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a b s t r a c t

The aim of this paper is to provide a graphical representation of the dynamic relations
among the marginal processes of a first order multivariate Markov chain. We show how
to read Granger-noncausal and contemporaneous independence relations off a particular
type of mixed graph, when directed and bi-directed edges are missing. Insights are
also provided into the Markov properties with respect to a graph that are retained
under marginalization of a multivariate chain. Multivariate logistic models for transition
probabilities are associated with the mixed graphs encoding the relevant independencies.
Finally, an application on real data illustrates the methodology.
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1. Introduction

The identification of the existence of proper dynamic relations among variables, simultaneously observed over time, is a
revealing task in many areas.

Basically, two types of dependence relations in multivariate time series models are relevant: the dependence of the
present of a subset of variables on the past of all the variables, and the contemporaneous association among variables at any
time point that cannot be ruled out by conditioning on the past.

In this paper, we address the use of graphical models for the analysis of the dynamic relations among the marginal
processes of a time-homogeneous first order multivariate Markov chain. We employ a mixed graph, whose nodes represent
the univariate marginal processes of the Markov chain and whose directed and bi-directed edges describe the dependence
structure among them. The approach adopted here enables us to interpret the lack of directed edges as Granger-noncausal
relationships while the missing bi-directed edges are used to visualize the contemporaneous independence relations
between the marginal processes of the chain. The transition probabilities of the multivariate Markov chain are required
to obey the set of Markov properties implied by such a graph and a multivariate logistic parameterization for the
transition probabilities that satisfy theseMarkov properties is provided.We also present the conditions that ensure Granger
noncausality, contemporaneous independence and Markovian features to be preserved by the marginal processes of a
multivariate chain.

A similar graphical approach was used by Eichler [12,15] to describe the dynamic structure of multivariate time series
with autoregressive representation, while we basically restrict ourselves to the case of multivariate Markov chain models.
We believe that graphical models for multivariate Markov chains are worth examination for different reasons: first because
Markov chainmodels are basic tools inmodeling categoricalmultidimensional time series;moreover, under the assumption
ofMarkovianity, Granger noncausal and contemporaneous independence relationships are remarkably simplified and satisfy
relevant properties; and, finally, providing a suitable parameterization of the transition probabilitieswhichmeet theMarkov
properties of noncausal and contemporaneous independence is a nontrivial task and useful in applications.
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The paper is organized as follows. In Section 2, we introduce some basic notation concerningmultivariateMarkov chains,
while the key definitions of Granger noncausality and contemporaneous independence are set out in Section 3.

In Section 4, the features ofmixed graphs are described; how they can beused to represent independence relations among
the components of a multivariate Markov chain is shown and the definition of multivariate Markov chains, satisfying the
conditions of Granger noncausality and contemporaneous independencewith respect to amixed graph is given. In Section 5,
we point out some results on causal and contemporaneous independence properties in the framework of Markov chains.
Section 6 provides a parameterization for the transition probabilities thatmeet the independencies described in Section 4. In
Section 7, we discuss when a marginal process of a multivariate Markov chain is Markov with respect to a mixed subgraph.
Different approaches through which certain alternative conditional independencies can be read off the graph are briefly
described in Section 8. Finally, an example on real data concludes the work and the Appendix contains technical proofs.

A notation used throughout this paper is that of conditional independence [9], that is, wewrite XyY |W when the random
variables X and Y are independent once the value of a third variableW is given.Wemention two basic properties [24] of the
conditional independence relationwhichwill be used in later proofs: contraction and intersection properties. The contraction
property states that XyZ |W and XyY |ZW are equivalent to XyYZ |W . Under the assumption of a strictly positive probability
function, the intersection property asserts that XyY |ZW and XyZ |YW hold if and only if XyYZ |W is valid.

Most of the later results are proved by applying the intersection property under the strong restriction of strictly positive
transition probabilities even if such property holds under more general conditions [30] as well. However, our restrictive
choice is convenient for simplifying the proofs and it is essential to use the parameterization introduced in Section 6.

2. Basic notation for multivariate Markov chains

Given a set of integers V = {1, . . . , q}, let AV = {AV(t) : t ∈ N} = {Aj(t) : t ∈ N, j ∈ V} be a time-homogeneous first
order multivariate Markov chain (MMC), in a discrete time interval N = {0, 1, 2, . . .}.

For all t ∈ N, AV(t) = {Aj(t) : j ∈ V} is a discrete random vector with each element Aj(t) taking on values in a finite set
Aj = {aj1, . . . , ajsj}, j ∈ V .

For every S ⊂ V , a marginal process of the chain is represented by AS = {AS(t) : t ∈ N} where AS(t) = {Aj(t) : j ∈ S}.
When S = { j}, the univariate marginal process is indicated as Aj, j ∈ V .

In order to simplify the notation, the history up to time t − 1 of the MMC is denoted by AV(t − 1) = {AV(r) : r ≤ t − 1}.
The first order multivariate Markov chain property

AV(t)yAV(t − 2)|AV(t − 1), t ∈ N \ {0, 1} (1)

asserts that AV(t) is conditionally independent of the remote past AV(t − 2) = {AV(r) : r ≤ t − 2}, given the knowledge of
the most recent past AV(t − 1).

3. Granger noncausality and contemporaneous independence

A deeper understanding of the joint behavior of the component processes of an MMC requires investigation of both the
effect of the past of one marginal process on the present of another and the relation among marginal processes at the same
time, given the past of the chain.

Motivated by these considerations,we present the definitions of Granger noncausality, Granger [20], (alsoG-noncausality
hereafter), and contemporaneous independence which play a central role in our work.

Definition 1 (Granger Noncausality).Given two disjointmarginal processesAT andAS of a time seriesAV,AT is not Granger
caused by AS with respect to AV if and only if the following condition holds for every t ∈ N \ {0}

AT (t)yAS(t − 1)|AV\S(t − 1). (2)

This condition states that the past of AS does not contain additional information on the present of AT , given the past of
the marginal process AV\S .

The above definition of Granger noncausality in terms of conditional independence is due to Chamberlain [6]. An in-
depth discussion of the Granger causality in the context of time series has been proposed by Eichler [13], who addressed
the problem of distinguishing direct causal relationships from spurious causalities due to the presence of latent variables.
Furthermore, the concept of G-noncausality in a Markov chain framework has been discussed in the econometric literature
by Bouissou et al. [3], Chamberlain [6], Florens et al. [17] and Gouriéroux et al. [19]. For the special case of bivariate binary
Markov chains, Mosconi and Seri [27] dealt with causality by allowing the transition probabilities to depend on covariates.

Definition 2 (Contemporaneous Independence). Two disjoint marginal processes AT and AS of a time series AV are
contemporaneously independent with respect to AV if and only if the following restriction holds for every t ∈ N \ {0}

AT (t)yAS(t)|AV(t − 1). (3)

In other words, this definition means that two marginal processes are independent at each time point, given all available
past information.
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Statements (2) and (3) refer to a generalmultivariate time seriesAV , our aim, however, is to investigateGranger noncausal
relations and contemporaneous independencies among marginal processes of a first order multivariate Markov chain.

As we shall discuss in-depth in Section 5, the Markovian assumption simplifies independence restrictions (2) and (3) by
reducing the conditioning set to the information at time t − 1.

