. According to the approximation theorem of Eckart and Young [8]
the appropriate solution is given by the SVD of 0� std , i.e.,

0� std= :
s

k=1

+&1�2
k vk t$k , (3.2)

where the +k 's are the nonzero eigenvalues of 0� $std 0� std (or of 0� std 0� $std)
and, from (3.1), are identical to those in (2.5), tk is the eigenvector of this
matrix corresponding to +k , normed as t$k tk=+k , and vk is the eigenvector
of 0� std 0� $std , normed as v$kvk=+k . Then, applying the transition equation
0� =(C(X$X)& C$)1�2 0� std (M$SM)1�2, one derives the appropriate decom-
position for 0� itself, as

0� = :
s

k=1

+&1�2
k �k.$k , (3.3)

where �k=[C(X$X)& C$]1�2 vk and .k=(M$SM)1�2 tk . Thus, these vectors
satisfy the equalities

0� (M$SM)&1 0� $[C(X$X)& C$]&1 �k=+k �k

and

0� $[C(X$X)& C$]&1 0� (M$SM)&1 .k=+k.k ,

being orthonormalized in the following way,

�$k[C(X$X)& C$]&1 �k$={+k ,
0,

if k=k$,
if k{k$,

(3.4)

and

.$k(M$SM)&1 .k$={+k ,
0,

if k=k$,
if k{k$.

(3.5)

Since the squared norm &+&1�2
k �k.$k &2

*
of the k th canonical term (as the

kth matrix, of rank one, of the decomposition (3.3) will be called) is equal
to +k , it follows that +k is the part of the Lawley�Hotelling statistic
T 2

0=�s
k=1 +k accounted for by the k th canonical term. Let +k be called the

contribution of the canonical term k to the test statistic (or to the total
variation).

One can also look at the contribution to T 2
0 of a given row of 0� corre-

sponding to a contrast defined by the same row of the matrix C. For this,
write vk=(vk1 , vk2 , ..., vkg)$. Then the contribution of row i to the k th
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canonical term can be seen as equal to v2
ki , since T 2

0=�s
k=1 +k=

�s
k=1 v$kvk . Let v2

ki �+k be called the relative contribution of row i to the
canonical term k. These contributions can be used in order to identify a
canonical term.

The sum �s
k=1 v2

ki defines the contribution of row i to the total variation.
Consequently, v2

ki��s
t=1 v2

ti describes the part of contribution of row i
explained by the canonical term k. It tells how well the contribution
of the corresponding contrast can be represented by the canonical term
k. The same definitions apply for the contributions of the combina-
tions of variables implied by the columns of M, via the tk 's, where
tk=(tk1 , tk1 , ..., tku)$.

To see the contribution of the (i, j)th element of 0� to the test statistic
T 2

0 , one has to take

0� 2
std, ij=\ :

s

k=1

+&1�2
k vki tkj+

2

, (3.6)

since T 2
0=trace(0� std 0� $std), as shown in (3.1), i.e.,

T 2
0= :

g

i=1

:
u

j=1

0� 2
std, ij . (3.7)

These specific contributions, though attributable to rows, columns or
elements of the matrix 0� , depend in fact on all its elements, because the
matrices [C(X$X)& C$]&1�2 and (M$SM)&1�2 are not diagonal. Their
interest stems from the fact, however, that they sum up to the actual value
of T 2

0 .

3.2. Geometrical Representations

For a geometrical representation of 0� , let its g rows be mapped into g
points in the usual s-dimensional Euclidean space with coordinates
�k=(�k1 , �k2 , ..., �kg)$ on the k th axis, which may be called the k th
canonical coordinates (see Mardia et al. [17, p. 343]) or discriminant coor-
dinates (see Gnanadesikan [13, p. 86]). Furthermore, let the u columns of
0� be mapped into points in the same space by giving them the coordinates
+&1�2

k .k=+&1�2
k (.k1 , .k2 , ..., .ku)$ on the k th axis, which may be called

the k th dual canonical coordinates. Now, to describe geometrically the
magnitudes of the individual elements of 0� , note that its (i, j)th element,
0� ij=�s

k=1 �ki (+&1�2
k .kj), is equal to the scalar product of the vectors

�(i)=(�1i , �2i , ..., �si)$
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and

