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a b s t r a c t

We develop a test of equality between two dependence structures estimated through
empirical copulas. We provide inference for independent or paired samples. Themultiplier
central limit theorem is used for calculating p-values of the Cramér–vonMises test statistic.
Finite sample properties are assessed with Monte Carlo experiments. We apply the testing
procedure on empirical examples in finance, psychology, insurance and medicine.
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1. Introduction

Copulas are omnipresent in statistics and other fields like actuarial science, finance, reliability and hydrology, to name a
few. This presence is explained by the copula being a summary of the full dependence structure between random variables.
From a methodological point of view, most papers concentrate on parameter estimation, using ranks as in [14,24], or using
estimated parametric margins, as in [19].
However functional nonparametric estimation of the copula has also been examined. It was first studied by Deheuvels

in a series of papers [4–6,8,7], for the independent copula, and studied in full generality in [13]. Recent work on copula
processes include [11,17]. Copula processes help in the development of tests for goodness-of-fit in semiparametric models,
e.g. [10,15,16,23].
Another statistical issue related to copula modelling is the problem of testing for equality between two copulas. This yet

unsolved issue aims at checking the validity of the hypothesis of two dependence structures being identical. For example,
we could argue in credit risk that the copula of the joint default times of firms is the same as the copula of their respective
asset values. See [9] for an illustration.
Our method to gauge the similarity between dependence structures has several advantages. First, it is applicable to any

dimension. It is not restricted to the two dimensional case only. Second, it is not affected by strictmonotonic transformations
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of the variables like log or exp transforms. Copulas possess an invariance property with respect to such mappings. This
is a clear benefit over using a standard correlation to measure dependence. Third, it is model free. We rely on empirical
estimation of copulas following a nonparametric approach. Fourth, finite sample properties are expected to bewell behaved
since we rely on a simulation strategy induced by a multiplier method. Our Monte Carlo results confirm this conjecture. The
testing procedure performs well in samples as small as n1 = n2 = 50 and d = 2. Fifth, the test statistic takes a closed form.
This improves the numerical speed of the simulation based testing procedure.
In this paper we illustrate the testing procedure on several empirical examples. We investigate questions arising in

finance, psychology, insurance and medicine. The first application concerns the dependence structure between expense
ratio and turnover level within two categories of US mutual funds. The second application examines the links between
emotional experience and life satisfaction in the Chinese culture vis-à-vis the American culture. The third one is dedicated
to the analysis of losses and allocated loss adjustment expenses (ALAEs, in short). In the last application, we investigate the
dependence structure over time between two methods of assessment of depression. Other potential applications include
investigating dependence between product sales in different retail stores (marketing), between income and consumption
in different countries (economics), between reported items on corporate balance sheets in different countries (accounting),
etc.
To describe the problem at hand, suppose we face two independent samples of Rd-valued vectors. The first sample,

X1, . . . , Xn1 is taken from a distribution function F with continuousmargins F1, . . . , Fd, and the second sample Y1, . . . , Yn2 is
taken from a distribution functionGwith continuousmarginsG1, . . . ,Gd. The vectors Xi, i = 1, . . . , n1, and Yi, i = 1, . . . , n2,
have size d, and entries denoted by Xil and Yil, l = 1, . . . , d. Then the unique copulas C and D associated with the first and
second samples are determined, for any x = (x1, . . . , xd), by

F (x) = C {F1(x1), . . . , Fd(xd)} , G (x) = D {G1(x1), . . . ,Gd(xd)} .

The aim of the paper is to show how we can test the hypotheses

H0 : C = D vs H1 : C 6= D.

