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If (Xi , i # Z) is a strictly stationary process with marginal density function f, we
are interested in testing the hypothesis H0 : [ f =f0], where f0 is given. We consider
different test statistics based on integrated quadratic forms measuring the proximity
between fn , a kernel estimator of f, and f0 , or between fn and its expected value
computed under H0 . We study the asymptotic local power properties of the testing
procedures under local alternatives. This study generalizes to the multidimensional
case in a context of dependence the corresponding one made by P. J. Bickel and
M. Rosenblatt in 1973 (Ann. Statist. 1, 1071�1095). � 2001 Academic Press
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1. INTRODUCTION

The goodness of fit tests of H0 : [ f =f0] against the nonparametric
alternative hypothesis H c

0 : [ f{ f0], where f0 is a given density function
and f the common marginal density function of the observations, are
usually performed under the assumption of independent and identically dis-
tributed observations. However, these traditional testing procedures
employed on stationary dependent observations lead to invalid critical
values, with for instance nonconservative testing procedures for stationary
processes satisfying a positive dependence condition (cf. Moore [16] and
Gleser and Moore [11]). The aim of this paper is to extend the standard
approach followed by Bickel and Rosenblatt [1] to the multidimensional
dependent case.
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Bickel and Rosenblatt [1] introduce tests statistics based on the L2

distance between the kernel density estimator fn and either E0 fn or f0 ,
where E0 is the mathematical expectation under the null hypothesis. These
statistics are

I 1
n(?)=|

R d
[ fn(x)&E0 fn(x)]2 ?(x) dx (1)

and

I 2
n(?)=|

Rd
[ fn(x)& f0(x)]2 ?(x) dx, (2)

where fn is a kernel estimator of f based on the observed d-dimensional
random variables X1 , ..., Xn , defined by (cf. Rosenblatt [19] and Parzen
[17])

fn(x)=
1

nhd
n

:
n

i=1

K \x&Xi

hn + ,

where K is a kernel, hn a bandwidth, and ? a weight function (see Rosenblatt
[21], Eubank and LaRiccia [6], Fan [7], and Tenreiro [23] for goodness
of fit tests based on the kernel density estimator and Cso� rgo� [4], Fan [8],
Ghosh and Ruymgaart [10], and Justel et al. [13] for multidimensional
goodness of fit tests based on the empirical characteristic function and on
the empirical distribution function).

From the work of Hall [12], we know that the asymptotic distribution
of the statistics I 1

n(?) and I 2
n(?) can easily be derived in a multidimensional

i.i.d. framework by using degenerate U-statistics limit theorems. This
approach was used by Fan [7] to generalize the results of Bickel and
Rosenblatt [1] derived for d=1.

In order to extend the previous results to the multidimensional dependent
case and study local power properties, we consider a sequence of local
alternatives, i.e., a sequence of d-dimensional strictly stationary processes
(Xin , i # Z) whose marginal distribution has a density function gn with
respect to Lebesgue measure on Rd of the form gn= f0+an#+o(an) #n ,
where # is a bounded and integrable function providing the direction of the
alternative, (#n) a sequence of uniformly bounded and integrable functions
and (an) is a sequence of positive real numbers tending to zero. This
sequence of processes satisfies some additional assumptions which are
introduced and discussed in Section 2.

In Section 3 we establish the asymptotic normality of the two statistics
I 1

n(?) and I 2
n(?) under the sequence of local alternatives (and under the null

hypothesis H0 by taking an=0) and we give asymptotic expansions of
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these statistics. These results are based on a central limit theorem for
degenerate U-statistics corresponding to a geometrically ;-mixing process
(see Takahata and Yoshihara [22] and Tenreiro [24]).

To develop goodness of fit tests of the hypothesis H0 based on I 1
n(?) and

I 2
n(?), we consider, in Section 4, tests derived from these statistics by

correcting them for their asymptotic bias. For instance, based on I 1
n(?)

(similarly to I 2
n(?)) we consider the test statistics

T 1, 1
n (?)=nhd�2

n {I 1
n(?)&

1
nhd

n
|

Rd |
Rd

K2(u) f0(x) ?(x+uhn) dx du=
and

T 1, 2
n (?)=nhd�2

n {I 1
n(?)&

1
nhd

n

1
n

:
n

i=1
|

Rd
K2(u) ?(X i+uhn) du= .

Using the results of Section 3 we give asymptotic expansions of the
different test statistics under local alternative and we derive associated
asymptotically consistent critical regions.

Section 5 is the central part of the paper where we characterize the
rates of convergence of the local alternatives such that the asymptotic
probability of the critical region under local alternatives is either the same
as under H0 or the same as under a fixed alternative.

The aim of Section 6 is to study the local power properties and the local
unbiasedness properties of the testing procedures under local alternatives
and to discuss the choice of the kernel.

All proofs are gathered in appendices.

2. LOCAL ALTERNATIVES

To define local alternatives we consider a sequence of d-dimensional
strictly stationary processes (Xin , i # Z) (in the sections below we suppress
the index n for notational convenience).

Assumptions on the Process (P). Denoting by ;n( } ) the ;-mixing coef-
ficient of the d-dimensional strictly stationary process (Xin , i # Z) defined
by (cf. Volkonski@$ and Rozanov [25])

;n(i)=E[ sup
A # Fin

+�
|P(A | F 0n

&�)&P(A)|],
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where F +�
in (resp. F 0n

&�) is the _-algebra generated by X jn , j�i (resp. X jn ,
j�0), we suppose that there exist C>0 and \ # ]0, 1[ such that

sup
n # N

;n(i)�C\i, \i # N.

In this case we say that the sequence of processes (Xin , i # Z) is geometri-
cally ;-mixing.