.~ ( j)=(+&1�2
1 .1j , +&1�2

2 .2j , ..., +&1�2
s .sj)$,

representing the ith row and the j th column of 0� , respectively. Also, from
(3.3) and (3.5),

0� (M$SM)&1 0� $= :
s

k=1

�k�$k ,

so that the Euclidean squared distance of row i to the origin, �s
k=1 �2

ki , is
equal to the i th diagonal element of 0� (M$SM)&1 0� $, and thus can be
interpreted as the Mahalanobis (squared) distance of this row to the null
row, i.e., as its departure from H0 .

Now, in an alternative manner, +&1�2
k �ki and .kj can be used as the

coordinates of row i and column j on the k th axis, i.e., these components
can be represented by

�� (i)=(+&1�2
1 �1i , +&1�2

2 �2i , ..., +&1�2
s �si)$

and

.( j)=(.1j , .2j , ..., .sj)$,

respectively. Then, from (3.3) and (3.4),

H=0� $[C(X$X)& C$]&1 0� = :
s

k=1

.k .$k ,

so that the squared distance of column j to the origin, �s
k=1 .2

kj , is then
equal to the j th diagonal element of the SSP matrix H and can be inter-
preted as the sum of squares due to deviation from the null hypothesis for
this column.

When reducing the representation to the first two axes only, one obtains
an approximation of the matrix 0� . It can be then displayed by a biplot, as
originally proposed by Gabriel [10] in connection with principal compo-
nent analysis (PCA) and later by Gabriel [11, 12] in connection with CVA
(see also Gower and Hand [14, Chap. 5]).

If one would rather interpret the rows, columns and elements of 0� in
terms of the statistics defined in (2.7), (2.8), and (2.9) for testing the com-
ponent hypotheses H0, i . , H0, . j , and H0, ij , respectively, one should use the
coordinates obtained by transforming the vectors �k and .k to

�k*=[diag[C(X$X)& C$]]&1�2 �k
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and

.k*=[diag[M$SM]]&1�2 .k ,

respectively, for k=1, 2, ..., s. In a representation analogous to the first one
above, the Euclidean squared distance of row i to the origin, �s

k=1 �*2
ki ,

will be equal to the test statistic T 2
0, i . , and the corresponding scalar

product, �s
k=1 �*ki (+&1�2

k .*kj), of the vectors representing the i th row and
the j th column, will be equal to the test statistic T0, ij . In the alternative
manner, where the �*ki 's are weighted by the +&1�2

k 's, the squared distance
of column j to the origin, �s

k=1 .*2
kj , will yield the test statistic T 2

0, . j .
Again, the biplot technique can be applied to indicate which contrasts,
combinations of variables or individual elements of 0� are most likely to be
responsible for rejecting H0 .

Lastly, to get a geometrical representation of the standardized matrix
0� std one should use, according to (3.2), the vector vk instead of �k , and the
vector tk instead of .k for k=1, 2, ..., s. Since 0� std 0� $std=�s

k=1 vkv$k , the
squared distance of row i to the origin, �s

k=1 v2
ki , can be directly inter-

preted as its contribution to the T 2
0-statistic in the first kind of geometrical

representation. In the alternative representation, since 0� $std 0� std=
�s

k=1 tk t$k , the Euclidean squared distance of column j to the origin,
�s

k=1 t2
kj , can be interpreted as the contribution of this column. In both

cases the scalar products yield the contributions of the individual elements
of 0� to the global T 2

0 -statistic, as explained in (3.6) and (3.7). As before,
the biplot technique can be used to display approximately these contributions.

At this point it should be emphasized that the first couple of geometrical
representations of the elements of 0� given above refers to the magnitudes
of these elements, the second couple refers to the single statistics for testing
the nullity of the corresponding parametric functions, i.e., the hypotheses
H0, ij , while the third couple, that of the elements of 0� std , refers to the
elementary contributions to the T 2

0 -statistic used for testing the overall
hypothesis H0 .

