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a b s t r a c t

This work proposes to generalize the method of kriging when data are spatially sampled
curves. A spatial functional linear model is constructed including spatial dependencies
between curves. Under some regularity conditions of the curves, an ordinary kriging
system is established in the infinite dimensional case. From a practical point-of-view, the
decomposition of the curves into a functional basis boils down the problem of kriging
in infinite dimension to a standard cokriging on basis coefficients. The methodological
developments are illustrated with temperature profiles sampled with dives of elephant
seals in the Antarctic Ocean. The projection of sampled profiles into a Legendre polynomial
basis is performed with a regularization procedure based on spline smoothing which uses
the variance of the sampling devices in order to estimate coefficients by quadrature.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

One of the hottest challenges for Functional Data Analysis [1] is the development of statistical methods adapted for
spatially connected curves. Even if theoretical works are scarce in this area [2–4], many applications raise the need to
include spatial relations between functional variables into statistical analysis especially in environmental science [5]. In
oceanography, surveys provide vertical profiles of temperature, salinity or other variables that are spatially dependent and
sampled along the depth. The recent emergence of autonomous underwater vehicles (AUV) carrying a variety of sensors
allows a high-frequency sampling of the ocean [6]. If these AUVs are used to take vertical profiles of data, giving scientists
a clearer understanding of the temperature, salinity, and turbidity of specific areas of the oceans, they also provide great
amount of high-dimensional spatially correlated data. Most of the time, the analysis of such data involves geostatistical
methods in order to map the area, for instance [7]. At best, the vertical dimension is included as a third spatial dimension
and analysis is achievedwith standard kriging. However, the average depth of the ocean is small compared to the horizontal
dimensions. Yet, at the same scale, the vertical structures observed in the ocean (thermoclynes, salinity gradients) are much
more important than those observed horizontally. The 3D kriging is often problematic due to strong and complex anisotropy
and to non-stationarity along the vertical dimension. An alternative way is to discretize the curves and to modelize them
using multivariate geostatistics [8]. The latter approach also suffers from several drawbacks: vertical data are often not
available at the same depths, data analysis does not include the functional form of the variable along the profiles and
computation is rapidly limited when profiles are recorded on a fine grid.
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Thus, the aim of this work is to propose a method which extends the coregionalization approach taking into account the
functional nature of the data. We establish the problem of kriging in the infinite dimensional case under some regularity
conditions of the functions. It is shown that, in the framework of a functional linear model with spatial dependency, the
estimation of the regressor reduces to a multivariate cokriging problem for suitable choice of the functional space. The
method is illustrated with data analysis of temperature profiles in the Antarctic Ocean, where marine mammals are used
as samplers. Practical solutions are proposed in order to obtain a smoothed version of profiles whose shape includes the
knowledge of the variance of the measuring devices.

2. Spatial linear model for functional data

Let us consider a collection of curves E = {yi, i = 1, . . . , n} sampled at n random spatial locations xi over a domainD .
Each yi (t) is an unique observation of Yi (t), a random function at location xi where argument t varies in a compact interval
τ of R. The function Yi takes values in a Reproducing Kernel Hilbert Space (RKHS)H of functions on τ where 〈·, ·〉H denotes
its inner product and ‖·‖H the associated norm. Under second order stationarity assumptions, the mean function µ is the
same at any point of the domain and it is supposed to be unknown

E (Yi) = µ, ∀xi ∈ D.

Moreover, the linear covariance operator Cij : H → H between Yi at location xi and Yj at location xj = xi + h is defined as
follows

Cij(f ) = E[(Yi − µ)⊗ (Yj − µ)(f )] = E(〈f , Yi − µ〉H (Yj − µ)), f ∈ H .