Moreover, we assume that Xin and (X in , X0n), i�1, have absolutely
continuous distributions with pdf gn and gin respectively, such that

sup
n, i # N

sup

y # R

x # [u # Rd | gn(u)>0]
fin( y | x)<+�,

where fin( y | x)=
gin( y, x)

gn(x) is the conditional density function of Xin given
X0n=x, and for x # Rd,

gn(x)= f0(x)+an#(x)+o(an) #n(x), (3)

where f0 is a bounded pdf on Rd, (an) is a sequence of positive real numbers
tending to zero and

sup
x # R d

|#(x)|<�, sup
n # N

sup
x # Rd

|#n(x)|<�,

|
R d

|#(x)| dx<�, sup
n # N

|
R d

|#n(x)| dx<�.

Condition (3) gives the interpretation in terms of local alternatives since
limn � +� gn(x)= f0(x), for x # Rd. The associated rate of convergence is an .

At this stage it is interesting to discuss it and in particular to give its
interpretation in terms of random variables. The following property can be
easily derived (see Bradley [3] pp. 173�174 for the geometrical convergence
of mixing coefficients).

Proposition 2.1. Let us consider a process (Xi , i # Z) satisfying the set
of assumptions (P) with an=0, ($n) a sequence of positive real numbers tending
to zero and (Zi , i # Z) a strictly stationary d-dimensional geometrically
;-mixing process independent of (Xi , i # Z). Then the sequence of processes
defined by Xin=Xi+$nZi , i # Z, satisfies assumptions (P).

The set of assumptions (P) with an=0 is satisfied for i.i.d. sequences if
the common marginal density function is bounded, for some stationary
gaussian processes for some autoregressive moving average (ARMA) pro-
cesses based on gaussian, exponential or uniform i.i.d. sequences and for
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some stationary Markov processes such that supx # R d f1( } | x) is bounded
(see Volkonskii and Rozanov [26], Rosenblatt [20], Pham and Tran
[18], Bradley [3] and Mokkadem [15]). Conversely, an ARCH process
defined by Xi=- c0+c1 X 2

i&i =i , i # Z, where (=i) is a standard gaussian
white noise, c0�0 and 0<c1<1, does not satisfy the assumption on the
conditional densities when c0=0 since the conditional variance may reach
values close to zero.

The form of the marginal density function gn of the process (Xin , i # Z)
defined in the previous proposition and its expansion, depend on the
distribution of Z0 . In particular, it is possible to link the rates of local
alternatives in terms of density function (i.e., an) and in terms of variables
(i.e., $n).

If Z0 is second order integrable, EZ0 {0 and if f0 has partial continuous
derivatives up to order two, which are bounded and integrable on Rd, we
have for x # Rd,

gn(x)=E[ f0(x&$nZ0)]

=f0(x)+$n #(x)+$2
n#n(x),

where

#(x)=& :
d

i=1

E[Z0i]
�f0

�xi
(x)

and

#n(x)= :
d

i, j=1

E _Z0iZ0j |
1

0

�2f0

�xi �xj
(x&$nZ0 t)(1&t) dt& .

If Z0 is third order integrable, EZ0=0 and if f0 has partial continuous
derivatives up to order three, which are bounded and integrable on Rd, we
have for x # Rd,

gn(x)= f0(x)+$2
n#(x)+$3

n#n(x),

where

#(x)=
1
2

:
d

i, j=1

E[Z0i Z0j]
�2f0

�xi �x j
(x)
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and

#n(x)=&
1
2

:
d

i, j, k=1

E _Z0iZ0jZ0k |
1

0

�3f0

�xi �xj �xk
(x&$nZ0 t)(1&t)2 dt& .

In summary if Z0 is zero mean, we have an=$n , and otherwise an=$2
n .

3. ASYMPTOTIC BEHAVIOUR OF I 1
n(?) AND I 2

n(?)

In this section we study the asymptotic behaviour of the statistics I 1
n(?)

and I 2
n(?) defined by (1) and (2), respectively. They are related by

I 2
n(?)=I 1

n(?)+|
R d

[E0 fn(x)& f0(x)]2 ?(x) dx

+2 |
R d

[ fn(x)&E0 fn(x)][E0 fn(x)& f0(x)] ?(x) dx.

In what follows, we introduce different assumptions denoted by (K), (B)
or (?) on the kernel K, the bandwidth hn or the weight function ?.

Assumptions on the Kernel (K). K is a bounded measurable function on
Rd such that �R d K(u) du=1.

Assumptions on the Bandwidth (B). We assume that

hn � 0 and nhd
n � +�, when n � +�,

and there exists # # ]0, 1[ such that

lim sup
n

n#hd
n<+�.

The first conditions are usual in kernel estimation theory. The second
one is not very restrictive and is for instance satisfied if hn=O(n&$) for
0<$<1�d.

Assumptions on the Weight Function (?). The real function ? is bounded,
nonnegative and almost everywhere continuous on Rd.
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3.1. Analysis of the Bias Term E0 fn(x)& f0(x)

Let us introduce, for m # N, the set Wd (m) of pdf with partial continuous
derivatives up to order m, which are bounded and integrable on Rd, and
the set K d (m) of kernels of order m, i.e., such that

|
R d

&x&m |K(x)| dx<� and |
Rd

xa1
1 xa2

2 } } } xad
d K(x) dx=0,

for all a1 , a2 , ..., ad # N0 such that 0<a1+a2+ } } } +ad<m.
If f0 # W d (m) and K # K d (m) for some m # N, we have (see Bosq and

Lecoutre [2] p. 88)

E0 fn(x)& f0(x)=hm
n 2m

n f0(x), (4)

where

2m
n f0(x)=

(&1)m

(m&1)!
:
d

i1 , ..., im=1
|

Rd
ui1

} } } uim
K(u)

_|
1

0

�mf0

�xi1
} } } �xim

(x&hn ut)(1&t)m&1 dt du.