For the representation of the elements of 0� the biplot technique has
been proposed by Gabriel [11] in a one-way MANOVA of a rainmaking
experiment and, e.g., by Calin� ski et al. [3] when analyzing genotype-region
interactions of wheat varieties. The other forms of geometrical representa-
tions proposed here enhance the means of investigation for any hypothesis
after its rejection. Along with any plot it will be useful to specify the
accuracy of the representation of each vector as the ratio of the squared
norm of its projection in the two dimensions to its squared norm in the
s-dimensional space. The use of the various representations and of the
attached elements of interpretation will be illustrated by the following
example.
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4. EXAMPLE

The example is taken from Ceranka et al. [6]. The data come from a
plant breeding research on v=10 strains of sunflower, which were com-
pared in a field experiment laid out in an incomplete block design, with
b=20 blocks of varying sizes (since only a selection of 10 from a larger set
of strains has been analyzed) and with unequal replication numbers (due
to the fact that two strains used as standards were replicated on 20 plots
each, while the others were replicated only on 4 plots each). The experi-
mental data from the n=72 plots are multivariate, as the observations
were taken on p=4 quantitative traits (variables):

(i) the average height of plants in cm (PH),

(ii) the yield of seeds (achenes) in g per plant (SY),

(iii) the weight of 1000 seeds in g (SW),

(iv) the percentage of husk content in seeds (HC).

The experiment has been analysed under the usual model for a block
design (see, e.g., Pearce [20, Sect. 3.1]), which in the multivariate case can
be written, in accordance with (2.1), as

Y=X050+X151+U.

Here, 50 denotes the 20_4 matrix of block parameters and 51 the 10_4
matrix of strain parameters (effects), both for the four traits, while X0 and
X1 are the corresponding design matrices.

Suppose we want to test the hypothesis that there are no strain effects,
i.e., H0 : 51=0 with the suitable identifiability constraint r$51=0$ where r
is the vector of the numbers of treatment (strain) replications. The null
hypothesis can be written equivalently H0 : C1 51=0 where C1=
Iv&n&11vr$ (of rank v&1). In the notations of Section 2.1 one would write
H0 : C5M=0 where C=(0 : C1) is a 10_30 matrix, 5=(5$0 : 5$1)$ and
M=I4 .

Thus, the matrix to be analyzed is C15� 1 , where 5� 1=(X� $1 , X� 1)&1

X� $1Y&1v%� $ with X� 1=[In&X0(X$0X0)&1 X$0+n&11n1$n] X1 and %� =
n&1Y$1n . Since r$5� 1=0$, C15� 1 is equal to 5� 1 . The authors (Ceranka et al.
[6]) give the estimates of the true strain effects as shown in Table I along
with the vector of overall means %� .

The Lawley�Hotelling statistic defined in (2.5) for testing H0 is here of
the form

T 2
0=trace(S&15� $1X� $1X� 15� 1),

110 LEJEUNE AND CALIN� SKI



TABLE I

Estimates of the True Strain Effects

Trait

Strain No. replic. PH SY SW HC

1 4 &0.32 4.45 &9.80 1.22
2 4 2.71 2.16 &2.20 &0.28
3 4 &0.61 &1.46 &5.85 0.28
4 4 &8.11 3.38 &1.15 &0.76
5 4 0.75 &0.81 &7.46 0.27
6 4 &8.75 &6.46 8.74 0.43
7 4 &9.70 &7.31 2.55 1.10
8 4 5.84 5.96 2.84 &1.64
9 20 &1.05 &2.34 1.41 &0.74

10 20 4.70 2.36 1.06 0.61

Overal
means 72 68.21 45.19 60.76 27.85

since X� $1X� 1 can be taken as [C1(X� $1X� 1)&1 C$1]& (a generalized inverse is to
be used because of the rank deficiency). The eigenvalues of S&15� $1X� $1X� 15� 1

are

+1=99.935 (52.70)

+2=65.558 (34.60)

+3=18.314 (9.70)

+4=5.758 (3.00)

:
4

k=1

+k=189.565 (100.00).