This spatial covariance only depends on the vector h connecting the functional variable pair and is invariant for any
translation of that pair into the domain. The operator Cij is self-adjoint, positive, continuous and hence it is Hilbert–Schmidt
(HS) and hence compact.
Following the ideas developed in Cuevas et al. [9] and Cardot et al. [10], we seek to estimate Y0, the curve at unknown

location x0, with the linear model

Ŷ0 =
n∑
i=1

Bi(Yi), (1)

with Bi : H → H being linear operators given by

Bi (Yi) (t) = 〈βi (·, t) , Yi〉H , t ∈ τ . (2)

where the functions βi are unknown bivariate weighting functions. We suppose that the operators Bi belong to B(H) the
space of HS linear operators fromH toH equipped with the inner product

∀(A, B) ∈ B2(H), 〈A, B〉B =
∑
k,l

〈A(uk), ul〉H 〈B(uk), ul〉H

where the functions uk form an orthonormal basis ofH . In that case, the HS norm of Bi verifies ‖Bi‖2B =
∑
k,l〈Bi(uk), ul〉

2
H <

∞, i = 1, . . . , n.
Now, looking for an unbiased estimator Ŷ0 of Y0

E
(̂
Y0 − Y0

)
= 0

leads to the following condition[
n∑
i=1

Bi

]
(µ) = µ. (3)

As the mean function µ is unknown, the previous condition must be extended to the more general constraint[
n∑
i=1

Bi

]
(f ) = f , ∀f ∈ H .

This constraint involves the existence of an operator K which must satisfy

K (f ) = f , ∀f ∈ H

K ∈ B (H) .

The first property is connected to the properties of the RKHS H . Indeed, H possesses a reproducing kernel function κ
defined as

κ : τ × τ → R
(s, t) 7→ κ (s, t)
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which checks the following conditions

∀t ∈ τ κ (·, t) ∈ H

∀t ∈ τ ,∀f ∈ H 〈f , κ (., t)〉H = f (t) .
(4)

Thus, the operator K , deduced from the reproducing kernel function κ is a linear operator by properties of the inner
product onH . It belongs toB (H) only if ‖K‖2B <∞.
Therefore, the search for the unbiased estimator Ŷ0 must be performed by minimizing

E
∥∥Ŷ0 − Y0∥∥2H (5)

under the constraint
n∑
i=1

Bi = K .

Replacing condition (3) in (5) gives

E
∥∥Ŷ0 − Y0∥∥2H = E

∥∥Ŷ0 − µ− Y0 + µ∥∥2H
= E

∥∥∥∥∥ n∑
i=1

Bi (Yi − µ)− (Y0 − µ)

∥∥∥∥∥
2

H

.

Centering Yi gives Zi = Yi − µ and we obtain

E

∥∥∥∥∥ n∑
i=1

Bi (Zi)− Z0

∥∥∥∥∥
2

H

=

∑
i

∑
j

E
〈
Bi (Zi) , Bj

(
Zj
)〉

H
+ E 〈Z0, Z0〉H − 2

∑
i

E 〈Bi (Zi) , Z0〉H . (6)

Using the Kronecker product notation and reminding that
∀B ∈ B (H) ,∀ (f , g) ∈ H2, 〈B (f ) , g〉H = 〈B, f ⊗ g〉B

the expression (6) becomes

E
∥∥Ŷ0 − Y0∥∥2H =∑

i

∑
j

〈
Bi, Bj E

(
Zi ⊗ Zj

)〉
B
+ 〈K ,E (Z0 ⊗ Z0)〉B − 2

∑
i

〈Bi,E (Zi ⊗ Z0)〉B .

Since Cij = E
(
Zi ⊗ Zj

)
, we now seek for a solution

(̃
B1, . . . , B̃n

)′
of the optimization problem

min
(B1,...,Bn)′∈Bn(H)

∑
i

∑
j

〈
BjCij, Bi

〉
B
+ 〈K , C00〉B − 2

∑
i

〈Ci0, Bi〉B

under the constraint
n∑
i=1

Bi = K .