Obviously this is not equivalent to testing for F = G. Here we focus on the equality between the dependence structure as
posited by C = D, leaving the behavior of the margins out of our field of interest. By construction our method is invariant
with respect to strict monotonic transformations of the data.
To obtain consistent tests, we rely on a statistic based on the integrated square difference between the empirical copulas

Cn1 and Dn2 defined for any u = (u1, . . . , ud) ∈ [0, 1]
d by

Cn1(u) =
1
n1

n1∑
i=1

I(Ui,n1 ≤ u) =
1
n1

n1∑
i=1

d∏
l=1

I(Uil,n1 ≤ ul),

and

Dn2(u) =
1
n2

n2∑
i=1

I(Vi,n2 ≤ u) =
1
n2

n2∑
i=1

d∏
l=1

I(Vil,n2 ≤ ul),

where Ui,n1 = (Ui1,n1 , . . . ,Uid,n1), Vi,n2 = (Vi1,n2 , . . . ,Uid,n2), and for any l ∈ {1, . . . , d},

Uil,n1 =
n1
n1 + 1

Fl,n1(Xil) = rank(Xil)/(n1 + 1), 1 ≤ i ≤ n1,

Vil,n2 =
n2
n2 + 1

Gl,n2(Yil) = rank(Yil)/(n2 + 1), 1 ≤ i ≤ n2,

with

Fl,n1(xl) =
1
n1

n1∑
i=1

I(Xil ≤ xl) and Gl,n2(xl) =
1
n2

n2∑
i=1

I(Yil ≤ xl),

being the empirical distribution functions of (Xil)
n1
i=1 and (Yil)

n2
i=1, respectively, defined for any xl ∈ R.

Test statistics for the equality between two copulas rely on functionals of the empirical process

En1,n2 = (Cn1 − Dn2)
/√

1
n1
+
1
n2
.

The asymptotic behavior of En1,n2 is given in Section 2, together with a simulation based method for computing p-
values. Some numerical results are given in Section 3 to illustrate the finite sample properties of the testing procedure.
Section 4 is dedicated to empirical applications. The proof of the theoretical results are relegated to Appendix Awhile explicit
expressions for calculating the simulated Cramér–von Mises test statistics are available in Appendix B of [21].
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2. Test statistic and main results

If the mappings u 7→ ∂ulC(u) are continuous on [0, 1]
d, then it is known, see, e.g., [13,27], that Cn1 =

√
n1(Cn1 − C)

converges weakly in D([0, 1]d) to a continuous centered Gaussian process C, denoted by Cn1  C, where C has the
representation

C(u) = α(u)−
d∑
l=1

βl(ul)∂ulC(u), (1)

with

αn1(u) =
1
√
n1

n1∑
i=1

{I(Ui ≤ u)− C(u)}  α(u),

βl(ul) = α(1, . . . , 1, ul, 1, . . . , 1), 1 ≤ l ≤ d, and Ui = (F1(Xi1), . . . , Fd(Xid)). Note that the extra term
∑d
l=1 βl(ul)∂ulC(u)

comes from the marginal distributions F1, . . . , Fd being unknown.
Similarly, Dn2 =

√
n2(Dn2 − D)  D inD([0, 1]d)where D is a continuous centered Gaussian process represented by

D(u) = γ (u)−
d∑
l=1

δl(ul)∂ulD(u), (2)

with

γn2(u) =
1
√
n2

n2∑
i=1

{I(Vi ≤ u)− D(u)}  γ (u),

δl(ul) = γ (1, . . . , 1, ul, 1, . . . , 1), 1 ≤ l ≤ d, and Vi = (G1(Yi1), . . . ,Gd(Yid)).
If min(n1, n2)→∞, in such a way that n1/(n1 + n2)→ λ ∈ [0, 1], then (see the proofs of the theorems below)

En1,n2 =

√
n2

n1 + n2
Cn1 −

√
n1

n1 + n2
Dn2  E =

√
1− λ C−

√
λ D.

Under the null hypothesis H0 : C = D, we have En1,n2 = En1,n2 , and thus En1,n2  E .
To test the null hypothesis H0 : C = D, we propose to use the Cramér–von Mises principle, and build

Sn1,n2 =
∫
[0,1]d

E2n1,n2(u)du

=

(
1
n1
+
1
n2

)−1
×

{
1
n21

n1∑
i=1

n1∑
j=1

d∏
s=1

(
1− Uis,n1 ∨ Ujs,n1

)
−

2
n1n2

n1∑
i=1

n2∑
j=1

d∏
s=1

(
1− Uis,n1 ∨ Vjs,n2

)
+
1
n22

n2∑
i=1

n2∑
j=1

d∏
s=1

(
1− Vis,n2 ∨ Vjs,n2

)}
,

where a ∨ b stands for max(a, b). When C = D, then

Sn1,n2  S =
∫
[0,1]d

E2(u)du,

while if C 6= D, then Sn1,n2
Pr
→∞. This yields consistency of the testing procedure.