Moreover, by the dominated convergence theorem

lim
n � +�

2m
n f0(x)=2mf0(x), x # Rd, (5)

with

2mf0(x)=
(&1)m

m!
:
d

i1 , ..., im=1
|

Rd
u i1

} } } u im
K(u) du

�mf0

�xi1
} } } �xim

(x). (6)

3.2. Asymptotic Behaviour of U-Statistics

The asymptotic random feature of the statistics I 1
n(?) and I 2

n(?) essen-
tially depends on the two following U-statistics. The first one is a second
order U-statistic defined by

Hn(?)=
2
n

:
1� j<i�n

[Hn(Xi , Xj)&EnHn(Xi , Xj)],
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where for u, v # Rd,

Hn(u, v)=
1

h3d�2
n

|
Rd {K \x&u

hn +&En K \x&X0

hn +=
_{K \x&v

hn +&EnK \x&X0

hn += ?(x) dx, (7)

and En denotes the mathematical expectation under the local alternative.
The second U-statistic is

Gn(?)=
2

- n
:
n

i=1

Gn(Xi),

where for u # Rd,

Gn(u)=
1

hd
n
|

R d {K \x&u
hn +&EnK \x&X0

hn += (2m
n f0 } ?)(x) dx. (8)

In order to study the asymptotic behaviour of the latter U-statistic, we
need the following additional condition where f0 # Wd (m) for some m # N.

Assumption (C). For any i # N, there exists ei # R such that, for any
sequences un and vn on Rd tending to zero, En[(2m

n f0 } ?)(Xi+un)
(2m

n f0 } ?)(X0+vn)] � ei , if n � +�.

This condition is satisfied if for each i # N, and under the local alter-
native, the sequence of pdf gin converges to some pdf gi� and satisfies the
dominated convergence theorem conditions. In this case, from the almost
everywhere continuity of ? and the continuity of the derivatives of f0 , we
have ei=E�[(2mf0 } ?)(X i)(2mf0 } ?)(X0)], i # N. For independent variables
the condition (C) is satisfied with ei=0 for i # N.

The following central limit theorem for U-statistics is proven in
Appendix A.

Theorem 3.1. Let us assume that (K), (B), (?), and (P) are satisfied.

(i) The random variable Hn(?) is, under local alternative, asymptoti-
cally normal with zero mean and variance given by 2&2

1(?) where

&2
1(?)=|

R d
f 2

0(x) ?2(x) dx |
Rd

(K V K� )2 (z) dz,

K� (z)=K(&z), and V is the convolution product.

168 GOURIE� ROUX AND TENREIRO



(ii) Moreover, if f0 # Wd (m) and K # K d (m) for some m # N, and the
assumption (C) is satisfied, the bivariate random vector (Hn(?), Gn(?)) is,
under local alternative, asymptotically normal with zero mean and diagonal
covariance matrix [ 2&2

1(?)
0

0
4&2*

2
(?)

], where

&2*
2(?)=Var0 [(2mf0 } ?)(X0)]+2 :

+�

j=1

(ej&E 2
0[(2mf0 } ?)(X0)]).

Note that the limit distribution of the degenerate U-statistic Hn(?) may
a priori be a weighted sum of chi-squares or a normal distribution. The
normality arises due to the presence of a kernel, Hn( } , } ), depending on n.

In particular under H0 , we have

&2*
2(?)=&2

2(?)(say)

=Var0 [(2mf0 } ?)(X0)]

+2 :
+�

j=1

Cov[(2mf0 } ?)(X j), (2mf0 } ?)(X0)].

3.3. Asymptotic Expansions of I 1
n(?) and I 2

n(?)

The expansions of the statistics I 1
n(?) and I 2

n(?) are given in the following
result, which is proven in Appendix B.

Theorem 3.2. Let us assume that (K), (B), (?) and (P) are satisfied.

(i) Under local alternative, we have

I 1
n(?)=

1
nhd�2

n

Hn(?)+a2
n |

R d
#2(x) ?(x) dx

+
1

nhd
n
|

Rd |
Rd

K 2(u) gn(x) ?(x+uhn) dx du+op(a2
n)+op \ 1

nhd�2
n + .

(ii) Under local alternative, if f0 # W d (m) and K # K d (m) for some
m # N, we have

I 2
n(?)=I 1

n(?)+
1

- n h&m
n

Gn(?)+|
R d

[E0 fn(x)& f0(x)]2 ?(x) dx

+2hm
n |

Rd |
R d

K(u)(gn(x)& f0(x))(2m
n f0 } ?)(x+uhn) dx du.
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4. GOODNESS OF FIT TESTS

In what follows we consider test statistics derived from I 1
n(?) and I 2

n(?)
by correcting them for the asymptotic bias under the null hypothesis. As we
shall see, among the proposed corrections, some just correct for the bias
under the null hypothesis, some others under the null and local alternatives
(which is important to get asymptotic local unbiased tests). These statistics
are

T 1, 1
n (?)=nhd�2

n {I 1
n(?)&

1
nhd

n
|

Rd |
R d

K 2(u) f0(x) ?(x+uhn) dx du= ,

T 1, 2
n (?)=nhd�2

n {I 1
n(?)&

1
nhd

n

1
n

:
n

i=1
|

Rd
K 2(u) ?(Xi+uhn) du= ,

T 2, 1
n (?)=d(n) {I 2

n(?)&
1

nhd
n
|

R d |
R d

K 2(u) f0(x) ?(x+uhn) dx du

&|
Rd

[E0 fn(x)& f0(x)]2 ?(x) dx= ,

and

T 2, 2
n (?)=d(n) {I 2

n(?)&
1

nhd
n

1
n

:
n

i=1
|

R d
K 2(u) ?(X i+uhn) du

&|
R d

[E0 fn(x)& f0(x)]2 ?(x) dx= ,

where

d(n)={nhd�2
n ,

- n h&m
n ,

if * # [0, +�[
if *=+�

with *= lim
n � +�

nhd+2m
n .