Following the Lagrange multipliers method, construct the function

F (B1, . . . , Bn,Λ) =
∑
i

∑
j

〈
BjCij, Bi

〉
B
+ 〈K , C00〉B − 2

∑
i

〈Ci0, Bi〉B + 2×

〈
Λ,
∑
i

Bi − K

〉
B

whereΛ ∈ B(H) is a Lagrange multiplier. The solution
(̃
B1, . . . , B̃n, Λ̃

)′
is given by differentiating F and makes its (n+ 1)

terms equal to zero. In that case, the following equalities hold

∥∥∥∥∥∑
j

BjCij +Λ− Ci0

∥∥∥∥∥
B

= 0, i = 1, . . . , n∥∥∥∥∥∑
i

Bi − K

∥∥∥∥∥
B

= 0.

We finally obtain the equivalent functional kriging system of n+ 1 equations:

n∑
j=1

BjCij +Λ = Ci0, i = 1, . . . , n

n∑
i=1

Bi = K .

(7)

This system can be solved if one can find an admissible estimator of the covariances Cij for which the properties of a
covariance operator hold.
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3. Cokriging on basis coefficients

A comfortable way to estimate the weighting operators Bi is to consider a basis expansion approach. We suppose in this
section thatH is a finite p-dimensional Hilbert space equipped with the inner product 〈·, ·〉H such that

∀ (f , g) ∈ H2, 〈f , g〉H =
∫
τ

f (t) g (t) dt.

Each function Yi can be expressed in terms of a linear combination of basis functions
(
φ1, . . . , φp

)
ofH

Yi (t) =
p∑
k=1

αk (xi) φk (t) = α′iΦ (t)

whereαi =
(
α1 (xi) , . . . , αp (xi)

)′ is the p- vector of coefficients at location xi andΦ (t) =
(
φ1 (t) , . . . , φp (t)

)′ the p-vector
of basis functions. The weighting functions βi (s, t) can also be expanded into the φ-basis such that

βi (s, t) =
p∑
k=1

p∑
l=1

biklφk (s) φl (t)

= Φ′ (s) BiΦ (t)

for each (s, t) belonging to τ × τ , where Bi is the p× pmatrix of coefficients bikl at location xi. Replacing these expressions
in (1) gives the equation of the spatial linear model:

Ŷ0 (t) =
n∑
i=1

α′iWBiΦ (t) = α̂′0Φ (t) . (8)

whereW is the matrix of the inner products

W =
∫
τ

Φ (t)Φ′ (t) dt.

It is always possible to impose

W = I

for suitable choice of orthonormal basis functions. Therefore, the reproducing kernel function κ (s, t) is defined as

κ (s, t) =
p∑
k=1

φk (s) φk (t)

and verifies conditions (4) because any finite dimensional Hilbert space of functions has a reproducing kernel for any set(
φ1, . . . , φp

)
defining an orthonormal basis inH [11].

The stationarity hypotheses of the random functions Yi expressed into an orthonormal φ-basis reduce to the classical
multivariate stationarity assumptions over the coefficients of the expansion{

E (αi) = a, ∀xi ∈ D

Cij = E
[
(αi − a)

(
αj − a

)′]
.

where the mean a is a p-vector of coefficients, Cij the p×p cross-covariance matrix with entries cov
(
αk (xi) , αl

(
xj
))
, k, l =

1, . . . , p. The estimation of Ŷ0 in (8) is achieved through cokriging on coefficients

α̂0 =

n∑
i=1

B′iαi (9)

where the p× pmatrices Bi, with entries
{
bikl
}
, are weighting matrices which minimizes

trace (var (̂α0 − α0)) . (10)

The condition of unbiasedness given by

E (̂α0 − α0) = 0

is satisfied by choosing weights that fulfill the constraints
n∑
i=1

bikl = δkl =
{
1 if k = l
0 otherwise
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which can be expressed in matrix form as
∑n
i=1 Bi = I. Note that the matrix form of the kernel operator K reduces to the

identity matrix, in that case.
The constrained optimization of (10) provides solution

(̃
B1, . . . , B̃n, Λ̃

)′
solving the linear system (7) which now reads

C11 · · · Cn1 I
...

. . .
...

...
C1n · · · Cnn I
I · · · I 0



B1
...
Bn
Λ

 =

C01
...