Since C and D are unknown, computing p-values appears difficult at first sight. However, due to a powerful multiplier
technique, we can estimate the p-value via simulations. In a single copula context the idea is already suggested in [22],
and further developed in [20]. The trick is to use a multiplier central limit theorem [28] to approximate each random term
appearing in (1) and (2). Note that a bootstrap approach would be inappropriate here since it fails to deliver consistency
when applied to Cramér–von Mises test statistics (see Example 7 of [2], [1,3]).
To see how it works, suppose that for any k ∈ {1, . . . ,N}, ξ (k)1 , . . . , ξ

(k)
n1 , ζ

(k)
1 , . . . , ζ

(k)
n2 are independent and identically

distributed variables with mean zero and variance one.
Set

α̂(k)n1 (u) =
1
√
n1

n1∑
i=1

ξ
(k)
i

{
I(Ui,n1 ≤ u)− Cn1(u)

}
=

1
√
n1

n1∑
i=1

(
ξ
(k)
i − ξ̄

(k)
)

I(Ui,n1 ≤ u),

γ̂ (k)n2 (u) =
1
√
n2

n2∑
i=1

(
ζ
(k)
i − ζ̄

(k)
)

I(Vi,n2 ≤ u),
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where ξ̄ (k) = 1
n1

∑n1
i=1 ξ

(k)
i , ζ̄

(k)
=

1
n2

∑n2
i=1 ζ

(k)
i , and for any l ∈ {1, . . . , d},

β̂
(k)
l,n1
(ul) = α̂(k)n1 (1, . . . , 1, ul, 1, . . . , 1)

=
1
√
n1

n1∑
i=1

(
ξ
(k)
i − ξ̄

(k)
)

I(Uil,n1 ≤ uk),

δ̂
(k)
l,n2
(ul) = γ̂ (k)n2 (1, . . . , 1, ul, 1, . . . , 1)

=
1
√
n2

n2∑
i=1

(
ζ
(k)
i − ζ̄

(k)
)

I(Vil,n2 ≤ uk).

To approximate the partial derivatives ∇C and ∇D, we proceed as in [17]. For any l ∈ {1, . . . , d}, set

̂∂ulCn1,h1(u) =
Cn1(u+ h1el)− Cn1(u− h1el)

2h1
and

̂∂ulDn2,h2(u) =
Dn2(u+ h2el)− Dn2(u− h2el)

2h2
,

where el is the lth column of the d× d identity matrix. We could also rely on a kernel based estimate of the derivative [12],
but this would impede the writing of explicit expressions for the simulated test statistic, and slow down the procedure.
These expressions are available on request from the authors, and also written down in Appendix B of [21].
Finally, for all u ∈ [0, 1]d, and for all k ∈ {1 . . . ,N}, let

Ĉ(k)n1,h1(u) = α̂
(k)
n1 (u)−

d∑
l=1

β̂
(k)
l,n1
(ul) ̂∂ulCn1,h1(u),

D̂(k)n2,h2(u) = γ̂
(k)
n2 (u)−

d∑
l=1

δ̂
(k)
l,n2
(ul) ̂∂ulDn2,h2(u),

and

Ê (k)n1,n2 =

√
n2

n1 + n2
Ĉ(k)n1,h1 −

√
n1

n1 + n2
D̂(k)n2,h2 .

Further set

S(0)n1,n2 =
∫
[0,1]d

E2n1,n2(u)du

and

Ŝ(k)n1,n2 =
∫
[0,1]d

{
Ê (k)n1,n2

}2
(u)du, k ∈ {1, . . . ,N}.