A convenient way for dealing with such dynamic relations is to represent themwith a graph whose nodes correspond to
the univariate marginal processes of the MMC and the edges describe the dependence structure.

In the central part of this work, we will discuss the noncausality and contemporaneous independence restrictions
encodedby a particular kind of graph, and a suitable parameterization for the associatedmodels that assess those restrictions
on the transition probabilities of the MMC.

4. Mixed graphs

4.1. Basic concepts of mixed graphs

A graph G is defined by a pair (V, E), where V is the node set and E is the set of edges, connecting pairs of nodes.
Graphical Markov models associate missing edges of a graph with some conditional independence restrictions imposed

on a multivariate probability distribution. The rules for reading such conditional independence relations off the graph are
known as Markov properties.

Key references for the extensive literature on graphical models are Whittaker [31], Edwards [11], Cox and Wermuth [8]
and Lauritzen [24].

The basic problem here lies in finding a graph that represents the G-noncausal and contemporaneous independence
relations among the component processes of an MMC.

This is achieved by a particular graphical structure allowing different types of edges, called mixed graph. We use the
term mixed graph in keeping with the usual terminology of the literature on graphical models. Other mixed graphs
featuring different Markov properties are discussed by many authors, i.e. Andersson et al. [1], Cox and Wermuth [8] and
Richardson [29], among others. Mixed graphs have been proposed by Eichler [12] in the context of multivariate time series.
As in [12], in the mixed graph G = (V, E) considered here, there exists a one-to-one correspondence between the nodes
j ∈ V and the univariate marginal processes Aj, j ∈ V , of the MMC AV .

A pair of nodes i, k ∈ V of the considered mixed graph may be joined by the directed edges i → k, i ← k, and by the
bi-directed edge i↔ k.

Each pair of distinct nodes i, k ∈ V can be connected by up to all the three types of edges. For each single node i ∈ V , the
bi-directed edge i↔ i is implicitly introduced and the directed edge i→ i may or may not be present. The introduction of
the edges i↔ i is a matter of convenience and simplifies the next definition of district of a node. The fact that the self-loop
i→ i may be inserted or not will allow us to take into account the conditional independencies (7) discussed in Section 4.3.
In all the examples throughout the paper, these edges will be assumed implicitly inserted even if they are not shown in the
graphs.

In the next section, we shall clarify how to interpret the lack of each type of edge by means of the Markov properties
associated with the mixed graph.

We now briefly review basic graphical concepts applied to mixed graphs which are needed later in the paper.
If i → k ∈ E , then i is a parent of k and k is a child of i. The sets pa(i) = { j ∈ V : j → i ∈ E} and ch(i) =

{ j ∈ V : i → j ∈ E} are the sets of parents and children of i, i ∈ V , respectively. When i ↔ k ∈ E the nodes i, k are
spouses. The set of spouses of i is denoted by sp(i) = { j ∈ V : i↔ j ∈ E}. Note that i is a spouse of itself (i ∈ sp(i)) as i↔ i
is always implicitly present.

A path τ is a sequence of edges ei, ei ∈ E, i = 1, . . . , r between the nodes ji−1, ji, of an ordered set { j0, j1, . . . , jr} of not
necessarily distinct nodes of V . The endpoint nodes j0, jr must be distinct. A path of only bi-directed edges is a bi-directed
path.

The district of i, say dis(i), is the set of nodes connected to i by a bi-directed path, i.e. dis(i) = { j ∈ V : j↔ . . .↔ i}.
Let S ⊂ V be a non-empty subset of nodes, pa(S) =


i∈S pa(i), ch(S) =


i∈S ch(i), and sp(S) =


i∈S sp(i) are the

collection of parents, children and spouses of nodes in S.
A set S ⊆ V is an ancestral set if pa(S) ⊆ S. For any subset S ⊆ V, an(S) indicates the smallest ancestral set

containing S.
Gb will denote the graph obtained from the mixed graph G by retaining the bi-directed edges and removing all directed

edges.
Given a mixed graph G = (V, E), the induced subgraph GM has the node set M ⊂ V and its edge set contains every

edge of E connecting nodes of M. A subset M of V is bi-connected if every pair of its nodes is linked by a bi-directed path
in GM and it is bi-complete if every pair of its nodes is linked by a bi-directed edge. The symbol B(G) will be used to denote
the family of bi-connected subsets of V . If M is bi-connected (bi-complete), GM is a bi-connected (bi-complete) subgraph
of G.

The symbols paM(S), spM(S), chM(S), disM(S) will refer to all parents, spouses, children, and the district of S in
GM, S ⊂M ⊂ V . Finally, P (V) will denote the family of all non-empty subsets of the node set V .
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Fig. 1. In this graph, it holds that {1} ◃▹m{2}|{3} and {1} ◃▹m{2}|{3, 4} by Lemma 1.

4.2. The m-separation criterion

The Markov properties encoded by the mixed graph in this paper can be described in terms of the well-known notion of
m-separation [29,12]. In particular, the next Lemma 1 gives an equivalent formulation of the m-separation which most of
our results provided in Section 8 rely on.

We remind the reader that the edges s ↔ t or s → t have an arrowhead at t . Let G = (V, E) be a mixed graph and τ
a path in G with endpoints j1 and jr . An intermediate node ji, i = 2, . . . , r − 1, of τ is said to be an m-collider if the edges
ei, ei+1 belonging to E end with an arrowhead at ji, otherwise it is considered anm-noncollider. A path τ is anm-connecting
path, given a set of nodes C, if Cτ ∩ C = Cτ and C̄τ ∩ C = ∅, where the set Cτ contains them-colliders and C̄τ denotes the
set of them-noncolliders of τ . Two disjoint subsets of nodes S, T of V arem-separated, given a set C, commonly indicated
in short form S ◃▹m T |C, if there are nom-connecting paths, given C, with endpoints s ∈ S and t ∈ T . Hereafter, the prefix
m- will be omitted for the sake of simplicity.

The following lemma will play a central role in the proofs in Section 7.

Lemma 1. If S, T are disjoint subsets of nodes of the mixed graph G = (V, E), then S and T are m-separated, given C,
i.e. S ◃▹m T |C, if and only if there exist two disjoint subsets S′ and T ′ of V such that S ⊆ S′, T ⊆ T ′, M = S′ ∪ T ′ ∪ C =
an(S ∪ T ∪ C) and disM(S′ ∪ chM(S′)) ∩ disM(T ′ ∪ chM(T ′)) = ∅.

The proof follows from Proposition 2 by Koster [21], Lemma B.1 by Eichler [12] and its converse [14].

Example 1. Let S = {1}, T = {2} be two disjoint subsets of the node set of the mixed graph in Fig. 1. They are m-
separated, given different sets C. Choosing S′ = {1} and T ′ = {2, 4}, the set C = {3}, which contains the common parent
of the nodes in S and T , allows M = S′ ∪ T ′ ∪ C = {1, 2, 3, 4} to be ancestral. Moreover, since the intersection set
between disM(S′ ∪ chM(S′)) = {1, 3} and disM(T ′ ∪ chM(T ′)) = {2, 4} is empty, it holds that {1} ◃▹m{2}|{3} by Lemma 1.
Alternatively, if we consider S′ = S = {1} and T ′ = T = {2}, the set C that leads to the previous ancestral marginal set
M = S′ ∪ T ′ ∪ C = {1, 2, 3, 4} is C = {3, 4}, while disM(S′ ∪ chM(S′)) = {1, 3} and disM(T ′ ∪ chM(T ′)) = {2, 4} do not
change and have an empty intersection. In this case, however, it holds that {1} ◃▹m{2}|{3, 4}.