(9)

4.1. Expansions of the Test Statistics under Local Alternatives

Under local alternatives the term

1
nhd

n
|

Rd |
R d

K 2(u) gn(x) ?(x+uhn) dx du
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appearing in the expansions of I 1
n(?) and I 2

n(?) (see Theorem 3.2) may be
approximated in different ways. It is first equal to

1
nhd

n
|

Rd |
R d

K 2(u) f0(x) ?(x+uhn) dx du

+
an

nhd
n
|

R d
#(x) ?(x) dx |

Rd
K 2(u) du+op \ an

nhd
n+ ,

by using the definition of gn , and it is also equal to

1

nhd
n

1

n
:
n

i=1
|

Rd
K 2(u) ?(Xi+uhn) du+Op \ 1

nhd
n

1

- n+ ,

by central limit theorem.
By substituting in the expansions of Theorem 3.2, and by gathering the

negligible terms, we get the expansions of the test statistics under local
alternatives.

Theorem 4.1. Let us assume that (K), (B), (?) and (P) are satisfied.

(i) Under local alternative, we have

T 1, 2
n (?)=Hn(?)+nhd�2

n a2
n |

R d
#2(x) ?(x) dx+op(nhd�2

n a2
n)+op(1),

and

T 1, 1
n (?)=T 1, 2

n (?)+
an

hd�2
n

|
R d

K 2(u) du |
Rd

#(x) ?(x) dx+o \ an

hd�2
n ++op(1).

(ii) Under local alternative, if f0 # W d (m) and K # K d (m) for some
m # N, we have

T 2, 2
n (?)=

d(n)

nhd�2
n

Hn(?)+
d(n)

- n h&m
n

Gn(?)+d(n) a2
n |

R d
#2(x) ?(x) dx

+2d(n) hm
n an |

Rd
2mf0(x) #(x) ?(x) dx+op(d(n) a2

n)

+o(d(n) hm
n an)+op(1),
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and

T 2, 1
n (?)=T 2, 2

n (?)+
d(n) an

nhd
n

|
Rd

#(x) ?(x) dx

_|
R d

K 2(u) du+o \d(n) an

nhd
n ++op(1).

4.2. The Critical Regions

From Theorems 3.1 and 4.1 the different statistics T j, k
n (?) are asymptoti-

cally normal under the null hypothesis. Moreover for a fixed alternative
hypothesis H1 : [ f =f1], with f1 { f0 , T j, k

n (?) converges in probability to
+�, as soon as the support of the weight function contains the support
of f0 (see Appendix C). Therefore we have to introduce one sided critical
regions based on the previous statistics.

The following result extends to the multidimensional geometrically
;-mixing case Theorem 4.1 of Bickel and Rosenblatt [1]. We denote by ,
the cdf of the standard normal distribution, and by * the parameter defined
in (9).

Theorem 4.2. Let us assume that (K), (B), (?) and (P) are satisfied,
and that the support of the weight function ? contains the support of f0 .

(i) The tests associated with the critical regions

C 1, k
n (?)=[T 1, k

n (?)�,&1(1&:)(2&2
1(?))1�2],

with k=1, 2, are asymptotically of level : and consistent to test H0 against
H c

0 .

(ii) If f0 # Wd (m) and K # K d (m) for some m # N, the tests associated
with the critical regions

C2, k
n (?)=[T 2, k

n (?)�,&1(1&:)(2&2
1(?)+4*&2

2(?))1�2],

with k=1, 2 and * # [0, +�[, and

C2, k
n (?)=[T 2, k

n (?)�2,&1(1&:) |&2(?)|],

with k=1, 2 and *=+�, are asymptotically of level : and consistent to test
H0 against H c

0 .
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The asymptotic variance of Gn(?)�2 under H0 has no simple analytic
expression, but &2

2(?) may be consistently estimated by

&̂2
2, n(?)=Var0 ((2mf0 } ?)(X0))

+2 :
m(n)

j=1 {
1

n& j
:

n& j

i=1

(2mf0 } ?)(X i)(2mf0 } ?)(Xi+ j)

&\1
n

:
n

i=1

(2mf0 } ?)(Xi)+
2

= ,

where m(n) is a sequence of integers tending to +�. Under H0 , we have

&̂2
2, n(?) www�

p

n � +�
&2

2(?), if
m3(n)

n
www�

n � +�
0.

If the tests C 2, k
n (?) are used assuming that the observations are

independent, it is natural to take &2
2(?)=Var0 ((2mf0 } ?)(X0)). However, if

the independence assumption is not valid the tests C 2, k
n (?), for * #

]0, +�], are sensitive to the presence of dependence on the observations
due to the miscomputed variance term. This can be avoided by using &̂2

2(?)
instead of &2

2(?) in the construction of C 2, k
n (?).

The equivalence properties of the previous tests procedures under local
alternative (and under H0 by imposing an=0) are given in the theorem
below and are direct consequences of Theorems 4.1 and 4.2.

Theorem 4.3. Let us assume that the hypothesis (K), (B), (?) and (P)
are satisfied.

(i) The tests C 1, 1
n (?) and C 1, 2

n (?) are asymptotically equivalent under
the local alternatives with an=o(hd�2

n ).

Moreover, let us assume that f0 # W d (m) and K # K d (m) for some m # N.

(ii) If * # [0, +�[ (resp. *=+�) the tests C 2, 1
n (?) and C 2, 2

n (?) are
asymptotically equivalent under the local alternatives with an=o(hd�2

n ) (resp.
an=o(- nh2d+2m

n )).

(iii) If *=0 the tests C 1, 1
n (?), C 1, 2

n (?), C 2, 1
n (?) and C 2, 2

n (?) are
asymptotically equivalent under the local alternatives with an=o(hd�2

n ).