Theorem 2.1 (Independent Samples). Suppose that ∇C and ∇D are continuous on [0, 1]d. If hi = n
−1/2
i , i = 1, 2 and if

min(n1, n2)→∞ in such a way that n1/(n1 + n2)→ λ ∈ (0, 1), then(
En1,n2 , Ê

(1)
n1,n2 , . . . , Ê

(N)
n1,n2

)
 
(
E, Ẽ (1), . . . , Ẽ (N)

)
inD

(
[0, 1]d

)⊗(N+1)
,

where Ẽ (1), . . . , Ẽ (N) are independent copies of E . In particular,(
S(0)n1,n2 , Ŝ

(1)
n1,n2 , . . . , Ŝ

(N)
n1,n2

)
 
(
S, S̃(1), . . . , S̃(N)

)
in [0,∞)⊗(N+1),

where S̃(1), . . . , S̃(N) are independent copies of S =
∫
[0,1]d E2(u)du. An approximate p-value for Sn1,n2 is then given by

1
N

N∑
k=1

I
(
Ŝ(k)n1,n2 > Sn1,n2

)
.

The proof is given in Appendix A.1.
The previous theorem holds true for two independent populations. What about paired observations, i.e., Xi is not

independent of Yi, but n2 = n1 = n? It is easy to check that the previous methodology applies, provided we draw ξ
(k)
i

and set ζ (k)i = ξ
(k)
i , for all i = 1, . . . , n, and all k = 1, . . . ,N . In the next theorem we shorten the subscript n,n as n.



B. Rémillard, O. Scaillet / Journal of Multivariate Analysis 100 (2009) 377–386 381

Table 1
Size and power of the Cramér–von Mises test based on a multiplier technique with N = 1000, when n1 = 50, 100, n2 = 50, 100, d = 2, and Clayton
copulas parameterized such that the Kendall tau is τC = 0.2 for C , and τD = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 for D

(n1, n2) Kendall tau τD 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(50, 50) Power (%) 4.9 9.4 28.9 58 87.4 97.6 99.9
(50, 100) Power (%) 4.6 12.7 37.2 73.6 95.4 99.6 100
(100, 50) Power (%) 5.4 14.3 40.3 74.4 95.7 99.9 100
(100, 100) Power (%) 4.5 13.5 53.1 88.5 99.2 100 100

The significance level is 5%, and empirical levels are computed with 1000 replicates.

Theorem 2.2 (Paired Samples). Suppose that ∇C and∇D are continuous on [0, 1]d. If hi = h = n−1/2, i = 1, 2 and if n→∞,
then (

En, Ê
(1)
n , . . . , Ê

(N)
n

)
 
(
E, Ẽ (1), . . . , Ẽ (N)

)
inD

(
[0, 1]d

)⊗(N+1)
,

where Ẽ (1), . . . , Ẽ (N) are independent copies of E . In particular,(
S(0)n , Ŝ

(1)
n , . . . , Ŝ

(N)
n

)
 
(
S, S̃(1), . . . , S̃(N)

)
in [0,∞)⊗(N+1),

where S̃(1), . . . , S̃(N) are independent copies of S =
∫
[0,1]d E2(u)du. An approximate p-value for Sn is then given by

1
N

N∑
k=1

I
(
Ŝ(k)n > Sn

)
.

The proof is given in Appendix A.3.

3. Numerical experiments

From Theorem 2.1 we know that the level of the test should be correct when n1, n2 → ∞. Here we check the finite
sample properties of the testing procedure in terms of size and power. For the numerical experiments, the level of the test
is fixed at 5%, so the power is estimated by the proportion of samples with p-value less than 5%. To this end, we have chosen
three bivariate copula families (Clayton, Frank and Gumbel), all indexed by the Kendall tau τ(θ) depending on the copula
parameter θ . Recall that the Clayton copula is defined by all u, v ∈ (0, 1) and parameter θ > 0 by

Cθ (u, v) =
(
u−θ + v−θ − 1

)−1/θ
.

Here τ(θ) = θ/(θ + 2).
The Frank copula is defined for all u, v ∈ (0, 1) and θ > 0 by

Cθ (u, v) = log
(
θ + θu+v − θu − θv

θ − 1

)/
log(θ).

Then τ(θ) = log(θ)2+4 log(θ)+4 dilog(θ)
log(θ)2

, where dilog(x) =
∫ x
1
log t
1−t dt .