Thus, the Lawley�Hotelling test statistic is T 2
0=189.565 which, accord-

ing to (2.6), can be converted to T 2
0 �(mEc)=4.751, to be compared with

the significance points of the F-distribution with 36 and 98 degrees of
freedom. This gives for T 2

0 the critical values T 2
0; 0.05=61.36 and T 2

0; 0.01=
73.19. The P-value for T 2

0 is around (0.5) 10&9 and therefore H0 is
obviously rejected.

For the component hypotheses H0, i . and H0, . j the test statistics are
given by

T 2
0, i .=[(X� $1X� 1)&1

(ii) &n&1]&1 5� 1i . S
&15� $1i .
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TABLE II

Values of the Separate Test Statistics and Contributions to T 2
0 .

T 2
0, i . , T 2

0, . j , and T0, ij statistics Elementary contributions
(critical values at :=0.05 are in parentheses) to the T 2

0 statistic in 0

Trait PH SY SW HC PH SY SW HC Total

Strain T0, ij (\2.02) T 2
0, i . (11.21)

1 &0.15 1.21 &3.56 1.62 32.70 0.55 1.56 &9.42 +4.85 16.4
2 1.26 0.59 &0.80 &0.37 2.31 0.40 0.15 0.23 0.10 0.9
3 &0.28 &0.40 &2.13 0.37 7.64 0.28 0.02 2.98 1.12 4.4
4 &3.77 0.92 &0.42 &1.00 22.06 &9.37 1.18 0.49 0.02 11.1
5 0.34 &0.22 &2.66 0.35 9.96 0.04 0.00 &4.62 1.16 5.8
6 &4.06 &1.76 3.17 0.57 24.77 &6.16 1.42 +4.80 0.09 12.5
7 &4.51 &1.99 0.93 1.45 28.41 &10.1 1.34 0.12 3.09 14.5
8 2.71 1.62 1.03 &2.16 25.42 3.92 0.83 0.94 &6.06 11.7
9 &1.37 &1.79 1.43 &2.73 17.93 0.26 1.29 1.30 3.90 6.7

10 6.12 1.80 1.08 2.27 42.73 +14.5 0.37 0.77 0.20 15.9

85.35 17.04 38.95 19.66 �T 2
0, . j (18.96) 45.6 8.1 25.7 20.6 100.0

and

T 2
0, . j=5� $1. jX� $1X� 15� 1 . j �Sjj ,

where 5� 1i . and 5� 1. j are the i th row and the j th column of 5� 1 , respectively,
and (X� $1X� 1)&1

(ii) stands for the i th diagonal element of the matrix (X� $1 X� 1)&1,
Sjj for the jth diagonal element of the matrix S. For the H0, ij 's the T0, ij 's
are given by the matrix

[diag[(X� $1 X� 1)&1]&n&1Iv]
&1�2 5� 1[diag[S]]&1�2= :

4

k=1

+&1�2
k �k*(.k*)$.

Each T0, ij has a Student distribution with 43 degrees of freedom,
(10�43) T 2

0, i . has a F4, 40-distribution and T 2
0, . j �9 has a F9, 43 -distribution.

These statistics are given in Table II with their corresponding critical
values for separate testing (not for the STP, which would require all the T 2

0

type statistics given in Table II to be compared with a common critical
value, here T 2

0; 0.05=61.36 or T0; 0.05=\7.83).
The contributions of individual parametric functions to T 2

0 are given by
the squared elements of the matrix 5� 1 standardized, i.e., 5� 1, std=
(X� $1X� 1)1�2 5� 1 S&1�2, whereas the contributions of strains and traits are
obtained by summing across rows and columns of this matrix respectively.
Table II also contains these contributions (in percents for T 2

0).
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Table III gives, for each of the three representations discussed in
Section 3, the coordinates for the two first canonical terms.