C0n
I

 (11)

whereΛ is a p× pmatrix of Lagrange multipliers with entries λkl. This matrix equation is equivalent to a standard ordinary
cokriging system on the basis coefficients. This system is written in the isotopic case i. e.when all the variables are available
at all sampling points. It represents the discrete form of the functional kriging system (7). Once the solution

(̃
B1, . . . , B̃n, Λ̃

)′
has been computed, any function Y0 is reconstructed with Ŷ0 (t) =

∑n
i=1 α′iBiΦ (t).

4. Choice of the basis

We propose an approach that uses a regularization step provided by a spline smoothing in order to obtain the
decomposition of curves into an orthonormal polynomial basis. Consider a function expressed in term of linear combination
of known polynomial basis functions φ1, . . . , φq

y (t) =
q∑
k=1

αkφk (t) .

If the basis functions are orthonormal, the coefficients are computed in the following way

αk = 〈y, φk〉H =
∫
τ

y (t) φk (t) dt, k = 1, . . . , q. (12)

The determination of each polynomial coefficient involves the integral (12) to be computedwhich can easily be achieved
by quadrature rule. The simplest kind of quadrature rule is given by∫

τ

y (t) φk (t) dt =
p∑
j=1

w
(̃
tj
)
y
(̃
tj
)
φk
(̃
tj
)
+ Rp (y) .

The inner product inH is approximated by a finite sum involving p values of y and φk at suitably distinct nodes t̃1, . . . , t̃p,
called quadrature points for known weight function w(t). The formula above is said to have degree of exactness d if the
remainder Rp (y) = 0 for y ∈ Pd, the set of polynomials of degree d. In the case above, the quadrature rule is interpolatory
if d = q− 1 [12].
The situation is different with sampled curves since the function y can be evaluated only at location where sampling

occurred. The quadrature approach cannot be performed in that case. Actually, each profile y arrives as a vector of m noisy
sampled points y = (y (t1) , . . . , y (tm))′ on a mesh varying from one curve to another one. A profile y can be considered
such that

y (t) = g (t)+ ε (t) , t ∈ τ

where g is a smooth function and ε (t) is a random process such that E [ε (t)] = 0 and E [ε (t) ε (s)] = σ 2 for s = t , = 0,
otherwise. It is desired to reconstruct the function g using the sampled vector y. Using smoothing cubic splines, one wants
to find gm,θ to be the minimizer of the penalized sum of squares:

1
m

m∑
j=1

(
f
(
tj
)
− y

(
tj
))2
+ θ

∫
τ

(
f ′′ (u)

)2 du
where the parameter θ controls the tradeoff between the smoothness of the solution as measured by

∫
τ

(
f ′′ (u)

)2 du and the
empirical mean square error to the data computed by 1m

∑m
j=1

(
f
(
tj
)
− y

(
tj
))2.

The smoothing parameter θ is commonly estimated by cross-validation. However, a good value of θ can be found if the
variance σ 2 is known, whichmay be regarded as the known variance of themeasuring instruments. In that case, Craven and
Wahba [13] proposed an unbiased estimator of the true mean square error

R (θ) =
1
m

m∑
j=1

(
gm,θ

(
tj
)
− g

(
tj
))2
.
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Fig. 1. Example of temperature profiles sampled by elephant seal and spatial location of sampled curves along trajectory (white circles). The cruise duration
is 1 month. During the travel, the animal crosses and samples heterogeneous water structures.

As gm,θ is a linear function of y, define A (θ) them×mmatrix satisfying

gm,θ = A (θ) y

where gm,θ =
(
gm,θ (t1) , . . . , gm,θ (tm)

)′. Then, an unbiased estimate of E [R (θ)] is given by R̂ (θ) defined by
R̂ (θ) =

1
m
‖(I− A (θ)) y‖2 −

σ 2

m
trace

[
(I− A (θ))2

]
+
σ 2

m
trace

(
A2 (θ)

)
where ‖·‖ denotes the usual Euclidean norm. Therefore, a relevant choice of θ is the minimizer of R̂ (θ)which can easily be
computed [13].
We now dispose of an estimate gm,θ , a smoothed version of y whose shape no longer depends on the variability of the

measuring devices. As this curve can be valued at any t ∈ τ , the coefficients associated to the projection of the spline into
the polynomial basis are computed as

αk =

p∑
j=1

w
(̃
tj
)
gm,θ

(̃
tj
)
φk
(̃
tj
)
+ Rp

(
gm,θ

)
.