4.3. Markov properties of mixed graphs

Markov properties link sets of G-noncausality and contemporaneous independence restrictions with missing directed
and bi-directed edges of mixed graphs, respectively.

In particular, missing bi-directed edges lead to independencies concerningmarginal processes at the same point of time;
missing directed edges, instead, refer to independencies which involve marginal processes at two consecutive instants.

This is expressed formally in the definition below that supplies a key idea of our work.

Definition 3 (MMC is Markov w.r.t. a Graph). A multivariate Markov chain is Markov with respect to a mixed graph G if and
only if its transition probabilities satisfy the following conditional independencies for all t ∈ N \ {0}

AS(t)yAV\pa(S)(t − 1)|Apa(S)(t − 1) S ∈ P (V) (4)

AS(t)yAV\sp(S)(t)|AV(t − 1) S ∈ P (V). (5)

Condition (4) is equivalent, for all t ∈ N \ {0}, to the two statements

AS(t)yAV\pa(S)∪S(t − 1)|Apa(S)∪S(t − 1) S ∈ P (V) (6)

AS(t)yAS\pa(S)(t − 1)|Apa(S)(t − 1) S ∈ P (V). (7)

In the next section, we will see that conditions (4) and (5) are coherent with the general definitions of G-noncausality and
contemporaneous independence provided in Section 3, although they include only the variables observed at the preceding
time point in the conditioning set.
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1 2 3

Fig. 2. The graph encodes the independence relations A{1,2} = A3; A1 9 A3; A{1,3} 9 A2; A3 9 A1; A1 9 A{2,3}; A3 9 A{1,2} .

For all S′ ∈ P (V), where S′ ∩ (pa(S) ∪ S) = ∅, (6) implies AS(t)yAS′(t − 1)|AV\S′(t − 1) which means that the most
recent past of AS′ is irrelevant for predicting AS once the most recent past of AV\S′ is known. In this case, it is usual to say
that AS′ does not G-cause AS with respect to AV . Thus, pa(S) identifies the maximal marginal process AV\pa(S)∪S which does
not G-cause AS with respect to AV .

Whenever S \ pa(S) ≠ ∅, which implies that a number of self-loops i→ i (i ∈ S) are missing, statement (7) concerns
the case of variables at the current time-point which are not affected by their immediate past.

Henceforth, we will refer to (4) with the term Granger noncausality condition for MMCs saying that AS is not G-caused
by AV\pa(S) with respect to AV , and use the shorthand notation AV\pa(S) 9 AS .

On the other hand, condition (5) is a restriction on marginal transition probabilities because it does not involve the
marginal processes Aj : j ∈ sp(S)\S, at time t and, more precisely, it states that the transition probabilities must satisfy the
bi-directed Markov property [29] with respect to the graph obtained by removing the directed edges from G. Here, we will
refer to (5) with the term contemporaneous independence condition for MMCs using a shorthand notation AS = AV\sp(S), and
say that AS and AV\sp(S) are contemporaneously independent with respect to AV .

From the above definition it follows that, if an MMC is Markov with respect to a mixed graph G, the lack in G of a directed
edge from node i to k, (i, k ∈ V), implies the independence of the present of the univariate marginal process Ak from the
immediate past of Ai given the most recent past of AV\{i}, that is, for all t ∈ N \ {0}

i→ k ∉ E H⇒ Ak(t)yAi(t − 1)|AV\{i}(t − 1). (8)

From Definition 3, moreover, if an MMC is Markov with respect to a mixed graph G, a missing bi-directed edge between i
and k implies that the corresponding marginal processes are contemporaneously independent, given the recent past of the
MMC, that is, for all t ∈ N \ {0}

i↔ k ∉ E H⇒ Ai(t)yAk(t)|AV(t − 1). (9)

The conditional independencies (8) and (9) are interpretable in terms of pairwise Granger noncausality and
contemporaneous independence conditions, respectively. Themore general noncausal and contemporaneous independence
statements of Definition 3 are needed because the pairwise restrictions, associated with missing edges, are not, in general,
sufficiently strong for the encoding of all the Granger noncausal relations and contemporaneous independence properties
among the components of anMMC. This follows from the fact that the composition property [12] does not hold in the context
of multivariate Markov chains. For example, the condition

AS(t)yAi(t − 1)|AV\{i}(t − 1), t ∈ N \ {0}

is not equivalent to

Ak(t)yAi(t − 1)|AV\{i}(t − 1), t ∈ N \ {0}, k ∈ S,

which means that the G-noncausality for the joint process AS is not equivalent to the G-noncausality for all the univariate
processes Ak, k ∈ S.

Note that in [12, Lemma 2.3] concerning stationary Gaussian processes the composition property holds and the
implications in (8) and (9) can be replaced by equivalences (see also the comments in Section 5 of Eichler [15]).

Example 2. The graph in Fig. 2 displays the contemporaneous independence relation A{1,2} = A3 and the G-noncausal
restrictions: A1 9 A3; A{1,3} 9 A2; A3 9 A1; A1 9 A{2,3}; A3 9 A{1,2}. Besides, the pairwise G-noncausality conditions
associated to themissing directed edges in the graph are:A1 9 A2;A1 9 A3;A3 9 A1;A3 9 A2. If we consider, for example,
that relations A3 9 A1; A3 9 A2 are not equivalent to A3 9 A{1,2}, it immediately becomes evident that the pairwise
conditions do not imply the more general causal restriction (4). Similarly, the pairwise contemporaneous independence
conditions A1 = A3,A2 = A3 do not imply A{1,2} = A3 given by (5).

The previous example helps us to clarify that an MMC can exhibit more independencies than those encoded by a single
mixed graph and that anMMC can beMarkovwith respect tomore than onemixed graph. In fact, if the pairwise G-noncausal
relationships A3 9 A1,A3 9 A2 hold but A3 9 A{1,2} is not true, then the MMC is not Markov with respect to the graph
illustrated in Fig. 2, while it is Markov with respect to the graphs obtained by adding to Fig. 2 the edge 3 → 1 or 3 → 2.
Clearly, these graphs do not encode all the independencies satisfied by the MMC. This simply happens since the pairwise
conditions (8), (9) and the conditions of Definition 3 are not equivalent.
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5. Main results on G-noncausality and contemporaneous independence in MMC

The lemma and the proposition of this section are useful to clarify why the Markov properties (4) and (5), associated
with a mixed graph, are to be considered as Granger noncausality and contemporaneous independence restrictions in the
context of multivariate Markov chains.