As a starting point for a short analysis of these results, let us first look
at the contributions to T 2

0 on the right part of Table II. The strains most
responsible for the rejection of the hypothesis of no strain effects are strains
1, 10, 7, 6, 8, and 4, which contribute to the test statistic T 2

0 for 16.4, 15.9,
14.6, 12.5, 11.7, and 11.10, respectively. For the traits the contribution of
PH is largely predominant with 45.60 whereas that of SY is negligible. As
for the relations of strains with variables one should distinguish whether
they are positive or negative by considering the sign of the coordinates.
Retaining contributions above 4.50 on an average of 2.50, the most
contributive relations are in decreasing order: (a) strain 10 with PH, (b)
strain 1 with HC, and (c) strain 6 with SW on the positive side; (d) strain
7 with PH, (e) strain 1 with SW, (f ) strain 4 with PH, (g) strain 6 with
PH, (h) strain 8 with HC, and (i) strain 5 with SW on the negative
side.

We expect these features to be recovered from a biplot since 870 of T 2
0

is accounted for by the first two canonical terms. In Fig. 1, because the
experiment is intended to compare strains, the strains are represented
by their raw vectors v1 and v2 , the lengths of which are thus directly
meaningful in terms of contributions to T 2

0 , whereas the vectors for
variables (traits) t1 and t2 are rescaled via the eigenvalues. For strains as
for traits the cosines due to the projection on the two dimensions provide
indications for careful interpretation (see Table III). Here strain 4 (cosine
equal to 0.82), trait HC (cosine 0.84) and trait SY (cosine 0.72) are not
accurately represented. Thus relation (f ) is somewhat underestimated
because of strain 4 and the relations (b) and (h) involving HC are slightly
distorted.

With the help of the contributions of strains and traits to the first
canonical term (column [a] of Table III) and taking into account the signs
of coordinates, one sees that this term is essentially featuring a strong con-
trast between strains 8 and 10, positively linked to PH, and strain 7 as it
is negatively linked to PH. This might receive some interpretations from
the specialist (canonical term 1 is also characterized in a lesser extent by
trait HC which tends to oppose PH on these strains). The second canonical
term is clearly linked to SW and to its positive association with strain 6
and negative with strain 1. Of course these interpretations can be read off
Fig. 1 but the relative importance of a strain or a trait for each axis is more
precisely quantified by columns [a] and [b] of Table III. Moreover it
should be noticed here that the usefulness of CVA should not be limited to
biplots, as CVA extracts the successive linear combinations of treatments
which are mostly responsible for the rejection of H0 with respect to some
combination of variables. For instance, further results would show that the
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FIG. 1. Biplot for the contributions of strain means to the Lawley�Hotelling statistic in
relation to the four traits, based on Table III (trait coordinates rescaled and multiplied by 5).

third canonical term is mainly specific of trait HC (contributing for 590
to it) while opposing strain 10 versus strains 4 and 8.

The left part of Table II may complement the features drawn above by
examination of statistical significance in separate tests. Thus, strain 9 which
was left out above because of a lack of contribution shows nonetheless a
significant effect. On the contrary relation (b) does not appear to be signifi-
cant (note, however, that if the relevant STP was applied instead of
the above separate inferences approach, then even the effect of strain 10 in
relation to PH could not be declared significant at level 0.05). A biplot
could also be drawn here using coordinates from Table III, but much
greater care should be taken now with respect to HC because of its
poor level of representation (cosine equal to 0.29). For the represen-
tation where the lengths of the strain vectors are meaningful, the points
falling out of the circle of radius (11.21)1�2=3.35 would correspond to
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FIG. 2. Biplot for the estimates of strain means in relation to the four traits, based on
Table III (trait coordinates rescaled).

strains, the effects of which are surely (separately) significant at level 0.05.
Table III also gives coordinates to be used for the representation of the
magnitudes of the elements of the matrix of strain effects 5� 1 . Cosines are
not indicated since they are identical to those of the former biplot. These
coordinates are those traditionally proposed in the literature (e.g., by
Gabriel [11] or Chatfield and Collins [7]). The corresponding biplot is
given in Fig. 2.