As the number p of coefficients increases, the remainder Rp
(
gm,θ

)
tends to zero. The spline being a smooth curve, it is

expected that the number of coefficients p necessary to match the entire variations of the curves is fairly small. Moreover,
one can even use more quadrature points than data values (p > m) and still achieve a good polynomial fit. The choice of the
number of coefficients p depends on the shape of the curves that form the sample at hand and will be discussed in the next
section.

5. Dealing with real data

The above method is illustrated with data in oceanography where marine mammals operate as samplers. As a matter of
fact, the southern Antarctic ocean is probably one of the least accessible areas on Earth. This place plays a key role in heat
exchanges between the ocean and the atmosphere and very little oceanographic data is available. Since the 90’s, scientists
have been interested in the possibility to explore unknown parts of Antarctic ocean using elephant seals equipped with
Argos transmitters including pressure, temperature and salinity sensors. The elephant seal becomes a valuable auxiliary
for operational oceanography and enables scientists to study the hydrology of the southern ocean and the animal behavior
[14,15].
Fig. 1 displays temperature profiles sampled in Antarctic ocean by an elephant seal traveling from the Kerguelen Islands

to the Antarctic continental shelf. During one month, 438 temperature profiles are recorded each time the elephant seal
dives at different discrete locations in space and depth. A fast examination of the left panel shows some peculiarities from
this dataset. A profile yi is recorded in the form of a discrete set ofmi points

{
yi (t1) , . . . , yi

(
tmi
)}
. Comparing two profiles,

the sampling points are located at different depths. Because of limited data storage, the sampling device is optimized to
record a temperature value only in case of strong variations. Thus, a temperature curve is sampled well in areas where the
local curvature is high, and few data points are available when the water column temperature is homogeneous. Moreover,
each profile does not reach the same depth. The elephant seal does not dive each time to the same level and the sampling
strategy is strongly dependent of its eating behavior. For this reasons, we limit the study of the temperature field between
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Fig. 2. Boxplot of the polynomial coefficients estimated with the 438 spline profiles. As the polynomial degree increases, the variability between
coefficients decreases. The right panel shows a sample of smoothing splines and the associated polynomials. All curves are superimposed taking p = 11
polynomial coefficients. In the worst case, polynomials slightly oscillate at both ends of the spline.

0 m to the isobath of 600 m since this area contains the main part of the sampling points. In that case, each sampled profile
is constituted of at least 10 temperature values. As is usual in oceanography, we also consider that the variations in water
temperature structures are negligible during the traveling period.

5.1. Construction of the curves

The construction of the set E of functions reduces to the estimation of the polynomial coefficients of each function. The
choice of the number of basis functions is fixed as follows:
(1) Evaluate cubic splines for each sampled profile, ranging on different depth, and get the collection of smooth curves{
gm1,θ1 , . . . , gmn,θn

}
taking into account the known variability of the sampling devices. This variability value is the same for

all profiles and it is provided by the manufacturer of the sampling device (here σ 2 = 0.01).
(2) Fix a tolerance error Rtol which corresponds to an arbitrary small value of the maximum accepted error between the

spline curve and the fitted polynomial (here Rtol=1e− 08).
(3) Compute by quadrature the polynomial degree and the coefficients for the whole set of sampled functions over a

common support τ by successively increasing the number p of basis coefficients until Rp
(
gmi,θi

)
≤ Rtol,∀i = 1, . . . , n.