Lemma 2. Under the assumption (1) of first order MMC, the conditional independence statements (4) and (5) are equivalent to
the restrictions

AS(t)yAV\sp(S)(t), AV\pa(S)(t − 1), AV(t − 2)|Apa(S)(t − 1) t ∈ N \ {0, 1}, S ∈ P (V) (10)

AS(1)yAV\sp(S)(1), AV\pa(S)(0)|Apa(S)(0). (11)

Proof. According to the contraction property, conditions (4) and (5) may be equivalently expressed by

AS(t)yAV\sp(S)(t), AV\pa(S)(t − 1)|Apa(S)(t − 1) t ∈ N \ {0}, S ∈ P (V) (12)

which, for t = 1, gives (11). Moreover, from the Markovianity assumption (1), it is easy to deduce

AS(t)yAV(t − 2)|Apa(S)(t − 1), AV\pa(S)(t − 1), AV\sp(S)(t) t ∈ N \ {0, 1}, S ∈ P (V). (13)

The proof is now complete as the equivalence between (10) and (12, 13) follows for t ∈ N\{0, 1} by applying the contraction
property, and the converse immediately holds since (10, 11) imply both (4) and (5). �

It is important to observe that conditions (10, 11) imply the statements of G-noncausality and contemporaneous
independence which involve all the past history of the process

AS(t)yAV\pa(S)(t − 1)|Apa(S)(t − 1) t ∈ N \ {0}, S ∈ P (V), (14)

AS(t)yAV\sp(S)(t)|AV(t − 1) t ∈ N \ {0}, S ∈ P (V). (15)

The principal advantage of the Markov assumption on AV is that it allows conditions (14) and (15) to be equivalent
to restrictions (4) and (5) which involve only a finite set of conditioning variables. Proposition 1 will prove this general
equivalence.

Proposition 1. Under assumption (1) of first order Markovianity and the assumption of strictly positive transition probabilities,
conditions (4) and (5) are equivalent to (14) and (15).

Proof. The results of Lemma 1 entail that conditions (4) and (5) are sufficient to yield (14) and (15). To prove the converse
of the previous lemma, we need to recall that the restriction

AS(t)yAV(t − 2)|Apa(S)(t − 1), AV\pa(S)(t − 1), t ∈ N \ {0, 1}, S ∈ P (V) (16)

holds by the Markovianity assumption, whereas (14) implies

AS(t)yAV\pa(S)(t − 1)|Apa(S)(t − 1), AV(t − 2) t ∈ N \ {0, 1}, S ∈ P (V). (17)

Since the transition probabilities are strictly positive, the intersection property enables us to write (16) and (17) in an
equivalent expression

AS(t)yAV\pa(S)(t − 1), AV(t − 2)|Apa(S)(t − 1) t ∈ N \ {0, 1}, S ∈ P (V). (18)

If t > 1, the contraction property ensures that (15) and (18) are equivalent to (10), hence (4) and (5) hold. It also becomes
clear that, for t = 1, (4) and (5) are identical to (14) and (15), respectively. This completes the proof. �

Proposition 1 is related to Theorems 3.1bis and 3.2bis provided by Florens et al. [17], who thoroughly examined, in the
framework of Markov chains, the relations between the Granger causality conditions defined by conditioning either on all
the past history of the involved variables or on their immediate past only. Nevertheless, Proposition 1 differs from the results
by Florens et al., since it also considers conditions of contemporaneous independence and does not take into account the
marginal Markovianity of the noncaused process. This aspect will be further discussed in Propositions 3 and 4.

6. A multivariate logistic model for transition probabilities

We remind the reader that I = ×j∈V Aj is the joint state space. For a pair of states i ∈ I, i′ ∈ I, the time-homogeneous
joint transition probabilities are denoted by p(i|i′). Given a vector i = (i1, i2, . . . , iq)′ ∈ I, if M ⊂ V then iM denotes
the vector with components ij : j ∈ M. If iM∪N is a vector such that iM = hM, iN = kN , with disjoint sets M, N ,
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we also write iM∪N = (hM, kN ). For every marginal process Aj, the first aj1 (aj1 ∈ Aj) is called the baseline category.
Any state which includes categories aji ∈ Aj, for j ∉ S, S ⊂ V , at the baseline value is denoted by (iS, i∗V\S). Given
a state i′ ∈ I, for the transition probabilities p(i|i′), i ∈ I, we adopt a Glonek–McCullagh [18] multivariate logistic
model whose marginal interaction parameters are denoted by ηP(iP |i′), for every non empty subset P of V and for every
iP ∈ ×j∈P Aj. The Glonek–McCullagh baseline interactions ηP(iP |i′) are expressed as contrasts of logarithms of marginal
transition probabilities p(iP |i′) from the state i′ to one of the states in×j∈P Aj

ηP(iP |i′) =

K⊆P

(−1)|P\K| log p((iK , i∗P\K)|i′). (19)

Note that the Glonek–McCullagh interactions are not log-linear parameters because they are not contrasts of logarithms
of the joint transition probabilities p(i|i′).

In order to model the dependence of the transition probabilities on the conditioning states i′ ∈ I, we adopt the usual
factorial expansion of the Glonek–McCullagh marginal interactions

ηP(iP |i′) =

Q⊆V

θ P,Q (iP |i′Q ). (20)

The Möbius inversion theorem [24] ensures that

θ P,Q (iP |i′Q ) =

H⊆Q

(−1)|Q\H |ηP(iP |(i′H , i∗′V\H )). (21)

Eqs. (20) and (21) provide that the transition probabilities are parameterized by the interaction parameters θ P,Q (iP |i′Q ), P ⊆
V, P ≠ ∅,Q ⊆ V, iP ∈ ×j∈P Aj, i′Q ∈ ×j∈Q Aj.

The next proposition shows that (4) and (5) for anMMCbeingMarkovwith respect to a graph correspond to simple linear
constraints on the θ P,Q (iP |i′Q ) parameters and thus testing the hypotheses (4, 5) is a standard parametric problem.

Proposition 2. For an MMC with strictly positive time-homogeneous transition probabilities, it holds that: (i) the Granger
noncausality condition (4) is equivalent to θ P,Q (iP |i′Q ) = 0 for all Q ⊈ pa(P), iP ∈ ×j∈P Aj, i′Q ∈ ×j∈Q Aj, and (ii) the
contemporaneous independence condition (5) is equivalent to θ P,Q (iP |i′Q ) = 0 for all P ∉ B(G), iP ∈ ×j∈P Aj, i′Q ∈ ×j∈Q Aj.
Proof. Classical results on the logistic regression ensure equivalence (i), while a result due to Lupparelli et al. [25]
implies (ii). �

The expression (19) of the Glonek–McCullagh interactions in terms of baseline log-linear contrasts of marginal transition
probabilities is not necessarily the most convenient. When the interpretation of the non null parameters θ P,Q (iP |i′Q ), for all
Q ⊆ pa(P) and P ∈ B(G) is of interest and the Aj, j ∈ V , are ordered sets, more general types of Glonek–McCullagh
interactions can be used, as shown by Bartolucci et al. [2].

Similar to [2], it can be proved that the set of zero restrictions imposed on parameters θ P,Q (iP |i′Q ) can be written in the
form C ln(Mπ) = 0, where π is the vector of all the transition probabilities and C and M are matrices of known constants.
The procedures for the maximum likelihood estimation and hypothesis testing, developed by Lang [22] and Cazzaro and
Colombi [5] under the assumption of Poisson-multinomial sampling and constraints C ln(Mπ) = 0, can be easily adapted
to the MMC context. These procedures are implemented in the R functionMphfit [23] and in the R-package hmmm [4].