It is found that the three biplots (one for the magnitudes of strain effects
as in Fig. 2, one for separate test statistics and one for elementary contribu-
tions to T 2

0 as in Fig. 1) are not fundamentally different, even though each
of them has its proper logic. It is true that oftentimes the conclusions
will appear to be identical; however, it may also not be necessarily so,
depending in particular on the structure of the variance-covariance
matrix S.
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5. DISCUSSION AND CONCLUSIONS

It has been shown how useful the canonical decomposition of 0� =C5� M
can be in analyzing and visualizing the empirical departure from any null
hypothesis of the form H0 : C5M=0 in MANOVA. However, to achieve
such a decomposition the proper choice of a matrix norm is necessary, first
to measure the total variation in 0� and second to derive the corresponding
canonical approximations. Here a norm has been exhibited which is
meaningful in the sense that, when applied to 0� , it coincides with the
Lawley�Hotelling statistic for H0 . Thus, such canonical analysis attempts
to recover most of the value of the test statistic in a low dimensional
approximation. Of course one can think of another norm aiming, for
instance, at Roy's statistic, Wilks' likelihood ratio or Pillai's trace. In practice,
however, one is constrained to finding a feasible solution to the problem of
approximations by rank one matrices as shown in Subsection 3.1. When
the criterion is of the form trace(0� $P0� Q) for some positive definite
matrices P and Q, then the decomposition is straightforward via SVD.
Otherwise the solution is generally not tractable, which is the case for
Wilks' likelihood ratio in particular.

Now, besides the choice of the matrix norm, there are several
possibilities for choosing coordinates for rows of 0� , i.e., contrasts (in a
wider sense of linear combinations) of treatments, or for columns of 0� , i.e.,
combinations of variables, in two-dimensional biplots. In each case these
contrasts and combinations are represented by vectors such that the scalar
product of the vector representing a contrast with that representing a com-
bination of variables is, up to the approximation in two dimensions,
meaningful in some sense for the association between these elements. Also
the lengths of the vectors may have a specific interpretation. The most
straightforward plot simply aims at depicting each element of the departure
matrix 0� , i.e., the magnitude of the effect of a contrast for some combina-
tion of the variables. A second plot considered in Subsection 3.2 is related
to the separate inferences on component hypotheses. It is then primarily a
descriptive tool to be used to explore which treatments or constrasts of
them and which variables or combinations of them must be picked up to
proceed, in a second step, to a confirmatory analysis by testing the
appropriate parametric functions simultaneously.

As for the third plot proposed here it rests on a standardized form of the
matrix 0� whose squared elements add up to the T 2

0 -statistic. This is
particularly convenient in order to interpret the lengths of the vectors as
contributions of either treatment contrasts or variate combinations to the
test statistic. However these contributions are due to the sole elements of
a contrast, or respectively of a combination of variables, in the strict sense,
if and only if the P and Q matrices are diagonal.
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In the analysis of a biplot the degree of approximation induced by the
projection must be taken into account for each vector in order to prevent
from abusive conclusions. Also, the approach proposed here allows to
possibly interpret each canonical term (i.e., each axis in a biplot) by look-
ing at the relative contributions of either treatment contrasts or combina-
tions of variates to it, thus enriching the search for causes of rejection of
the hypothesis.

Another interesting aspect is the number of canonical terms to be
retained in the analysis. For this problem a testing procedure has been
proposed by Calin� ski and Lejeune [4] which allows to guard against
overestimating the number of significant terms.

The example in Section 4 is an application to the classical test for main
effects. However, canonical analysis can be applied to other kinds of data
matrix, like a matrix of interactions, a matrix of residuals, matrices indicat-
ing the difference between two models, departure from specified values, etc.
This opens a wide scope of investigations beyond the traditional use of
canonical analysis. In fact biplots are frequently used in univariate analysis
of variance to represent interactions between two factors (see, e.g.,
Kempton [15]). These biplots, however, are often derived from the usual
principal component analysis, thus overlooking the appropriate norm and
ignoring links with test statistics.

Finally, note that no assumption is made on the structure of the design
matrix X. Consequently, the canonical approach can be applied to any
linear model and, in particular, to multivariate analysis of covariance
where X entails some quantitative regressors.
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