Finally, the Gumbel copula is defined for all u, v ∈ (0, 1) and 0 < θ < 1 by

Cθ (u, v) = exp
[
−{(− log u)1/θ + (− log v)1/θ }θ

]
,

which gives τ(θ) = 1− θ .
As we can see from Table 1 for Clayton copulas, even for sample sizes as small as n1 = n2 = 50, the empirical level of

the test (4.9%) is close to the theoretical one (5%). Moreover, the power of the test increases as expected, when D goes away
from C , i.e., when τD increases, τC being fixed. It is close to 100% when τD is above.7 and τC is kept equal to.2. These results
are confirmed by Table 2 for the Frank copula and by Table 3 for the Gumbel copula. Similar results also hold true for the
other pairs of sample sizes (n1, n2) = (50, 100), (100, 50), (100, 100).

4. Empirical applications

In this sectionwe illustrate the testing procedures on empirical examples in finance, psychology, insurance andmedicine.
A generic Matlab code and its C add-in are available upon request from the authors for applied work. We have used
N = 1000.
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Table 2
Size and power of the Cramér–vonMises test based on a multiplier technique with N = 1000, when n1 = 50, 100, n2 = 50, 100, d = 2, and Frank copulas
parameterized such that the Kendall tau is τC = 0.2 for C , and τD = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 for D

(n1, n2) Kendall tau τD 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(50, 50) Power (%) 4.7 10 32.9 55.9 89.9 99.1 99.9
(50, 100) Power (%) 5.7 12.9 36.9 72.1 96.6 99.8 100
(100, 50) Power (%) 4.8 15 45.1 74.9 98 100 100
(100, 100) Power (%) 4.4 16.3 59.2 89.4 99.8 100 100

The significance level is 5%, and empirical levels are computed with 1000 replicates.

Table 3
Size and power of the Cramér–von Mises test based on a multiplier technique with N = 1000, when n1 = 50, 100, n2 = 50, 100, d = 2, and Gumbel
copulas parameterized such that the Kendall tau is τC = 0.2 for C , and τD = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 for D

(n1, n2) Kendall tau τD 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(50, 50) Power (%) 4.2 8.4 26.5 57.1 85.6 98.5 99.9
(50, 100) Power (%) 4.9 10.3 36.6 70.4 94.1 99.9 100
(100, 50) Power (%) 4.6 14.7 39.4 73.1 96.4 99.9 100
(100, 100) Power (%) 4.7 16.4 53.1 87.8 99.8 100 100

The significance level is 5%, and empirical levels are computed with 1000 replicates.

4.1. Expense ratio and turnover level

The data set ismade of expense ratio and turnover level reported by 222 ‘‘Growth and Income’’ funds and 333 ‘‘Aggressive
Growth’’ funds at the end of year 1994 (see, e.g., [30] for a detailed description of the data). A higher turnover induces
higher transaction costs, and funds charge expenses partly to cover these costs. In 1994 growth-oriented funds maintain
roughly 90% of their portfolios in equities, while income-oriented funds maintain a lower proportion around 80%. We want
to study whether funds having different investment objectives share the same link between turnover level and expense
ratio. The p-value is 0.425, and we conclude that the null hypothesis of equal dependence structure is not rejected at a 5%
level. This means that the two categories of funds act in a similar way when adjusting the expenses they charge to recover
their transaction costs.

4.2. Emotional experience and life satisfaction

Thedata set consists of positive affect scores (positive emotionalmood) and life satisfaction scores (subjectivewell-being)
recorded in China (559 university students) and the United States (443 university students) in the early 90s. We refer to the
paper of [26] for data description and background on the psychological concepts. The question is whether the dependence
structure for a collectivist culture, i.e., where a significant part of one’s identity is made of collective elements, and that
for an individualistic culture, i.e., where one’s internal attributes are emphasized over the evaluations and expectations of
others, can be considered to be equal or not. The p-value is 0, and we conclude that the null hypothesis of equal dependence
structure is rejected at a 5% level. Hence the underlying culture has a significant impact.