7. G-noncausality and contemporaneous independence in marginal processes of MMC

While the earlier sections deal explicitly with all processes which jointly compose an MMC, in this section, we focus
on the marginal processes of a multivariate Markov chain. The results illustrated here, that enhance our ability to read
independencies off a mixed graph, concern properties of Markovianity, contemporaneous independence and Granger
noncausality relations that are preserved after marginalization.

In general, it is not automatically the case that dynamic relations which characterize a process still hold for its marginal
subprocesses. For this, it is essential to invoke additional assumptions. More precisely, a marginal process of a multivariate
Markov chain is not necessarily a Markov chain. Nevertheless, the Granger noncausality relation gives some insight into the
Markovianity of a marginal process and this can be expressed formally in the proposition below.

Proposition 3. A marginal process AM of the multivariate Markov chain AV , with positive transition probabilities, is marginally
a Markov chain if it is not G-caused by AV\M , that is

AM(t)yAV\M(t − 1)|AM(t − 1), t ∈ N \ {0, 1}. (22)

This resultwas first obtained by Florens et al. [17, Theorem3.2bis] under theweaker condition ofmeasurable separability.
An alternative proof is in [7]. Note that under the stronger condition

AM(t)yAV\M(t − 1)|AM(t − 1), t ∈ N \ {0, 1}, (23)
the above proposition holds without the assumption of strict positivity on the transition probabilities or any other
assumption that assures the validity of the intersection property [17, Theorem 3.1bis].
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Fig. 3. (a) Mixed graph G; (b) subgraph GM of G induced by the ancestral set M = {1, 3}.

The previous proposition states that a marginal process AM retains the Markovian feature if an appropriate Granger
noncausality condition is satisfied, whereas the following proposition allows us to identify the mixed graph with respect to
which the marginal MMC AM is Markov.

Proposition 4. If the MMC AV is Markov with respect to a mixed graph G and if the subset of nodes M, M ⊂ V , is ancestral,
then AM is a multivariate Markov chain which is Markov with respect to the mixed subgraph GM induced by M.

Proof. See Appendix. �

Example 3. In the mixed graph G of Fig. 3(a), the set of nodes M = {1, 3} is ancestral. Hence, according to Proposition 4,
the marginal process A{1,3} is a bivariate MC which is Markov with respect to the subgraph GM , in Fig. 3(b) induced by
M = {1, 3}, as A{1,2,3} is Markov with respect to G. Note that the Markov properties of the bivariate process are proved
directly by the following simple considerations that illustrate how Proposition 4 works. Since the MC A{1,2,3} is Markov
with respect to the initial graph (a), the G-noncausality property A{1,3}(t)yA2(t − 1)|A{1,3}(t − 1) and the contemporaneous
independence A1(t)yA3(t)|A{1,3}(t − 1) hold. This last statement together with A1(t)yA2(t − 1)|A{1,3}(t − 1), true by the
previous G-noncausality condition, leads to A1(t)yA3(t), A2(t − 1)|A{1,3}(t − 1). Then, the contemporaneous independence
associated to A1 = A3 encoded by the subgraph in Fig. 3(b) immediately follows.

The problem of investigating G-noncausality and contemporaneous independence relations for marginal processes of an
MMC is now addressed explicitly, but first, we need to introduce a useful definition for later results.

Definition 4 (Full Independence). Twomarginal processes AS , AT of themultivariateMarkov chain AV are fully independent
with respect to AV if and only if

AS(t)yAT (t)|AV\(S∪T )(t), t ∈ N \ {0}. (24)

Later results are analogous to those of Eichler [12] concerning multivariate autoregressive processes. However, the main
difference with Eichler’s findings is that we rely on statements (4) and (5) and not on the pairwise definitions of Granger
noncausality and contemporaneous independence.

In all the following lemmas and propositions, it is implicitly assumed that the MMC AV is Markov with respect to a given
mixed graph G = (V, E) (see Definition 3).

The next two lemmas specify when two marginal processes are fully independent both with respect to the whole chain
AV or to a subprocess AM, M ⊂ V .

Lemma 3. If the disjoint subsets S, T of nodes of the mixed graph G = (V, E) are m-separated, given V \ (S ∪ T ) then the
marginal processes AS,AT of the multivariate Markov chain AV , with positive transition probabilities, are fully independent with
respect to AV .

Proof. This lemma is analogous to Lemma B.2 in [12] and a more detailed proof is reported in [7]. �

Lemma 4. If the disjoint subsets S, T of M, M ⊂ V , are m-separated, given M \ (S ∪ T ), then the marginal processes AS,AT

of the multivariate Markov chain AV , with positive transition probabilities, are fully independent with respect to the marginal
process AM of AV , that is, it holds

AS(t)yAT (t)|AM\(S∪T )(t), t ∈ N \ {0}. (25)

Proof. It easily follows by Lemma 3 and Proposition 4. �

Example 4. Let G be the mixed graph in Fig. 4. Consider the marginal set M = {1, 2, 3}, and the disjoint subsets S =
{1}, T = {2}, then {1} ◃▹m{2}|{3} by Lemma 1. Hence, Lemma 4 implies that A1 and A2 are fully independent with respect
to the marginal process A{1,2,3}.
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Fig. 4. Lemma 4 implies the full independence between A1 and A2 with respect to A{1,2,3} .
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Fig. 5. Proposition 5 ensures that A3 9 A2 with respect to A{2,3,4} .

The meaning of them-separation properties involved in the next Propositions 5 and 6 are clarified in detail in Lemmas 5
and 6 reported in the Appendix and it is worthwhile observing that these m-separation properties are not affected by self-
loops, since the definition of the sets pa(S) \ S and S ∪ ch(S) does not change with or without the self-loops i→ i, i ∈ S,
in the mixed graph.

To understand the significance of the next proposition, we can rewrite the Granger noncausality condition (2) as follows,
involving disjoint sets of nodes S, T , C,

AT (t)yAS(t − 1)|AV\(S∪T ∪C)(t − 1), AT ∪C(t − 1) t ∈ N \ {0, 1}. (26)

The proposition below highlights when AV\(S∪T ∪C)(t − 1) can be omitted in the conditioning set of (26) without destroying
the G-noncausality property. Proposition 5, indeed, clarifies when a marginal process AS is not Granger causal for another
one AT with respect to a marginal process AM, M ⊂ V .

Similar remarks also apply to the contemporaneous independence relation as illustrated in Proposition 6.

Proposition 5. If S, T , C are disjoint subsets of nodes of the mixed graph G = (V, E) and if S and pa(T ) \ (T ∪ C) are
m-separated, given T ∪ C, then the marginal process AS does not Granger cause AT with respect to the marginal process
AM, M = S ∪ T ∪ C, of the multivariate Markov chain AV , with positive transition probabilities. More precisely, the following
condition holds, for all t ∈ N

AT (t + 1)yAS(t)|AT ∪C(t). (27)

Proof. See Appendix. �

Remark. Note that if pa(T ) \ (T ∪ C) is an empty set, the thesis of Proposition 5 follows directly by (14).

Example 5. Consider the disjoint sets of nodes S = {3}, T = {2}, and C = {4} in the mixed graph of Fig. 5. Setting
S′ = S and T ′ = pa(T ) \ (T ∪ C) = {1}, the marginal set M = S′ ∪ T ′ ∪ (T ∪ C) = {1, 2, 3, 4} is ancestral, the sets
disM(T ′ ∪ chM(T ′)) = {1, 2} and disM(S′ ∪ chM(S′)) = {3, 4} have no common nodes, and consequently it holds that
{3} ◃▹m{1}|{2, 4}. Proposition 5, then ensures that A3 9 A2 with respect to the marginal process A{2,3,4}.