A number of other test statistics may have been considered by approxim-
ating differently the bias term. Among them we find those introduced by
Bickel and Rosenblatt [1] which are, under some conditions on hn ,
asymptotically equivalent to some of the statistics considered above.
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5. SEPARATING ALTERNATIVES

Local asymptotic power analysis of testing procedures is based on the
research for local alternatives providing a nondegenerate limiting power,
called separating alternatives. In our framework this analysis is com-
plicated since the appropriate rates an of the separating alternatives depend
on the direction of the alternative and on the selected bandwidth. In this
section we essentially study these separating rates.

5.1. Minimal and Maximal Limit Sequences

We consider a consistent test of H0 against H c
0 asymptotically of level :

defined by the critical region Cn and we denote by Pgn
the probability

under the sequence of local alternative satisfying (P).

Definition 5.1. The sequence (a
� n) of positive real numbers, converging

to zero when n � +�, is a minimal sequence for the test Cn if for any
sequence of local alternatives satisfying (P) with #{0 in (3), we have

lim
n � +�

Pgn
(Cn)=:, if

an

a
� n

=o(1).

Moreover, if the minimal sequence (a
�

I
n) for the test Cn satisfies a

� n=O(a
�

I
n)

for any minimal sequences (a
� n) for the test Cn , (a

�
I
n) is called a minimal

limit sequence for Cn .

Definition 5.2. The sequence (a� n) of positive real numbers, converging
to zero when n � +�, is a maximal sequence for the test Cn if for any
sequence of local alternatives satisfying (P) with #{0 in (3), we have

lim
n � +�

Pgn
(Cn)=1, if

a� n

an
=o(1).

Moreover, if the maximal sequence (a� I
n) for the test Cn satisfies a� I

n=O(a� n)
for any maximal sequences (a� n), for the test Cn , (a� I

n) is called maximal limit
sequence for Cn .

If there both exist a minimal and a maximal limit sequence for Cn , such
that a

�
I
n=a� I

n=aI
n (say), the faster aI

n is tending to zero, the better is the
testing procedure.

Remark that for the classical tests based on the empirical distribution
function the limit sequence exists and is given by aI

n= 1
- n (see Milbrodt and

Strasser [14]).
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5.2. Limit Sequences for C j, k
n (?), j, k=1, 2

The limit sequences depend on the testing procedure and for the tests
C j, k

n (?), j, k=1, 2, on the choice of the bandwidth hn . These limit sequen-
ces are derived from Theorem 4.1 under the assumption that the weight
function is almost everywhere strictly positive on Rd. Then they are par-
ticularized to the case of a power function hn=n&a, where a is strictly
between 0 and 1�d because of assumption (B), which will allow to sum-
marize the results by some figures. In such a case the limit sequences are
also power functions a

�
I
n=n&b

� and a� I
n=n&b� , where b

�
and b� are the minimal

and maximal limit rates respectively.
We get for the test C 1, 2

n (?) the limit sequence

aI
n=

1

- n hd�4
n

,

and for the particular case of power functions the limit rates

b
�
=b� =

1
2

&
ad
4

.

For the test C 1, 1
n (?) the minimal and maximal limit sequences do not

coincide. We get

a
�

I
n=

1

- n hd�4
n

1[n&2�3d=O(hn)]+hd�2
n 1[hn=o(n&2�3d)] ,

and

a� I
n=

1

- n hd�4
n

1[n&2�3d=O(hn)]+
1

nhd
n

1[hn=o(n&2�3d)] .

For power functions the corresponding limit rates are

b
�
=\1

2
&

ad
4 + 1[a�2�3d]+

ad
2

1[a>2�3d] ,

and

b� =\1
2

&
ad
4 + 1[a�2�3d]+(1&ad ) 1[a>2�3d] .

These rates are summarized in Figs. 1 and 2. We remark that it is
possible to be very close to the parametric rate b

�
=b� = 1

2 by choosing a
large bandwidth (a&0).
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FIG. 1. Limit rates for C 1, 1
n (?).

Finally we study the asymptotic local power of the tests C 2, 1
n (?) and

C2, 2
n (?) by assuming that &̂2

2n(?) is under the sequence of local alternatives
a consistent estimator of the variance of Gn(?)�2, i.e., &̂2

2n(?) www�
p

n � +�
&2*

2(?).
This convergence occurs if for i # N we have En[(2mf0 } ?)(Xi)(2mf0 } ?)
(X0)] � ei , n � +�, where ei , i # N is given in assumption (C). This
condition is fulfilled under the conditions described after the introduction
of assumption (C).

Using the expansion of Theorem 4.1, we get, for the test C 2, 2
n (?), the

limit sequences

a
�

I
n=

1

- n
1[n&1�(d+2m)=O(hn)]+

1

nhd�2+m
n

1[hn=o(n&1�(d+2m)) and n&1�(d�2+2m)=O(hn)]

+
1

- n hd�4
n

1[hn=o(n&1�(d�2+2m))] ,

and

a� I
n=hm

n 1[n&1�(d�2+2m)=O(hn)]+
1

- n hd�4
n

1[hn=o(n&1�(d�2+2m))] .

The corresponding limit rates are

b
�
=

1
2

1[a�1�(d+2m)]+\1&
a
2

(d+2m)+ 1[1�(d+2m)<a�1�(d�2+2m)]

+\1
2

&
ad
4 + 1[a>1�(d�2+2m)] ,
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FIG. 2. Limit rates for C 1, 2
n (?).

and

b� =am 1[a�1�(d�2+2m)]+\1
2

&
ad
4 + 1[a>1�(d�2+2m)] .

Similarly we get for the test C 2, 1
n (?):

(i) If d<2m

a
�

I
n=

1

- n
1[n&1�(d+2m)=O(hn)]+

1
nhd�2+m

n

1[hn=o(n&1�(d+2m)) and n&1�(d�2+2m)=O(hn)]

+
1

- n hd�4
n

1[hn=o(n&1�(d�2+2m)) and n&2�3d=O(hn)]+hd�2
n 1[hn=o(n&2�3d )] ,

and

a� I
n=hm

n 1[n&1�(d�2+2m)=O(hn)]+
1

- n hd�4
n

1[hn=o(n&1�(d�2+2m)) and n&2�3d=O(hn)]

+
1

nhd
n

1[hn=o(n&2�3d )] .
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FIG. 3. Limit rates for the test C 2, 1
n (?), d<2m.