4.3. Losses and ALAEs

Often actuaries have to price insurance contracts involving pairs of dependent variables. A classical example consists
of computing the premium of a reinsurance treaty on a policy with unlimited liability, some retention level of the losses
and a prorata sharing of ALAEs. Here ALAEs are types of insurance company expenses that are specifically attributable to
the settlement of individual claims such as lawyers’ fees and claims’ investigation expenses. The data are extracted from
a database about medical insurance claims available from the Society of Actuaries. A thorough description of the data can
be found in the monograph [18]. We analyze the dependence structure between losses (hospital charges) and ALAEs (other
charges) for dependent females (967 observations) versus employee females (1116 observations) aged 30–39 in 1991 and
insured by a Preferred Provider Organization (PPO) plan. The p-value is 0.065, and the null hypothesis of equal dependence
structure is not rejected at a 5% level. We conclude that the status of the policy holder is irrelevant here (at a 5% level), and
that premiums charged for both types of individuals should be the same if margins are roughly identical.

4.4. St John’s wort versus sertaline

In [29] the authors compare the change in severity of depressive symptoms and occurrence of side effects in primary
care patients treated with St John’s wort and sertaline using a double-blind randomized 12-week trial. For each of the
two treatment groups, depression was measured every two weeks with two different instruments: Hamilton raring scale
for Depression (Ham-D) and Beck Depression Inventory (BDI). The authors conclude that there is no significant difference
between the two treatments. By looking at the two groups, we now ask whether there is no change on the dependence
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structure of the two measures of depression over time. To this end, we use the methodology developed for paired samples.
All ten pairs of measures corresponding to weeks 2, 4, 6, 8, 10 are compared, and we find that the largest estimated p-value
is 0.001. Thus we have that the null hypothesis of equal dependence structure is rejected at a 5% level. This rejection might
have an impact on the conclusion on the no difference between the two treatments since the relationship between the two
measurement instruments is not the same in the two groups.
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Appendix. Proofs of the results

Let ξ1, . . . , ξn be independent and identically distributed random variables with mean zero and variance one. Also
suppose that X1, . . . , Xn are independent random vectors with continuous marginals F1, . . . , Fd and copula C . Set Uij =
Fj(Xij), i ∈ {1, . . . , n}, j ∈ {1, . . . , d}.
Then, for any u = (u1, . . . , ud) ∈ (0, 1)d, αn and Cn can be expressed as

αn(u) =
√
n
{
C̃n(u)− C(u)

}
,

with

C̃n(u) =
1
n

n∑
i=1

I(Ui1 ≤ u1, . . . ,Uid ≤ ud),

and

Cn(u) =
1
n

n∑
i=1

I (Fn1(Xi1) ≤ u1, . . . , Fnd(Xid) ≤ ud)

=
1
n

n∑
i=1

I
(
Ui1 ≤ E−1n1 (u1), . . . ,Uid ≤ E

−1
nd (ud)

)
= C̃n

(
E−1n1 (u1), . . . , E

−1
nd (ud)

)
,

where for any j ∈ {1, . . . , d},

Enj(uj) =
1
n

n∑
i=1

I(Uij ≤ uj), uj ∈ [0, 1].

Furthermore, for any u = (u1, . . . , ud) ∈ [0, 1]d, set

α̃n(u) =
1
√
n

n∑
i=1

ξi

{
I (Ui1 ≤ u1, . . . ,Uid ≤ ud)− C̃n(u)

}
.

Then, for any u = (u1, . . . , ud) ∈ [0, 1]d,

α̂n(u) =
1
√
n

n∑
i=1

ξi [I (Fn1(Xi1) ≤ u1, . . . , Fnd(Xid) ≤ ud)− Cn(u)]

= α̃n
(
E−1n1 (u1), . . . , E

−1
nd (ud)

)
.

It follows from the classical multiplier central limit theorem [28] that (αn, α̃n)  (α, α̃) in D([0, 1]d) × D([0, 1]d),
where α̃ is an independent copy of α, and α is a C-Brownian bridge.
Next, since for any j ∈ {1, . . . , d}, supuj∈[0,1]

∣∣E−1nj (uj)− uj∣∣ = supuj∈[0,1] ∣∣Enj(uj)− uj∣∣ → 0 as n → ∞, e.g., [25], the
following result holds.