Proposition 6. Let S, T be disjoint subsets of nodes of the mixed graph G = (V, E). If T ⊆ V \ sp(S) and if the subsets
pa(S) \ (S ∪ T ∪ C) and pa(T ) \ (S ∪ T ∪ C) are m-separated, given S ∪ T ∪ C, then the marginal processes AS and AT

of the multivariate Markov chain AV , with positive transition probabilities, are contemporaneously independent with respect to
AM, M = S ∪ T ∪ C, M ⊂ V . More precisely, for all t ∈ N, it holds that

AS(t + 1)yAT (t + 1)|AS∪T ∪C(t). (28)

Proof. See Appendix. �
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Fig. 6. Proposition 6 states that A3 = A{4,6} with respect to A{3,4,5,6} .

Example 6. Consider the disjoint sets of nodes S = {3}, T = {4, 6}, C = {5} of the mixed graph displayed in Fig. 6.
The sets pa(T ) \ (S ∪ T ∪ C) = {2} and pa(S) \ (S ∪ T ∪ C) = {1} are m-separated, given {3, 4, 5, 6}. This can
be easily shown by assuming, for example, S′ = pa(S) \ (S ∪ T ∪ C) and T ′ = pa(T ) \ (S ∪ T ∪ C), so that
M′ = S′ ∪ T ′ ∪ (S ∪ T ∪ C) = {1, 2, 3, 4, 5, 6} is ancestral and the sets disM′(T

′
∪ chM′(T

′)) = {2, 4, 5, 6} and
disM′(S

′
∪ chM′(S

′)) = {1, 3} are disjoint. Hence, Proposition 6 enables us to deduce that A3 = A{4,6} with respect to
the marginal process A{3,4,5,6}.

Remark. It is clear that the marginal process AM , involved in Propositions 5 and 6, is not in general an MMC unless it is not
G-caused by AV\M as required in Proposition 3, or equivalently unless the set M is ancestral. In the case of a marginal MMC,
all the past history of the processes involved in (27) and (28) is not necessary and it can be replaced by the most immediate
past.

The foregoing Propositions 5 and 6, together with Lemmas 5 and 6 in the Appendix, highlight the fact that the Markov
properties of Definition 3 of an MMC imply the global Markov properties (27) and (28) which are equivalent to those of
Eichler and Didelez [16, Def. 4.6].

It is easy to deduce the following result, which is the partial converse of Propositions 5 and 6 since in the previous two
propositions, the MMC AV is assumed to satisfy (5, 6, 7) with respect to a given mixed graph G = (V, E).

Proposition 7. If condition (27) is true, for every disjoint subsets S, T , C of nodes of the mixed graph G = (V, E) such that S
and pa(T ) \ (T ∪C) are m-separated, given T ∪C, then (6) holds. Moreover, (5) is true if (28) is satisfied for all disjoint subsets
S, T such that: (i) T ⊆ V \ sp(S) and (ii) the sets pa(S) \ (S ∪ T ∪ C) and pa(T ) \ (S ∪ T ∪ C) are m-separated, given
S ∪ T ∪ C.

In our opinion, the Markov properties of Definition 3 are to be preferred to the global ones as they are simpler to use in
technical proofs, they encode statement (7) which refers to the independence of variables from their own recent past and,
moreover, lead directly to a parameterization of the transition probabilities.

8. Alternative approaches

The following contemporaneous independence relations can be used instead of (5)

AS(t)yAV\sp(S)(t)|Asp(S)\S(t), AV(t − 1), t ∈ N \ {0}. (29)

This alternative specification associates different sets of conditional independence restrictions with missing bi-directed
edges of themixed graph G. Conditions (4, 29) were used by Eichler [15] to present a block recursive Granger-causal Markov
property clearly different from that presented in Definition 3.

It is interesting to read the Markov properties (4, 5) and (4, 29) under another perspective based on a two-component
chain graph, hereafter referred to as G∗ (for a review on chain graphs see [24]). This other point of view helps to understand
better the meaning of the parametric constraints of Proposition 2 and makes clear that our hypotheses are basically
restrictions on transition probabilities.

The nodes of the chain graph G∗ belonging to chain components τ0 and τ1 correspond to the scalar random variables
Aj(0), j = 1, 2, . . . , q, and Aj(1), j = 1, 2, . . . , q, respectively. Here, the choice of the time points t = 0 and t = 1 is
arbitrary, indeed, any pair of contiguous time points can be considered. All the edges in the subgraph induced by a chain
component are bi-directed. Moreover, the graph induced by the chain component τ0 is bi-complete and the subgraph G∗τ1 ,
induced by τ1, has the same edges as Gb. This means that the nodes related to the scalar random variables Aj(1), Ak(1) are
connected in G∗τ1 by a bi-directed edge if and only if the nodes corresponding to the marginal processes Aj,Ak are linked
by a bi-directed edge in the mixed graph G. Furthermore, the directed edges in graph G∗ point from τ0 toward τ1. In fact, a
directed edge joins the nodes of the random variable Aj(0) to Ak(1) in the chain graphG∗ if and only if the nodes representing
the marginal processes Aj and Ak are linked in the mixed graph G by a directed edge pointing to Ak.

Drton [10] has described four types of Markov properties, called block recursive Markov properties, which identify four
different classes of models associated with a chain graph. When t = 1, conditions (4, 5) encoded by the mixed graph G
coincide with Drton’s type IV block recursive Markov properties of the above mentioned two-component chain graph G∗
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Table 1
Hypothesis tests.

Hyp Missing edges LRT df p-value Relations

1 1↔ 2, 1↔ 3, 2↔ 3 80.37 32 0.00 A1 = A2 = A3
2 1↔ 2, 1↔ 3 22.32 24 0.56 A1 = A{2,3}
3 1→ 2, 1→ 3, 2→ 1, 3→ 1 23.81 18 0.16 A1 9 A{2,3},A{2,3} 9 A1
4 2→ 1, 2→ 3, 1→ 2, 3→ 2 32.47 18 0.02 A2 9 A{1,3},A{1,3} 9 A2
5 3→ 1, 3→ 2, 1→ 3, 2→ 3 24.95 18 0.13 A3 9 A{1,2},A{1,2} 9 A3
6 1↔ 2, 1↔ 3, 1→ 2, 1→ 3, 2→ 1, 3→ 1 45.09 42 0.34 A1 = A{2,3},A1 9 A{2,3},A{2,3} 9 A1
7 1↔ 2, 1↔ 3, 3→ 1, 3→ 2, 1→ 3, 2→ 3 45.30 38 0.19 A1 = A{2,3},A3 9 A{1,2},A{1,2} 9 A3
8 1↔ 2, 1↔ 3, 2↔ 3, 1→ 2, 1→ 3, 2→ 1,

3→ 1, 2→ 3, 3→ 2
110.2 50 0.00 Ai = A{ j,k},Ai 9 A{ j,k},A{ j,k} 9 Ai i ≠ j ≠ k, i, j, k = {1, 2, 3}

1 2 3

Fig. 7. Mixed graph for web data. It encodes the G-noncausality and contemporaneous independence relations: A1 9 A{2,3},A{2,3} 9 A1; A1 = A{2,3} .

and the parameterization of the transition probabilities introduced in Section 6 is a special case of that proposed for the
multivariate regression chain graph models [26]. Thus, the zero restrictions on parameters imposed in Proposition 2 for
an MMC to be Markov with respect to a mixed graph G state also that the transition probabilities satisfy the type IV block
recursive Markov properties encoded by G∗.