(4) Store the n sets of p coefficients to form the sample E = {αi, i = 1, . . . , n} of coefficient vectors.
We choose to express each function into an orthonormal Legendre polynomial basis but other choices may be relevant

as well. This choice has been guided by the simplicity of the weighting function (w (t) = 1, ∀t ∈ [−1, 1]) and because
the quadrature points and weights are easily obtained by a simple recurrence relation [12]. With p = 11 coefficients,
polynomials are almost superimposed with splines (Fig. 2). Now, estimation of a functional profile may be achieved at any
location x0 along the trajectory, using the kriging estimator in (9).

5.2. Covariance estimation

The linear system (11) possesses a solution if the left matrices of covariances and cross-covariances can be estimated and
inverted. As we only dispose of a unique spatial sample of functions {y1, . . . , yn}, the estimation of the covariance structures
is realized through the fit of a linear coregionalization model for which the general statistical framework is the following.
Each function yi at position xi can be seen as a p-vector αi of coefficients. We assume that these vectors αi, i = 1, . . . , n are
realizations of a multivariate random field α (x) =

(
α1 (x) , . . . , αp (x)

)′ of p components, where x ∈ D . The quantity α (x)
denotes the p values of the components of the random function Y at spatial position x. The linear model of coregionalization
supposes that the matrix C (h) of cross-covariances with entries cov (αk (x) , αl (x + h)) , k, l = 1, . . . , p is proportional to
a small number s of real correlation functions ρu (h) such that

C (h) =
s∑
u=1

Puρu (h)

where Pu are positive semi-definite coregionalization matrices. In practice, the estimation of the matrices Pu is carried out
throughweighted least squares fitting of variogrammodels to experimental data [7,8]. In this study, we used two covariance
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Fig. 3. Example of least squares fitting of a multivariate nested variogram model on the 2 first polynomial coefficients and associated estimated
temperature profiles. The covariance structure is decomposed on two scales (20 km and 100 km) which provides an obtainable model for estimating
the profiles at any locations of the sampled domain (spatial position in km). Bold curves are original polynomial profiles. Thin curves show the predicted
curves with cokriging along a linear part of the trajectory of the elephant seal.

structures arising from the same variogram function γ (h) of very common use (spherical model), whose equation is

γ (h) =


3 |h|
2r
−
1
2

(
|h|
r

)3
for |h| ≤ r

1 for |h| ≥ r

The range r of eachmodel has been fixed by the practitioner (here 20 kmand100 km) so as to provide themost graphically
satisfactory fit. The choice of the model and the number of basis structures have been chosen as discussed in [8]. For the
sake of simplicity, we chose to display only curves obtained by kriging along a linear part of the animal trajectory (between
lat. 55 S and lat. 60 S), but the entire dataset has been used to fit the covariograms. The coregionalization approach with
two different scales provides an acceptable estimation of the field of temperature profiles ranging from 0 to 600 m (Fig. 3).

6. Discussion

The early ideas of kriging for functional data were first developed in Goulard and Voltz [2]. In the framework of
interpolating curves, these authors define and study the properties of two linear unbiased predictors

Ŷ0 (t) =
n∑
i=1

βi (t) Yi (t) ,

where βi (t) is either a constant function at position xi or a real function. The work of Delicado et al. [4] also provides a
comparison between both these estimators in the context of the study of periodic functions. The authors propose a useful
matrix framework for functional kriging.
In the present work, the problem of kriging curves has been considered in its broadest form considering the estimator

Ŷ0 (t) =
n∑
i=1

〈βi (·, t) , Yi〉H
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whose integral form will depend on the choice of the RKHS and its associated scalar product. In the finite dimensional case
proposed here, the estimator reduces to

Ŷ0 (t) =
n∑
i=1

∫
τ

βi (s, t) Yi (s) ds.