Lemma A.1.
(
αn, α̂n

)
 (α, α̃) inD([0, 1]d)×D([0, 1]d), where α̃ is an independent copy of α, and α is a C-Brownian bridge.
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A.1. Proof of Theorem 2.1

Proof. The proof is closely related to the one in [22]. Here we can simply use Lemma A.1 to conclude that, as n1 →∞,(
αn1 , α̂

(1)
n1 , . . . , α̂

(N)
n1

)
 
(
α, α̃(1), . . . , α̃(N)

)
inD([0, 1]d)⊗(N+1), where α̃(1), . . . , α̃(N) are independent copies of α, and α is a C-Brownian bridge.
Also, as n2 →∞,(

γn2 , γ̂
(1)
n2 , . . . , γ̂

(N)
n2

)
 
(
γ , γ̃ (1), . . . , γ̃ (N)

)
inD([0, 1]d)⊗(N+1), where γ̃ (1), . . . , γ̃ (N) are independent copies of γ , and γ is a D-Brownian bridge.
As a consequence of independence between(

αn1 , α̂
(1)
n1 , . . . , α̂

(N)
n1

)
and

(
γn2 , γ̂

(1)
n2 , . . . , γ̂

(N)
n2

)
,

we may conclude that as min(n1, n2)→∞,(
αn1 , γn2 , α̂

(1)
n1 , γ̂

(1)
n2 , . . . , α̂

(N)
n1 , γ̂

(N)
n2

)
 
(
α, γ , α̃(1), γ̃ (1), . . . , α̃(N), γ̃ (N)

)
inD([0, 1]d)⊗2(N+1), where

(
α̃(1), γ̃ (1)

)
, . . . ,

(
α̃(N), γ̃ (N)

)
are independent copies of (α, γ ), α is independent of γ .

Next, since the conditions of Proposition A.2 of the next section are met, we obtain that for any l ∈ {1, . . . , d}, ̂∂ulCn1,h1
and ̂∂ulDn2,h2 converge uniformly in probability to ∂ulC and ∂ulD.
Hence (En1,n2 , Ê

(1)
n1,n2 , . . . , Ê

(N)
n1,n2)  (E, Ẽ (1), . . . , Ẽ (N)) inD

(
[0, 1]d

)⊗(N+1), where Ẽ (1), . . . , Ẽ (N) are independent
copies of E . Since the mapping g 7→

∫
[0,1]d g

2(u)du is continuous, whenever g is continuous on [0, 1]d, it follows that(
S(0)n1,n2 , Ŝ

(1)
n1,n2 , . . . , Ŝ

(N)
n1,n2

)
 
(
S, S̃(1), . . . , S̃(N)

)
in [0,∞)⊗(N+1),

where S̃(1), . . . , S̃(N) are independent copies of S =
∫
[0,1]d E2(u)du. An approximate p-value for Sn1,n2 is then given by

1
N

∑N
k=1 I(Ŝ(k)n1,n2 > Sn1,n2). �

A.2. Uniform convergence of partial derivative estimates

Proposition A.2. Suppose that ∇C and ∇D are continuous on [0, 1]d. Take hi = n
−1/2
i , i = 1, 2. Then, asmin(n1, n2)→∞,

max
1≤l≤d

sup
u∈[0,1]d

∣∣∣ ̂∂ulCn1,h1(u)− ∂ulC(u)
∣∣∣ Pr→ 0

and

max
1≤l≤d

sup
u∈[0,1]d

∣∣∣ ̂∂ulDn2,h2(u)− ∂ulD(u)
∣∣∣ Pr→ 0.

Proof. Let l ∈ {1, . . . , d} be fixed. Then,

̂∂ulCn1,h1(u) =
Cn1(u+ h1el)− Cn1(u− h1el)

2h1

=
C(u+ h1el)− C(u− h1el)

2h1
+

Cn1(u+ h1el)− Cn1(u− h1el)
2h1
√
n1

.