Moreover, type II block recursiveMarkov properties ofG∗ are known as the Andersson–Madigan–Perlman (AMP)Markov
properties [1] of a chain graph and when t = 1 coincide with the conditions (4) and (29) of the mixed graph G.

Unlike types II and IV, Types I and III block recursive Markov properties of G∗ does not seem to be appropriate when
dealing with G-noncausality because they replace the Granger noncausality condition (4) with

AS(t)yAV\pa(S)(t − 1)|AV\S(t), Apa(S)(t − 1), t ∈ N \ {0} (30)

which introduces AV\S(t) in the conditioning information set and does not meet the noncausality in the sense of Granger.
Finally, Drton proved that the type I and IV block recursive properties are the only ones which lead to smooth

parameterizations for discrete chain graphmodels (for an in-depth discussion of this aspect, see the aforementioned work).
This result further justifies our preference for the block recursive properties (4, 5) of Definition 3 instead of (4, 29) of [15].

9. Example

The proposed methodology is used to analyze the binary data collected every day for 6 months by an Italian mobile
telephone company. The data (available from the authors) consist of a 3-dimensional time series of the daily utilization rate
level (low and high) of 3 web servers located in Rome (Italy). The joint dynamic behavior of the series is described by a first
order 3-variate Markov chain.

As the servers are all simultaneously operational, it is useful to verify whether the status of a server depends on the
utilization levels of the others on the same day, given the past use of all servers. Moreover, it is also important to ascertain
whether the current working of a server is influenced by the extent that the others worked the previous day.

An answer to these questions can be attained by testing the hypotheses of G-noncausality and contemporaneous
independence. This problem can be easily reduced to establishing which Markov properties of type (4) and (5) are satisfied
by the transition probabilities of the web server Markov chain and to identifying the mixed graph which represents them.

To this end, various hypotheses associated with missing edges in the mixed graph have been tested. A few results are
illustrated in Table 1. All the hypotheses are tested by using the package hmmm [4] in the R language (R Development
Core Team [28]). Among the hypotheses in Table 1 involving both G-noncausality and contemporaneous independence
restrictions, the 6th and 7th are accepted, but we focus on the 6th, as it has a lower value of the likelihood ratio statistic test
LRT , higher degrees of freedom and is easier to interpret.

Hypothesis 6 refers to noncausal and contemporaneous dependence relations between the servers 1 and 2, 3. This means
that yesterday’s utilization levels of servers 2 and 3 do not add helpful information when predicting the first one’s operation
level today and vice versa and, moreover, there is no influence between the contemporaneous working of servers 1 and 2, 3.
The conditions under hypothesis 6 are encoded by the mixed graph G = (V, E) displayed in Fig. 7, with one node for each
server. Therefore, the Markov chain of the web data is Markov with respect to this mixed graph. Note that a directed edge
from each node to itself belongs to E , even if it is not drawn in Fig. 7.

The missing edges in Fig. 7 are equivalent to a set of zero constraints on Glonek–McCullagh interactions θ P,Q (iP |i′Q ) as
explained in Proposition 2. In this example, all the marginal processes have only two states, hence for every P and Q there
is only one Glonek–McCullagh multivariate logistic interaction which will be denoted by θ P,Q . In each row of Table 2, an
interaction θ P,Q is identified by the sets P ⊆ {1, 2, 3} and Q ⊆ {1, 2, 3}. The short form 123 is used to denote the set
{1, 2, 3}, 12 is used to denote {1, 2} and so on. The symbols ∗ and× in Table 2 indicate the interactions θ P,Q which have to
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Table 2
Estimates (standard error) of the interactions θ P,Q of the model associated with the mixed graph in Fig. 7. Interactions with the significant Wald Statistic
are boldfaced. The symbols (∗) and (×) indicate the interactions which are null for the conditions of G-noncausality and contemporaneous independence,
respectively, encoded by the mixed graph in Fig. 7.

P Q Estimates (s.e.) P Q Estimates (s.e.) P Q Estimates (s.e.)

1 −1.124 (0.250) 12 × 123 ×

1 2.365 (0.351) 1 × 1 ×

2 ∗ 2 × 2 ×

3 ∗ 3 × 3 ×

12 ∗ 12 × 12 ×

13 ∗ 13 × 13 ×

23 ∗ 23 × 23 ×

123 ∗ 123 × 123 ×

2 −2.085 (0.352) 13 ×

1 ∗ 1 ×

2 2.085 (0.783) 2 ×

3 1.693 (0.963) 3 ×

12 ∗ 12 ×

13 ∗ 13 ×

23 0.707 (1.254) 23 ×

123 ∗ 123 ×

3 −2.085 (0.352) 23 3.823 (0.915)
1 ∗ 1 ∗

2 0.205 (1.091) 2 −0.281 (5.232)
3 2.478 (0.963) 3 0.782 (5.271)

12 ∗ 12 ∗

13 ∗ 13 ∗

23 1.803 (1.466) 23 1.740 (7.511)
123 ∗ 123 ∗

be set at zero in order to meet G-noncausality and contemporaneous independence conditions which we can read off the
mixed graph in Fig. 7.

The comparison of the model defined by hypothesis 6 in Table 1 with the model in which also the interactions
θ23,2, θ23,3, θ23,23 are equal to zero provides the value LRT = 3.88 (df = 3) of the likelihood ratio test statistic. This
means that the odds ratio measuring the association between the daily utilization of servers 2 and 3 does not depend on the
utilization levels on the day before. This form of constant association is not encoded by missing edges in the graph.

Appendix. Technical proofs

A.1. Some results on the m-separation

The following lemmas help to clarify the assumptions of Propositions 5 and 6 reported in Section 7.
Recall that a path τ in a mixed graph G = (V, E) with endpoints s and t is pointing to t if its last edge has an arrowhead

at the endpoint t; while τ is bi-pointing if it has an arrowhead at both endpoints s and t .