The corresponding limit rates are

b
�
=

1
2

1[a�1�(d+2m)]+\1&
a
2

(d+2m)+ 1[1�(d+2m)<a�1�(d�2+2m)]

+\1
2

&
ad
4 + 1[1�(d�2+2m)<a�2�3d]+

ad
2

1[a>2�3d] ,

and

b� =am 1[a�1�(d�2+2m)]+\1
2

&
ad
4 + 1[1�(d�2+2m)<a�2�3d]+(1&ad ) 1[a>2�3d] .

(ii) If d�2m

a
�

I
n=

1

- n
1[n&1�(d�2+2m)=O(hn)]+

1
nhd�2+m

n

1[hn=o(n&1�(d+2m)) and n&1�(d+m)=O(hn)]

+hd�2
n 1[hn=o(n&1�(d+m))] ,

and

a� I
n=hm

n 1[n&1�(d+m)=O(hn)]+
1

nhd
n

1[hn=o(n&1�(d+m))] .
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FIG. 4. Limit rates for the test C 2, 1
n (?), d�2m.

The corresponding limit rates are

b
�
=

1
2

1[a�1�(d+2m)]+\1&
a
2

(d+2m)+ 1[1�(d+2m)<a�1�(d+m)]

+
ad
2

1[a>1�(d+m)] ,

and

b� =am 1[a�1�(d+m)]+(1&ad ) 1[a>1�(d+m)] .

These rates are summarized in the Figs. 3, 4, and 5.

FIG. 5. Limit rates for the test C 2, 2
n (?).
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6. LOCAL POWER ANALYSIS

The equality of the two limit sequences has interesting implications in
terms of local unbiasedness properties of the testing procedures. We discuss
this problem, using as a basis the different figures of the previous section.
We distinguish three different cases depending on the bandwidth hn=n&c,
0<c<1�d, used to define the goodness of fit tests. They may be described
as follows: (i) in a neighbourhood of c the two limit rates coincide for
c and on the right of c; (ii) in a neighbourhood of c the two limit rates
coincide for c and on the left of c but they do not coincide on the
right of c; and (iii) in a neighbourhood of c the two limit rates never coin-
cide.

In the two first cases the asymptotic local power function of the tests
C j, k

n (?) has the form

:, if an=o \ 1

- n hd�4
n
+

lim
n � +�

Pgn
(C j, k

n (?))={;(#), if an=
1

- n hd�4
n

1, if
1

- n hd�4
n

=o(an).

In case (i), ;(#) is an increasing function of �Rd #2(x) ?(x) dx given by

;(#)=1&, \,&1(1&:)&(2&2
1(?))&1�2 |

Rd
#2(x) ?(x) dx+ .

Then, from the almost everywhere strict positivity imposed to the weight
function the tests C j, k

n (?) are uniformly locally strictly unbiased (cf. Bickel
and Rosenblatt [1]) since we have ;(#)�: and ;(#)>: unless #=0, for
all bounded and integrable # functions.

In this case, ;(#) depends on the kernel K only through the asymptotic
variance &2

1(?), i.e., through �Rd (K V K� )2 (z) dz. Therefore the power may be
optimized if we choose a kernel giving the minimum of the functional
J(K)=�Rd (K V K� )2 (z) dz. This problem has been solved by Ghosh and
Huang [9] when d=1. We can easily extend their result to the multi-
dimensional case by considering K a kernel in the class Kd (m, _) of
kernels on Rd of the form K(x1 , ..., xd)=>d

i=1 K0(xi) where K0 is a non-
negative real kernel such that �R tK0(t) dt=m and �R (t&m)2 K0(t) dt=
_2, with m # R and _>0 given. The functional J assumes the form
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J(K)=(�R (K0 V K� 0)2 (t) dt)d, and from Theorem 1.1 of Ghosh and Huang
[9] we deduce minK # Kd(m, _) J(K)=J(K*)=(3 - 3 _)&d, where

K*(x1 , ..., xd)=\ 1

2 - 3 _+
d

`
d

i=1

1[ |xi&m|�_ - 3] .

In case (ii), ;(#) is given by

;(#)=1&, \,&1(1&:)&(2&2
1(?))&1�2

__|Rd
K2(u) du |

Rd
#(x) ?(x) dx+|

Rd
#2(x) ?(x) dx&+ ,

and there is a local bias. To get a better understanding of what happens in
this case, let us consider #=$#0 , where #0 is a given function and $ # R. Let
us introduce the function of $ defined by ;*($)=;($#0). The function ;*( } )
is the power function corresponding to the previous alternative. For $*=
&�Rd K2(u) du �Rd #0(x) ?(x) dx��Rd #2

0(x) ?(x) dx assumed to be positive, it
has the form given in Fig. 6, where it can be seen that the problem of bias
is only a local one in a neighbourhood of the null hypothesis ($=0).

Note that in this case there does not exist an optimal kernel, uniformly
in the alternatives.

Finally, in case (iii), i.e., when the minimal and maximal limit sequences
do not coincide, the asymptotic local power of the tests C j, k

n (?) has the
form

:, if an=o(a� I
n)

lim
n � +�

Pgn
(C j, k

n (?))={;(#; (an)), if a� I
n=O(an) and an=O(a

�
I
n)

1, if a
�

I
n=o(an),

where ;(#; (an)) depends on the position of the alternative. In order to
exemplify this situation we will consider the case of the test C 2, 1

n (?) when
0<c<1�(d+2m). When we consider a local alternative with an=a� I

n ,
;(#; (an)) may be either 1 or 0 depending on the either positive or negative
sign of �Rd #2(x) ?(x) dx+2 �Rd 2mf0(x) #(x) ?(x) dx. When we consider a
local alternative with a� I

n=o(an) and an=o(a
�

I
n), ;(#; (an)) may be either 1

or 0 depending on the either positive or negative sign of �Rd 2mf0(x) #(x)
?(x) dx. Finally if we consider a local alternative with an=a

�
I
n we have

;(#; (an))=1&, \,&1(1&:)&(2&2
2(?))&1�2 2 |

Rd
2mf0(x) #(x) ?(x) dx+ ,
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FIG. 6. Power function ;*( } ).

which may be either larger or smaller than : depending on the either
positive or negative sign of �Rd 2mf0(x) #(x) ?(x) dx.