Therefore we get by choosing h1 = n
−1/2
1 :

sup
u∈[0,1]d

∣∣∣ ̂∂ulCn1,h1(u)− ∂ulC(u)
∣∣∣ = sup

u∈[0,1]d

∣∣∣∣Cn1(u+ h1el)− Cn1(u− h1el)2h1
− ∂ulC(u)

∣∣∣∣
≤ sup
u∈[0,1]d

∣∣∣∣C(u+ h1el)− C(u− h1el)2h1
− ∂ulC(u)

∣∣∣∣
+
1
2
sup
u∈[0,1]d

∣∣Cn1(u+ h1el)− Cn1(u− h1el)
∣∣ ,

which tends to 0 as n1 →∞, since ∂ulC(u) is assumed to be continuous on [0, 1]
d, andCn1 converges in law to a continuous

centered Gaussian process C. The proof for ̂∂ulDn2,h2 is similar. �
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A.3. Proof of Theorem 2.2

Proof. The proof is similar to the proof of Theorem 2.1. First, consider the independent vectors Z1 = (X1, Y1), . . . , Zn =
(Xn, Yn), having copula C on [0, 1]2d, with the property that for any u, v ∈ [0, 1]d, C(u, 1, . . . , 1) = C(u) and
C(1, . . . , 1, v) = D(v).
Next, for all u, v ∈ [0, 1]d, define

Cn(u, v) =
1
n

n∑
i=1

I(Ui,n ≤ u, Vi,n ≤ v),

υn(u, v) =
1
n

n∑
i=1

I(Ui ≤ u, Vi ≤ v),

and

υ̂(k)n (u, v) =
1
√
n

n∑
i=1

ξ
(k)
i

{
I(Ui,n ≤ u, Vi,n ≤ v)− Cn(u, v)

}
.

It follows from Lemma A.1 that, as n→∞,(
υn, υ̂

(1)
n , . . . , υ̂

(N)
n

)
 
(
υ, υ̃(1), . . . , υ̃(N)

)
inD([0, 1]d)⊗(N+1), where υ̃(1), . . . , υ̃(N) are independent copies of υ , and υ is a C-Brownian bridge.
Since for any u, v ∈ [0, 1], we have

Cn(u) = C(u, 1, . . . , 1), α̃n(u) = υn(u, 1, . . . , 1), α̂(k)n (u) = υ̂
(k)
n (u, 1, . . . , 1)

and

Dn(u) = C(1, . . . , 1, v), γ̃n(v) = υn(1, . . . , 1, v), γ̂ (k)n (u) = υ̂(k)n (1, . . . , 1, v),

we may conclude that as n→∞,(
αn, γn, α̂

(1)
n , γ̂

(1)
n , . . . , α̂(N)n , γ̂ (N)n

)
 
(
α, γ , α̃(1), γ̃ (1), . . . , α̃(N), γ̃ (N)

)
in D([0, 1]d)⊗2(N+1), where

(
α̃(1), γ̃ (1)

)
, . . . ,

(
α̃(N), γ̃ (N)

)
are independent copies of (α, γ ), where for any u, v ∈ [0, 1]d,

α(u) = υ(u, 1, . . . , 1) is a C-Brownian bridge and γ (v) = υ(1, . . . , 1, v) is a D-Brownian bridge.
Next, since the conditions of Proposition A.2 of the previous section are met, we obtain that for any l ∈ {1, . . . , d}, ∂̂ulCn,h

and ∂̂ulDn,h converge uniformly in probability to ∂ulC and ∂ulD.
Hence, defining En = Cn − Dn and Ê

(k)
n = Ĉ(k)n,h − D̂(k)n,h, it follows that(

En, Ê
(1)
n , . . . , Ê

(N)
n

)
 (E, Ẽ (1), . . . , Ẽ (N)) inD

(
[0, 1]d

)⊗(N+1)
,

where Ẽ (1), . . . , Ẽ (N) are independent copies of E . Since the mapping g 7→
∫
[0,1]d g

2(u)du is continuous, whenever g is
continuous on [0, 1]d, it follows that(

S(0)n , Ŝ
(1)
n , . . . , Ŝ

(N)
n

)
 
(
S, S̃(1), . . . , S̃(N)

)
in [0,∞)⊗(N+1),

where S̃(1), . . . , S̃(N) are independent copies of S =
∫
[0,1]d E2(u)du. An approximate p-value for Sn is then given by

1
N

∑N
k=1 I

(
Ŝ(k)n > Sn

)
. �
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