The estimation of the weighting functions βi(·, ·) revolves around three main steps: (i) the (not obvious) choice of the space
H that spans the sampled functions, (ii) the choice of a polynomial basis estimated by quadrature and (iii) the covariance
estimations by coregionalization.
Under stationarity assumptions, if the mean functionµ is known (or well estimated), the spatial linear functional model

can be extended to the spaceL2 (τ ) of square-integrable functions over τ : the problem of simple kriging is fixed. However,
looking at themore general casewhere themean function is unknown (ordinary kriging), some constraintsmust be imposed
for the estimator Ŷ0 to be unbiased. These constraints have been integrated into themodel by a reproducing kernel approach
which implies stronger regularity conditions on the functions than those of the elements of L2 (τ ). A Hilbert space of
functions owns a reproducing kernel only when the functions are sufficiently regular. The main idea developed here is
that the reproducing kernels allow one to introduce symmetric functions κ (·, ·)which behave like the identity operator but
which in addition belong to the same space when one argument has been fixed. In our case, the regularity assumption holds
since, at this scale, the ocean may be considered as a continuous medium where profiles of an environmental variable are
fairly smooth. In the L2 (τ ) case, the identity operator leaves any function unchanged but it is not an integral operator of
L2 (τ ). In that case, the unbiasedness condition reads

∑
i Bi = I . However, this condition cannot be fulfilled since a sum of

HS operators cannot be equal to the identity operator which is not HS.
Anyway, one could imagine the use of more refined RKHS spaces rather than a finite dimensional Hilbert space with a
standard scalar product. For instance, the spline formalism can be embedded into the RKHS theory as shown in [16,17].
This introduces the second point: why use a polynomial basis rather than a smoothing spline basis straightforwardly? The
choice of a finite dimensional Hilbert space with an orthonormal basis is justified by the fact that it allows one to find
a simple expression of the minimization problem (11) and that the functional kriging problem comes down to a standard
multivariate kriging on coefficients. Apart from this consideration, the use of a smoothing spline basis is bannedhere because
it is impossible to find a common basis between profiles that have not been sampled at the same depths. B-spline basis have
also proved their worth and could provide an interesting alternative. Their are currently the most usual way to deal with
basis in the field of Functional Data Analysis [1]. However, the choice of the number of nodes and their position is not an
easy task as discussed in [18,19]. An interesting way proposed by [20] with free-nodes splines should be explored further.
The coupled use of spline smoothing and polynomial estimation by quadrature is interesting because the number of
polynomial coefficients is not constrained by the number of sampling points which should not be the case with direct
polynomial regression. Indeed, a low number of sampled points per curve does not allow a reasonable polynomial fit if one
needs a high polynomial degree in order to describe complex shape variations. The estimation of polynomial coefficients
by quadrature provides a global parameterization of the curves while keeping the smoothness of their shape obtained by
the good local properties of spline smoothing. Moreover, the use of orthonormal polynomials is quite simple and describes
most of the shape variations of the curves with a fairly small number of coefficients whichmakes the fitting of covariograms
easier. Finally, the properties provided by the orthonormality of the basis functions avoid ill-posed problems since both
metric and reproducing kernel reduce to the identity.
Another procedure that might be investigated using polynomials and quadrature is the possibility to bypass the calculus
of coefficients before kriging. Once the spline smoothing has been done, it is easy to choose an arbitrary number p
of quadrature points

(̃
t1, . . . , t̃p

)
and to execute standard 3D-kriging straightforwardly on the set of spline vectors(

gmi,θi
(̃
t1
)
, . . . , gmi,θi

(̃
tp
))′
, i = 1, . . . , n. This procedure is equivalent to the one proposed by the basis approach if care

is taken to weight each level
(̃
t1, . . . , t̃p

)
by the function w (t) whose values depend on the selected quadrature scheme. A

similar procedure has been proposed in [1] in the context of functional PCA.
The last point concerns the estimation of covariance structures by a coregionalization approach which is the most

comfortableway to provide an obtainablemodel for spatial covariance.We first assume that all coefficients of the functional
variable are generated by a same set of processes that act at different spatial scales. This implies that the shape of the
covariance functions of the coregionalization matrix only depends of a small number of elementary structures weighted
with specific coefficients, which is a fairly strong hypothesis. The choice of the basis structures is open for the practitioner
and is included within the range of positive semi-definite models more often met in the literature. However, this choice
remains a difficult task, under stationarity assumptions, as shown by fitted variograms on Fig. 3 and must be improved
further.
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