The lack of local unbiasedness in cases (ii) and (iii) is a feature of these
kernel based testing procedures. It is a consequence of the practice of just
correcting the bias of the basic statistics I 1

n(?) and I 2
n(?) under the null, and

not under the local alternative.

APPENDIXES

A. Asymptotic Normality of (Hn(?), Gn(?))

Under H0 and for m=2, Theorem 3.1 was derived by Tenreiro [24] as
a consequence of a central limit theorem for degenerate U-statistics
generated by a geometrically ;-mixing process (this result follows the lines
of Hall [12] and Takahata and Yoshihara [22], and is based on central
limit theorem for triangular array given by Dvoretsky [5]). The introduc-
tion of local alternatives does not modify the approach (see Tenreiro [23]
for Hn(?)). Therefore if the hypotheses (K), (B), (?), (P) and (C) are
satisfied, and under local alternative, (Hn(?), Gn(?)) is asymptotically
normal with zero mean and a diagonal covariance matrix, where

lim
n � +�

Varn (Hn(?))= lim
n � +�

En[Gn0(X0 , X� 0)],

and

lim
n � +�

Varn (Gn(?))=4 :
+�

i=&�

lim
n � +�

En[Gn(Xi) Gn(X0)],
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where Gn0(u, v)=En[Hn(X0 , u) Hn(X0 , v)], for u, v # Rd, X� 0 is an independent
copy of X0 , and Hn( } , } ) and Gn( } ) are defined by (7) and (8) respectively.

We compute in the sequel these asymptotic variances.

A.1. Asymptotic Variance of Hn(?). From the definition of Hn( } , } ) and
assumptions (K), (?) and (P), we have, uniformly on u, v # Rd,

Hn(u, v)=
1

h3d�2
n

|
Rd

K \x&u
hn + K \x&v

hn + ?(x) dx+O(hd�2
n ). (16)

Then,

lim
n � +�

En[Gn0(X0 , X� 0)]

= lim
n � +�

1
h3d

n
|

Rd |
R d \|R d

K \x&u
hn +

_K \x&v
hn + ?(x) dx+

2

gn(u) gn(v) du dv.

From the form of gn , and the dominated convergence theorem we get

lim
n � +�

Varn (Hn(?))=|
Rd

f 2
0(x) ?2(x) dx |

Rd
(K V K� )2 (z) dz=&2

1(?).

A.2. Asymptotic Variance of Gn(?). From the definition of Gn( } ) we
have, for i=0, 1, 2, ...,

En[Gn(Xi) Gn(X0)]

=En _ 1
h2d

n
|

Rd |
Rd

K \x&Xi

hn + K \y&X0

hn +
_(2m

n f0 } ?)(x)(2m
n f0 } ?)( y) dx dy&

&E 2
n _ 1

hd
n
|

Rd
K \x&X0

hn + (2m
n f0 } ?)(x) dx&

=|
Rd |

R d
K(u) K(v) En[(2m

n f0 } ?)(Xi+uhn)

_(2m
n f0 } ?)(X0+vhn)] du dv

&\|R d
K(u) En[(2m

n f0 } ?)(X0+uhn)] du+
2

.
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Then by applying assumption (C), equality (5), the dominated con-
vergence theorem, and by taking into account the form of gn , we get for
i=1, 2, ...

lim
n � +�

En[Gn(Xi) Gn(X0)]=ei&E 2
0[(2mf0 } ?)(X0)],

and for i=0

lim
n � +�

En[Gn(X0) Gn(X0)]=Var0 [(2mf0 } ?)(X0)].

Finally we have

lim
n � +�

Varn (Gn(?))

=4 _Var0 [(2mf0 } ?)(X0)]+2 :
+�

i=1

(ei&E 2
0[(2mf0 } ?)(X0)])&

=4&2*
2(?).

B. Asymptotic Expansions of I 1
n(?) and I 2

n(?)

We can first decompose I 1
n(?) and I 2

n(?) in the following ways

I 1
n(?)=|

Rd
[ fn(x)&En fn(x)]2 ?(x) dx&En |

Rd
[ fn(x)&En fn(x)]2 ?(x) dx

+En |
R d

[ fn(x)&En fn(x)]2 ?(x) dx

+2 |
R d

[ fn(x)&En fn(x)][En fn(x)&E0 fn(x)] ?(x) dx

+|
Rd

[En fn(x)&E0 fn(x)]2 ?(x) dx

=
1

nhd�2
n

A1
n+A2

n+2A3
n+A4

n (say), (17)
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and

I 2
n(?)=I 1

n(?)+2 |
Rd

[ fn(x)&En fn(x)][E0 fn(x)& f0(x)] ?(x) dx

+2 |
R d

[En fn(x)&E0 fn(x)][E0 fn(x)& f0(x)] ?(x) dx

+|
Rd

[E0 fn(x)& f0(x)]2 ?(x) dx

=I 1
n(?)+

1

- n h&m
n

B1
n+2B2

n+|
R d

[E0 fn(x)& f0(x)]2 ?(x) dx (say).

(18)

As usual the idea is to provide expansions for each term of the decom-
positions.

B.1. Expansion of I 1
n(?). Let us consider the decomposition (17).