Lemma 5. If S, T are disjoint subsets of nodes of the mixed graph G = (V, E), then S ◃▹m pa(T ) \ (T ∪ C)|T ∪ C, if and only
if there are no connecting paths, with endpoints s ∈ S and t ∈ T pointing to t.
Proof. Let us assume that the sets S and pa(T ) \ (T ∪ C) are not m-separated, given T ∪ C, this means that there exists
a connecting path, given T ∪ C, with endpoints s ∈ S and p ∈ pa(T ) \ (T ∪ C). If we extend this path by adding a
directed edge from p to t ∈ C, we get a connecting path from s ∈ S to t ∈ T pointing to t . Conversely, let us consider that
S ◃▹m pa(T ) \ (T ∪ C)|T ∪ C and, moreover, that there exists a connecting path τ from s ∈ S to t ∈ T pointing to t . Let
u→ t be the last edge of this path. Since τ is connecting and u is a noncollider node it must be u ∈ pa(T ) \ (T ∪ C), while
the remaining noncollider nodes of τ must not belong to T ∪C and the collider nodes must be into T ∪C. This contradicts
the assumed hypothesis of separation and, consequently, such a path cannot exist. �

Lemma 6. If S, T are disjoint subsets of nodes of the mixed graph G = (V, E), then pa(S) \ (S ∪ T ∪C) ◃▹m pa(T ) \ (S ∪ T ∪
C)|S ∪ T ∪ C if and only if there are no connecting bi-pointing paths with endpoints s ∈ S and t ∈ T .
Proof. The proof is analogous to that of Lemma 5 and is omitted. �

A.2. Proofs of the propositions in Section 7

Proof of Proposition 4. First, let us consider that from pa(M) ⊆M and (4), true for hypothesis, we have

AM(t)yAV\M(t − 1)|AM(t − 1), t ∈ N \ {0, 1}.
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Since the joint process is Markov, it also follows that

AM(t)yAM(t − 2)|AV(t − 1), t ∈ N \ {0, 1, 2}.

According to the composition property, the previous two conditions imply that

AM(t)yAM(t − 2), AV\M(t − 1)|AM(t − 1), t ∈ N \ {0, 1, 2}. (A.1)

Hence, the claim that the marginal process AM is an MMC follows directly from (A.1).
Now, in order to prove that MMC AM is also Markov with respect to the mixed graph GM induced by M ⊆ V , we need to

show that the G-noncausality and contemporaneous independence conditions of Definition 3 continue to hold with respect
to the subset M of V as well.

More precisely, it is worth noting that pa(M) ⊆M and (14) imply

AS(t)yAM\paM(S)(t − 1)|ApaM(S)(t − 1) t ∈ N \ {0}, S ∈ P (M),

which evidently is the Granger noncausality condition in GM .
Weonly have to show the same result for contemporaneous independence. This can bedemonstrated by a fewarguments.

Note that from (15), we obtain

AS(t)yAV\sp(S)(t)|AV\M(t − 1), AM(t − 1) t ∈ N \ {0}, S ∈ P (V), (A.2)

and if S ∈ P (M), by Lemma 2 the foregoing condition (A.1) gives

AS(t)yAV\M(t − 1)|AM(t − 1) t ∈ N \ {0}. (A.3)

Without loss of generality, we can continue to assume that S ∈ P (M), hence it is simple to prove that (A.2, A.3) can be
equivalently written as follows

AS(t)yAV\M(t − 1), AV\sp(S)(t)|AM(t − 1) t ∈ N \ {0}. (A.4)

Since the nodes belonging toMwhich are spouses in the original graphG remain spouses in the subgraphGM andS ∈ P (M),
then the set V \ sp(S) contains M \ spM(S). Therefore, we can immediately deduce from (A.4) the desired result

AS(t)yAM\spM(S)(t)|AM(t − 1) t ∈ N \ {0}, S ∈ P (M) (A.5)

which states the contemporaneous independence condition in GM .
Finally, the independencies (A.1, A.5) establish that the multivariate Markov chain AM is Markov with respect to the

mixed subgraph GM induced by M after marginalizing V . �

Proof of Proposition 5. Under the hypotheses of this proposition, Lemma 4 entails

AS(t)yApa(T )\(T ∪C)(t)|AT ∪C(t), t ∈ N \ {0}. (A.6)

Furthermore, the next independence

AT (t + 1)yAV\(pa(T )∪T ∪C)(t)|Apa(T )∪T ∪C(t), t ∈ N

follows by condition (14).
It is worth noting that S ⊂ V \ (pa(T ) ∪ T ∪ C) since S, T , C are disjoint and S and pa(T ) \ (T ∪ C) arem-separated

sets given T ∪ C. Consequently, the above statement yields

AT (t + 1)yAS(t)|Apa(T )∪T ∪C(t), t ∈ N.

The thesis of this proposition is immediately obtained as the earlier independence and (A.6) are equivalent to

AT (t + 1), Apa(T )\(T ∪C)(t)yAS(t)|AT ∪C(t), t ∈ N

which directly implies

AT (t + 1)yAS(t)|AT ∪C(t), t ∈ N. �

Proof of Proposition 6. The hypotheses of the proposition and Lemma 4 lead to

AS(t + 1)yAT (t + 1)|AV(t), t ∈ N, (A.7)

Apa(S)\(S∪T ∪C)(t)yApa(T )\(S∪T ∪C)(t)|AS∪T ∪C(t), t ∈ N. (A.8)

Then, using (14) at time t + 1,

AS(t + 1)yAV\pa(S)(t)|Apa(S)(t), t ∈ N
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we find

AS(t + 1)yAV\(pa(S)∪S∪T ∪C)(t)|Apa(S)∪S∪T ∪C(t), t ∈ N. (A.9)

For our purpose, it is important to note that (A.7, A.9) are equivalent to

AS(t + 1)yAT (t + 1), AV\(pa(S)∪S∪T ∪C)(t)|Apa(S)∪S∪T ∪C(t), t ∈ N

from which it unfolds that

AS(t + 1)yAT (t + 1), Apa(T )\(S∪T ∪C)(t)|Apa(S)∪S∪T ∪C(t), t ∈ N (A.10)

since the hypothesis ofm-separated sets ensures that (pa(T ) \ (S ∪ T ∪ C)) ∩ (pa(S) \ (S ∪ T ∪ C)) = ∅.
Moreover, condition (14) provides

AT (t + 1)yAV\(pa(T )∪S∪T ∪C)(t)|Apa(T )∪S∪T ∪C(t), t ∈ N

and, hence, we have

AT (t + 1)yApa(S)\(S∪T ∪C)(t)|Apa(T )∪S∪T ∪C(t), t ∈ N. (A.11)

Now, applying the contraction property to (A.8, A.11) gives, for all t ∈ N

Apa(S)\(S∪T ∪C)(t)yAT (t + 1), Apa(T )\(S∪T ∪C)(t)|AS∪T ∪C(t). (A.12)

Finally, we see that conditions (A.10, A.12) are equivalently expressed as

AS(t + 1), Apa(S)\(S∪T ∪C)(t)yAT (t + 1), Apa(T )\(S∪T ∪C)(t)|AS∪T ∪C(t)

that demonstrates the thesis of the proposition

AS(t + 1)yAT (t + 1)|AS∪T ∪C(t), t ∈ N. �
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[31] J. Whittaker, Graphical Models in Applied Multivariate Statistics, John Wiley, Chichester, 1990.

http://www.unibg.it/pers/?colombi
http://www.ecostat.unical.it/giordano
http://arxiv.org/1107.3036
http://dx.doi.org/doi:10.1007/s00440-011-0345-8
http://www.stat.uiowa.edu/~jblang/#software

	Graphical models for multivariate Markov chains
	Introduction
	Basic notation for multivariate Markov chains
	Granger noncausality and contemporaneous independence
	Mixed graphs
	Basic concepts of mixed graphs
	The  m -separation criterion
	Markov properties of mixed graphs

	Main results on  G -noncausality and contemporaneous independence in MMC
	A multivariate logistic model for transition probabilities
	 G -noncausality and contemporaneous independence in marginal processes of MMC
	Alternative approaches
	Example
	Technical proofs
	Some results on the  m -separation
	Proofs of the propositions in Section 7

	References