(i) We get

A1
n=

1
n

:
n

i=1

[Hn(Xi , Xi)&En Hn(Xi , Xi)]

+
2
n

:
1� j<i�n

[Hn(Xi , Xj)&En Hn(Xi , Xj)]

=Hn(?)+op(1),

since we easily check that the second order moment of the first term is
negligible using (16) and the absolute convergence of the mixing
coefficients.

(ii) The second term is

A2
n=

1
nhd�2

n _En[Hn(X0 , X0)]+
2
n

:
1� j<i�n

En[Hn(Xi , X j)]& ,

where

En[Hn(X0 , X0)]=
1

h3d�2
n

|
Rd {EnK 2 \x&X0

hn +&E 2
nK \x&X0

hn += ?(x) dx

=
1

hd�2
n

|
R d |

R d
K 2(u) gn( y) ?( y+uhn) dy du+O(hd�2

n ).
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We now check that the covariance term is negligible. Firstly, from (16)
and the assumptions on the pdf gn and on the cdf f in we conclude that, for
r>1, there exists C>0 such that (cf. Tenreiro [24], pp. 206�207)

max[ max
1�i�n

E 1�r
n |Hn(Xi , X0)| r, E 1�r

n |Hn(X� 0 , X0)| r]�C(hd
n)1�r&1�2.

From Lemma 1 of Yoshihara [27], we get

}1n :
1� j<i�n

En[Hn(X i , X j)] }� :
n&1

i=1

|En[Hn(Xi , X0)]|

�4C(hd
n)1�r&1�2 :

n&1

i=1

; (r&1)�r
n (i),

where the RHS is negligible for r<2 from the assumption on the mixing
coefficients.

Therefore

A2
n=

1
nhd

n
|

Rd |
Rd

K 2(u) gn( y) ?( y+uhn) dy du+O \ 1
nhd�2

n + .

(iii) The third term is

A3
n=

an

- n

1

- n
:
n

i=1

1

hd
n
|

R d {K \x&X i

hn
+&EnK \x&X0

hn
+= pn(x) ?(x) dx

=
an

- n

1

- n
:
n

i=1

Ln(Xi) (say),

where

pn(x)=a&1
n [Efnn(x)&E0 fn(x)]

=
1

hd
n
|

Rd
K \x& y

hn + (#( y)+o(1) #n( y)) dy,

is uniformly bounded using the assumptions on # and #n . Then, since Ln( } )
is uniformly bounded and the sequence of mixing coefficients is absolutely
convergent, we have

A3
n=Op \ an

- n+ .
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(iv) Finally, from the dominated convergence theorem and the
assumptions on gn , we have, for # continuous,

A4
n=|

R d
[En fn(x)&E0 fn(x)]2 ?(x) dx

=|
R d { 1

hd
n
|

Rd
K \x& y

hn + (gn( y)& f0( y)) dy=
2

?(x) dx

=a2
n |

R d { 1
hd

n
|

R d
K \x& y

hn + #( y) dy=
2

?(x) dx+o(a2
n)

=a2
n |

R d
#2(x) ?(x) dx+o(a2

n).

Density arguments permit us to extend the previous expansion for #
bounded and integrable on Rd.

B.2. Expansion of I 2
n(?). Let us consider the decomposition (18) and

the equality (4).

(i) We have

2B1
n=2 - n h&m

n |
R d

[ fn(x)&En fn(x)][E0 fn(x)& f0(x)] ?(x) dx

=2 - n |
R d

[ fn(x)&En fn(x)](2m
n f0 } ?)(x) dx

=2 - n
1

nhd
n

:
n

i=1
|

R d {K \x&Xi

hn +&EnK \x&Xi

hn += (2m
n f0 } ?)(x) dx

=Gn(?).

(ii) The same kind of arguments gives

B2
n=hm

n |
R d |R d

K(u)(gn(x)& f0(x))(2m
n f0 } ?)(x+uhn) dx du.

By taking into account all these expansions, we deduce the expansions of
I 1

n(?) and I 2
n(?) given in Theorem 3.2.

C. Consistency of the Test Procedures
In what follows we establish the consistency of the tests based on critical

regions C j, k
n (?) by proving that T j, k

n (?) www�
p

n � +�
+�, j, k=1, 2, for a fixed

alternative hypothesis H1 : [ f =f1], with f1 { f0 .
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If f1 is the density of the observed process (Xi , i # Z), we have

I 1
n(?)=2 |

Rd
[ fn(x)&E1 fn(x)][E1 fn(x)&E0 fn(x)] ?(x) dx

+|
Rd

[ fn(x)&E1 fn(x)]2 ?(x) dx+|
R d

[E1 fn(x)&E0 fn(x)]2 ?(x) dx,

where E1 is the mathematical expectation under the hypothesis H1 . From
points (ii) and (iv) of Appendix B, the first two terms converge to zero in
probability, when n � +�, and

|
R d

[E1 fn(x)&E0 fn(x)]2 ?(x) dx=|
R d

[ f1(x)& f0(x)]2 ?(x) dx+o(1).

Therefore, for k=1, 2 we have

T 1, k
n (?)

nhd�2
n

=I 1
n(?)&

1
nhd

n
|

R d |R d
K 2(u) f0(x&uhn) ?(x) dx du

=|
R d

[ f1(x)& f0(x)]2 ?(x) dx+op(1).

If f0 # Wd (m) and K # K d (m), the same kind of arguments and the
equality

|
Rd

[E0 fn(x)& f0(x)]2 ?(x) dx=h2m
n |

Rd
(2m

n f0(x))2 dx (cf.(4)),

gives for k=1, 2,

T 2, k
n (?)
d(n)

=|
R d

[ f1(x)& f0(x)]2 ?(x) dx+op(1).

The conclusion follows from the convergence nhd�2
n ww�

n � +�
+� and

d(n) ww�
n � +�

+�, and the fact that �R d [ f1(x)& f0(x)]2 ?(x) dx>0, since
the support of the weight function ? contains the support of f0 .
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